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In this paper we will find similar transformation of the Sturm-Liouville operator in a

Hilbert space.
Consider the Sturm-Liouville equation on the interval (0,1)
Ly ==y"+qx)y=f
where the function q(x) real-valued and from Hilbert space L,(0,1). Solution of the
homogeneous equation is y(x) = C;c(x) + C,s(x), where C;,C, arbitrary constants. The

fundamental solutions of the homogenous equation are c(x) =1+ f(f[?C(x, t) + K (x,—t)]dt
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and s(x) = x + f:[JC(x, t) — K (x, —t)]tdt , where the function K (x,t) is the solution of the
following Goursat problem

(:Kxx" - :Kyy" = q(t)K(x,t)
1 K(x,—x)=0

| =%jq(t)dt

0
Domain of the maximal and minimal operators are the following Sobolev spaces

0
respectively D(Z) = W$(0,1) and D(L,) = W,2(0,1). As a domain of the fixed operator L we
choose Dirichlet condition D(L) = {y € W2(0,1): y(0) = y(1) = 0}. Operator defined by
y = Lg'f = L™ f + Kf for any bounded operator K: L,(0,1) — kerL , is correct restriction of
the maximal operator. Then correct restriction of the maximal operator Lk acts on the following

domain
1

D(Ly) = (y € W2(0,1): y(0) = j [=y"(®) + q(Oy©)]oy (D)
0

y(1) =c(Dy(0) +s(1) j[—y"(t) +q()y()]oz()dt}
0

For any o, (x), 0,(x) € L,(0,1) we can uniquely define operator K in the following form

Kf = c(x) [ f()or (Dt + s(x) [} f(£)a(8)dt , Yf(x) € Ly(0,1)
Operator KL bounded if and only if operator K satisfies the condition R(K*) < D(L*). Adjoint
operator of K is

K'f = 0,(x) [, c(Of ()t + 03(x) [ s(Of (t)dt .
If the functions o; (x) o,(x) € D(L*) = D(L) then KL is bounded and have the following form

KLy = C(x)f [=¥"(®) + q(O)y(O)]o (H)dt + S(x)f [=¥"(®) + q(©)y(O)]o2(t)dt

Using the fact that al(x) a,(x) € W2(0,1) and g,(0) = 01(1) = 0,(0) = 0,(1) =0, and
integrating by parts we get

KLy = C(x)jy(t)[ 01"(t) + q(t)o1(1)] dt+S(X)fy(t) —0,"(t) + q(t)o(D)]dt
The operator KLy is also bounded and we have to find the form of KLg.
KLgy = c(x) f[ y'(t) + q(@)y(t)]or(t)dt + S(x)f y'(t) + q®)y(t)]ox(t)dt
= Cl(x){—y Doy (1) +y'(0)01(0) + y(1)01(1) — y(0)o1(0)

+ jY(t)[—ca"(t) +q®)o(D]dt} + s(){=y' (Do (1) + y'(0)7,(0)

0
1

+y()o;'(1) — y(0)o,'(0) + jy(t)[—az"(t) +q(t)oz(D)]dt}

0
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KLgy = c@)[y(o;™ = y(0)a{(0) + IY(t)[—Ul"(t) +q®)o(B)]dt] +

+s()[y(D)o,'(1) — y(0)a2'(0) + f y(O[=02"(®) + q(t)oz(D)]dt]

To define operator K Lg we have to find y(0) and y(1) on D(Lg)
1
y© = [1=7"® + q©y @l (©)de =
0

1
=~y (A1) + Y Or0) + yDol(D) = YO0 + | YOl=0,"(0) + a0 O
:
and )
y(D) = ey +5(1) [ [-5"® + qOy oy (O =
= c)y(©) + 5D (1) + 5 ©),(0) + YD) - y(0)0";(0)
+ [ YO1=0"0 + ao,)d

0
This two equation can be written as linear equation system.
( 1
[1+0'1(0)]y(0) — o’y (Dy(1) = jy(t)[—al"(t) +q(t)o,(t)]dt
) 0

[672(0)s(1) — c(D]y(0) + [1 — o', (Ds(D]y(1) = fy(t)[—G"z(t) +q(t)o,(D)]dt]
\ 0

By solving this linear equation system we get

1
1-s(1)d’,(1
y(© =720 [ 000 + g0t
0

1
o 1A(1)J-y(t)[_o-"2(t) + q(t) o, (t)]dt]
0

y(1) =

1
c(1) — sil)a 2(0) J' y(®)[—0,"(t) + q(t)oy (t)]dt
0

_|_

1
1 "1(0
2220 [ 0100 + a0e @l
0

where A= 1+ ¢'1(1)c(1) — 0", (D)s(1) + '1(0) — o', (D", (0)s(1) — a'1(0)a",(1)s(1).

By concluding all above calculations we find exact form of bounded operator K L.
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KLy = oo | 222D = 2”'1(1)”'2(0)5(1) Lk LY [EGIENG
0

+a@a©)de + 2‘21(0)"'1(1) f y(Ol=0"2() + () (D)]dt

1

'2(Dc(1) —a',(0

500 |20 [ 0-0,(0) + g o1at
0

1

s 20_11(0)0’2(12— 0”2(1) +A j y(t) [—O'"z(t) + q(t)o'z(t)]dt

0

In the work(1), it was proven that if operator L densely defined on the Hilbert space and
R(K™) € D(L*) n D(L%) then operator K L, bounded on Hilbert space and correct operator Ay is
similar to operator Lx on D(Ak) = D(L), where Ay = L — KLkL .
Then the operator A has the form
Agy = =y"(x) + q(x)y(x)

1
e 20'1(1D)c(1) —20"1(Do Z(O)s(l) +1-0',(1)s(1) j‘ Ly(O)Loy(Odt
0

+ 0'1(1) +20'4(0)0’1 (1)

1
= j Ly(t)Lo,(t)dt
0

a'2(Dc(1) —a',(0)
A

+ s(x) f Ly(t)Lo;(t)dt
0

1

+ 20’1(0)0’2(2_ 1S +Af Ly(t)Lo,(t)dt

0
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