УДК 517.927.2

SIMILAR TRANSFORMATION OF THE STURM -LIOUVILLE OPERATOR

Kudaibergenov Serik

serik4648@gmail.com

L. N. Gumilyov Eurasian National University 2rd year undergraduate in mathematics, Nur-Sultan, Kazakhstan.

Supervisor – Biyarov B.

In this paper we will find similar transformation of the Sturm-Liouville operator in a Hilbert space.

Consider the Sturm-Liouville equation on the interval (0,1)

$$\widehat{L}y = -y'' + q(x)\widehat{y} = f$$

where the function q(x) real-valued and from Hilbert space $L_2(0,1)$. Solution of the homogeneous equation is $y(x) = C_1c(x) + C_2s(x)$, where C_1, C_2 arbitrary constants. The fundamental solutions of the homogeneous equation are $c(x) = 1 + \int_0^x [\mathcal{K}(x,t) + \mathcal{K}(x,-t)]dt$

and $s(x)=x+\int_0^x [\mathcal{K}(x,t)-\mathcal{K}(x,-t)]tdt$, where the function $\mathcal{K}(x,t)$ is the solution of the following Goursat problem

$$\begin{cases} \mathcal{K}_{xx}" - \mathcal{K}_{yy}" = q(t)\mathcal{K}(x,t) \\ \mathcal{K}(x,-x) = 0 \end{cases}$$
$$\mathcal{K}(x,x) = \frac{1}{2} \int_{0}^{x} q(t)dt$$

Domain of the maximal and minimal operators are the following Sobolev spaces respectively $D(\hat{L}) = W_2^2(0,1)$ and $D(L_0) = W_2^2(0,1)$. As a domain of the fixed operator L we choose Dirichlet condition $D(L) = \{y \in W_2^2(0,1): y(0) = y(1) = 0\}$. Operator defined by $y = L_K^{-1} f = L^{-1} f + K f$ for any bounded operator $K: L_2(0,1) \to ker \hat{L}$, is correct restriction of the maximal operator. Then correct restriction of the maximal operator L_K acts on the following domain

$$D(L_K) = \{ y \in W_2^2(0,1) \colon y(0) = \int_0^1 [-y''(t) + q(t)y(t)] \sigma_1(t) dt;$$
$$y(1) = c(1)y(0) + s(1) \int_0^1 [-y''(t) + q(t)y(t)] \sigma_2(t) dt \}$$

For any $\sigma_1(x)$, $\sigma_2(x) \in L_2(0,1)$ we can uniquely define operator K in the following form

$$Kf = c(x) \int_0^1 f(t)\sigma_1(t)dt + s(x) \int_0^1 f(t)\sigma_2(t)dt$$
, $\forall f(x) \in L_2(0,1)$
Operator KL bounded if and only if operator K satisfies the condition $R(K^*) \subset D(L^*)$. Adjoint

operator of K is

$$K^*f = \sigma_1(x) \int_0^1 c(t)f(t)dt + \sigma_2(x) \int_0^1 s(t)f(t)dt$$
.

 $K^*f=\sigma_1(x)\int_0^1c(t)f(t)dt+\sigma_2(x)\int_0^1s(t)f(t)dt\;.$ If the functions $\sigma_1(x),\sigma_2(x)\in D(L^*)=D(L)$ then KL is bounded and have the following form

$$KLy = c(x) \int_{0}^{1} [-y''(t) + q(t)y(t)] \sigma_{1}(t) dt + s(x) \int_{0}^{1} [-y''(t) + q(t)y(t)] \sigma_{2}(t) dt$$
 Using the fact that $\sigma_{1}(x), \sigma_{2}(x) \in W_{2}^{2}(0,1)$ and $\sigma_{1}(0) = \sigma_{1}(1) = \sigma_{2}(0) = \sigma_{2}(1) = 0$, and

integrating by parts we get

$$KLy = c(x) \int_{0}^{1} y(t) [-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt + s(x) \int_{0}^{1} y(t) [-\sigma_{2}"(t) + q(t)\sigma_{2}(t)]dt$$

The operator KL_K is also bounded and we have to find the form of KL_K .

$$KL_{K}y = c(x) \int_{0}^{1} [-y''(t) + q(t)y(t)]\sigma_{1}(t)dt + s(x) \int_{0}^{1} [-y''(t) + q(t)y(t)]\sigma_{2}(t)dt$$

$$= c(x)\{-y'(1)\sigma_{1}(1) + y'(0)\sigma_{1}(0) + y(1)\sigma_{1}'(1) - y(0)\sigma_{1}'(0)$$

$$+ \int_{0}^{1} y(t)[-\sigma_{1}''(t) + q(t)\sigma_{1}(t)]dt\} + s(x)\{-y'(1)\sigma_{2}(1) + y'(0)\sigma_{2}(0)$$

$$+ y(1)\sigma_{2}'(1) - y(0)\sigma_{2}'(0) + \int_{0}^{1} y(t)[-\sigma_{2}''(t) + q(t)\sigma_{2}(t)]dt\}$$

$$KL_{K}y = c(x)[y(1)\sigma_{1}^{\prime(1)} - y(0)\sigma_{1}^{\prime}(0) + \int_{0}^{1} y(t)[-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt] + s(x)[y(1)\sigma_{2}'(1) - y(0)\sigma_{2}'(0) + \int_{0}^{1} y(t)[-\sigma_{2}"(t) + q(t)\sigma_{2}(t)]dt]$$

To define operator KL_K we have to find y(0) and y(1) on $D(L_K)$

$$y(0) = \int_{0}^{1} [-y''(t) + q(t)y(t)]\sigma_{1}(t)dt =$$

$$= -y'(1)\sigma_{1}(1) + y'(0)\sigma_{1}(0) + y(1)\sigma'_{1}(1) - y(0)\sigma'_{1}(0) + \int_{0}^{1} y(t)[-\sigma_{1}''(t) + q(t)\sigma_{1}(t)]dt$$

and

$$y(1) = c(1)y(0) + s(1) \int_{0}^{1} [-y''(t) + q(t)y(t)] \sigma_{2}(t) dt =$$

$$= c(1)y(0) + s(1)[-y'(1)\sigma_{2}(1) + y'(0)\sigma_{2}(0) + y(1)\sigma'_{2}(1) - y(0)\sigma'_{2}(0)$$

$$+ \int_{0}^{1} y(t)[-\sigma''_{2}(t) + q(t)\sigma_{2}(t)] dt]$$

This two equation can be written as linear equation system.

$$\begin{cases} [1 + \sigma'_{1}(0)]y(0) - \sigma'_{1}(1)y(1) = \int_{0}^{1} y(t)[-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt \\ [\sigma'_{2}(0)s(1) - c(1)]y(0) + [1 - \sigma'_{2}(1)s(1)]y(1) = \int_{0}^{1} y(t)[-\sigma"_{2}(t) + q(t)\sigma_{2}(t)]dt] \end{cases}$$

By solving this linear equation system we get

$$y(0) = \frac{1 - s(1)\sigma'_{2}(1)}{\Delta} \int_{0}^{1} y(t) [-\sigma_{1}"(t) + q(t)\sigma_{1}(t)] dt$$
$$-\frac{\sigma'_{1}(1)}{\Delta} \int_{0}^{1} y(t) [-\sigma"_{2}(t) + q(t)\sigma_{2}(t)] dt]$$

$$y(1) = \frac{c(1) - s(1)\sigma'_{2}(0)}{\Delta} \int_{0}^{1} y(t) [-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt + \frac{1 + \sigma'_{1}(0)}{\Delta} \int_{0}^{1} y(t) [-\sigma"_{2}(t) + q(t)\sigma_{2}(t)]dt]$$

where
$$\triangle = 1 + \sigma'_1(1)c(1) - \sigma'_2(1)s(1) + \sigma'_1(0) - \sigma'_1(1)\sigma'_2(0)s(1) - \sigma'_1(0)\sigma'_2(1)s(1)$$
.

By concluding all above calculations we find exact form of bounded operator KL_K .

$$\begin{split} KL_{K}y &= c(x) \left[\frac{2\sigma'_{1}(1)c(1) - 2\sigma'_{1}(1)\sigma'_{2}(0)s(1) + 1 - \sigma'_{2}(1)s(1)}{\Delta} \int_{0}^{1} y(t) [-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt + \frac{\sigma'_{1}(1) + 2\sigma'_{1}(0)\sigma'_{1}(1)}{\Delta} \int_{0}^{1} y(t) [-\sigma_{2}"(t) + q(t)\sigma_{2}(t)]dt \right] \\ &+ s(x) \left[\frac{\sigma'_{2}(1)c(1) - \sigma'_{2}(0)}{\Delta} \int_{0}^{1} y(t) [-\sigma_{1}"(t) + q(t)\sigma_{1}(t)]dt \right. \\ &+ \frac{2\sigma'_{1}(0)\sigma'_{2}(1) - \sigma'_{2}(1) + \Delta}{\Delta} \int_{0}^{1} y(t) [-\sigma_{2}"(t) + q(t)\sigma_{2}(t)]dt \right] \end{split}$$

In the work(1), it was proven that if operator L_K densely defined on the Hilbert space and $R(K^*) \subset D(L^*) \cap D(L_K^*)$ then operator KL_K bounded on Hilbert space and correct operator A_K is similar to operator L_K on $D(A_K) = D(L)$, where $A_K = L - KL_K L$.

Then the operator A_K has the form

$$A_{K}y = -y''(x) + q(x)y(x)$$

$$-c(x) \left[\frac{2\sigma'_{1}(1)c(1) - 2\sigma'_{1}(1)\sigma'_{2}(0)s(1) + 1 - \sigma'_{2}(1)s(1)}{\Delta} \int_{0}^{1} Ly(t)L\sigma_{1}(t)dt \right]$$

$$+ \frac{\sigma'_{1}(1) + 2\sigma'_{1}(0)\sigma'_{1}(1)}{\Delta} \int_{0}^{1} Ly(t)L\sigma_{2}(t)dt \right]$$

$$+ s(x) \left[\frac{\sigma'_{2}(1)c(1) - \sigma'_{2}(0)}{\Delta} \int_{0}^{1} Ly(t)L\sigma_{1}(t)dt \right]$$

$$+ \frac{2\sigma'_{1}(0)\sigma'_{2}(1) - \sigma'_{2}(1) + \Delta}{\Delta} \int_{0}^{1} Ly(t)L\sigma_{2}(t)dt \right]$$

References

- 1. B.N. Biyarov. Similar transformation of one class of correct restriction. arXiv, 2021.
- 2. B.N. Biyarov, Z.A. Zakarieva, G.K. Addrasheva. Non self-adjoint correct restrictions and extentions with real spectrum. arXiv, 2021.
- 3. B.K. Kokebaev, M. Otelbaev, A.N. Shynibekov. About expansions and restrictions of operators in Banach space. Uspekhi Matem. Nauk 37, no. 4, 116-123, 1982.