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We consider the following iterated discrete Hardy inequalities 
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The Hardy inequalities, which have been studied in depth since the early XX century, 
have their applications in many areas of mathematics. Hardy type inequalities are an important 
tool in solving problems of mathematics and mathematical physics and they are widely used in 
the theory of integral and differential equations, in non- linear analysis, in the spectral theory of 
elliptic type. 

In recent years, one of the most intensively studied topics in the theory of Hardy 
inequalities has been the evaluation of iterated operators. The reason for this is the wide 
application of these inequalities in the study of boundedness properties of operators from a 
Lebesgue weighted space to a local Morrey type space, as well as in the study of bilinear 
operators in weighted Lebesgue spaces.  

An inequality involving an iteration of discrete, continuous Hardy operator is considered 
difficult to estimate since it has three independent weights and three parameters with different 
ratios. Nevertheless, many papers are devoted to this type of inequality. Characterization of 
continuous iterated Hardy inequalities were obtained in works [1]-[5]. Compared to the 
continuous case the discrete analogue of the Hardy iterated inequality is studied very little. In 
this direction, we can note the works of Gogatishvilli A., Krepela M., Rastislav O., Pick L. [6] 
and Oinarov R., Temirhanova A.M., Omarbaeva B.K. [7],[8].  

The aim of this work is to obtain necessary and sufficient conditions for the fulfillment of 
the discrete iterated Hardy inequalities (1) and (2) for cases: 10 ≤< p , { } ∞<≤< rqp ,min0 ; 

∞<≤<<< qpr 10 . 
Let 
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where Ν∈z . 

Our main result reads as follows: 
Theorem 1. The inequality (1) holds if and only if  
(i) ∞<= −−

∈
zz

Nz
AUE ,1sup  for 10 ≤< p , { } ∞<≤< rqp ,min0 ; 

(ii) ∞<= −−

∈
zz

Nz
BUE ,1sup  for ∞<≤<<< qpr 10 . 

Moreover 1CE ≈ . Here, 1C  is the smallest constant that satisfies the inequality (1). 
 
Theorem 2. The inequality (2) holds if and only if  
(i) ∞<= +

∞
+

∈
,sup zz

Nz
AUE  for 10 ≤< p , { } ∞<≤< rqp ,min0 ; 

(ii) ∞<= +
∞
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Moreover, 2CE ≈ , where 2C is the smallest constant that satisfies the inequality (2). 
The notation BA <<  means that there exists a constant 0>c  depending only on 

parameters p , r , q , such that the inequality cBA ≤  is fulfilled. We write BA ≈  if a two-way 
estimation ABA <<<<  holds. 
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