dspace.ENU

ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES

Показать сокращенную информацию

dc.contributor.author Abek, А.N.
dc.contributor.author Turgumbayev, M.Zh.
dc.contributor.author Suleimenova, Z.R.
dc.date.accessioned 2024-11-27T06:08:29Z
dc.date.available 2024-11-27T06:08:29Z
dc.date.issued 2023
dc.identifier.issn 2617-4871
dc.identifier.other doi.org/10.26577/JMMCS.2023.v118.i2.01
dc.identifier.uri http://rep.enu.kz/handle/enu/19394
dc.description.abstract In this paper considers a generalized fractional-maximal operator, a special case of which is the classical fractional-maximal function. Conditions for the function Φ, which defines a generalized fractional-maximal function, and for the weight functions w and v, which determine the weighted Lorentz spaces Λp(v) and Λq(w) (1 < p ≤ q < ∞) under which the generalized maximal-fractional operator is bounded from one Lorentz space Λp(v) to another Lorentz space Λq(w) are obtained. For the classical fractional maximal operator and the classical maximal Hardy-Littlewood function such results were previously known. When proving the main result, we make essential use of an estimate for a nonincreasing rearrangement of a generalized fractional-maximal operator. In addition, we introduce a supremal operator for which conditions of boundedness in weighted Lebesgue spaces are obtained. This result is also essentially used in the proof of the main theorem. ru
dc.language.iso en ru
dc.publisher JMMCS ru
dc.subject fractional-maximal function ru
dc.subject non-increasing rearrangement ru
dc.subject generalized fractionalmaximal operator ru
dc.subject weighted Lorentz spaces ru
dc.subject supremal operator ru
dc.title ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись