Показать сокращенную информацию
dc.contributor.author | KALYBAY, AIGERIM | |
dc.contributor.author | OINAROV, RYSKUL | |
dc.date.accessioned | 2024-12-18T06:15:48Z | |
dc.date.available | 2024-12-18T06:15:48Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | KALYBAY, AIGERIM and OINAROV, RYSKUL (2019) "Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space," Turkish Journal of Mathematics: Vol. 43: No. 1, Article 25. https://doi.org/10.3906/mat-1807-187 | ru |
dc.identifier.issn | 1303-6149 | |
dc.identifier.other | doi.org/10.3906/mat-1807-187 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/20300 | |
dc.description.abstract | In this paper, for a wide class of integral operators, we consider the problem of their boundedness from a weighted Sobolev space to a weighted Lebesgue space. The crucial step in the proof of the main result is to use the equivalence of the basic inequality and certain Hardy-type inequality, so we first state and prove this equivalence. | ru |
dc.language.iso | en | ru |
dc.publisher | Turkish Journal of Mathematics | ru |
dc.relation.ispartofseries | Volume 43 Number 1; | |
dc.subject | Integral operator | ru |
dc.subject | kernel | ru |
dc.subject | weighted Lebesgue space | ru |
dc.subject | weighted Sobolev space | ru |
dc.subject | boundedness | ru |
dc.subject | compactness | ru |
dc.title | Kernel oper ernel operators and their boundedness fr ors and their boundedness from weighted Sobole om weighted Sobolev space to weighted Lebesgue space | ru |
dc.type | Article | ru |