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Abstract. In this article, we examine a gravitational theory including a fermion field that is
non-minimally coupled to metric f(R) gravity in (2+1) dimensions. We give the field equations
for fermion fields and Friedmann equations. In this context, we study cosmological solutions of
the field equations using these forms obtained by the existent of Noether symmetry.

1. Introduction
Modified theories of gravity have received increased attention lately due to combined

motivation coming from astrophysics, cosmology and high-energy physics [1, 2, 3]. Among
numerous alternatives to Einstein’s gravity theory, theories which include higher-order curvature
invariants, and specifically the particular class of f(R) theories. In the last years, there has been
a new stimulus for study f(R) gravity, leading to a number of interesting results [4].

Fermionic fields are known as gravitational sources of the late-time acceleration of the universe
as well as in addition to playing the role of early-time acceleration [5, 6, 7, 8]. Exact solutions
of the Dirac equation in curved space-time have considerable importance in both cosmology and
astrophysics. Studies of this solutions in (3+1) dimensions date back to works of Schrodinger,
Fock and Tetrode [9, 10, 11]. Note that the exact solutions of the Dirac equation have been
studied in various curved spacetime with different coordinate frames like (2+1) dimensions. The
(2+1) dimensional quantum electrodynamics has attracted great attention due to the existence
of particles with fractional spin and exotic statistics and the nontrivial topological properties.
The exact solutions of the Dirac equation in the (2+1) dimensional theory have been recently
found for various potentials in the flat and curved space-time.

The (2+1) dimensional gravity theories have also gained considerable importance [12, 13].
The (2+1) dimensional gravity has similar properties as the (3+1) dimensional theories of
gravity. The (2+1) dimensional gravity more simple than the (3+1) dimensional gravity theories,
because the Riemann tensor is reduced to the Ricci tensor. Moreover, the (2+1) Dirac equation is
less complicated than the (3+1) Dirac equation [14, 15], because the Dirac matrices are reduced
to Pauli matrices.

Symmetry is a well-known significant aspect of theoretical physics as well as cosmology. In
this regard, Noether symmetry approach helps to find exact solutions of the defined point-
like Lagrangian. It is an interesting approach that suggests a correlation between symmetry
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generators of a dynamical system as well as conserved quantities [16]. Noether symmetries
extensively studied in different gravity theories [17, 18, 19].

The structure of this article is the following. In Sect. 2, the field equations are derived
from a point-like Lagrangian for (2+1) Friedmann-Robertson-Walker (FRW) spacetime, which
is obtained from an action including the fermionic field non-minimally coupled to the f(R)
gravity. In Sect. 3, we search for the Noether symmetry of the Lagrangian of the theory and in
Sect. 4, we obtain exact solutions of the field equations.

2. Action and field equations
We will start with action for (2+1) dimensional f(R) gravity non-minimally coupled with fermion
fields

S =

∫
d3x
√
−g

{
h(u)f(R) +

ı

2

[
(ψ̄σ̄µ(x) (∂µ − Ωµ(x))ψ− ψ̄(

←−
∂µ+ Ωµ(x))σ̄µ(x)ψ

]
−V (u)

}
, (1)

where h(u) and V (u) generic functions, representing the coupling with f(R) gravity, where R
is the Ricci scalar and the self-interaction potential of the fermion field respectively, and they
depend on only functions of the bilinear u = ψ̄ψ; g is the determinant of the metric tensor gµν ;
ψ is fermion field; ψ̄ is adjoint of the ψ and ψ̄ = ψ†σ3. In this action, Ωµ(x) are spin connection

Ωµ(x) =
1

4
gλα(eiν,µe

α
i − Γανµ)sλν(x), (2)

where Γανµ is Christoffell symbol, and gµν is given in term of triads e
(i)
µ (x) as follows

gµν(x) = eiµ(x)ejν(x)ηij , (3)

where µ and ν are curved spacetime indices running from 0 to 2. i and j are flat spacetime
indices running from 0 to 2 and ηij is the (2+1) dimensional Minkowskian metric with signature
(1,-1,-1). The sλν(x) spin operators are given by

sλν(x) =
1

2
[σλ(x), σν(x)], (4)

where σ̄µ(x) are the spacetime dependent Dirac matrices in the (2+1) dimensional. Thanks to
triads, eµ(i)(x), σ̄µ(x) are related to the flat spacetime Dirac matrices, σi, as follows

σ̄µ(x) = eµ(i)(x)σ̄i, (5)

where σ̄i are
σ̄0 = σ3 , σ̄1 = iσ1, σ̄2 = iσ2. (6)

σ1, σ2 and σ3 are Pauli matrices. To analyse the expansion of the universe, we will consider
the spatially flat spacetime background in (2+1) dimensional which is analogous of the (3+1)
dimensional FRW metric as follows

ds2 = dt2 − a2(t)[dx2 + dy2], (7)

where a(t) is the scale factor of the Universe. The scalar curvature corresponding to the FRW
metric (7) takes the form

R = −2

(
2ä

a
+
ȧ2

a2

)
(8)
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where the dot represents differentiation with respect to cosmic time t. From the background in
Eq.(7), it is possible to obtain the point-like Lagrangian

L = a2hf − a2hfRR+ 4h′u̇fRaȧ+ 4hfRRṘaȧ+ 2hfRȧ
2 +

ıa2

2

(
ψ̄σ3ψ̇ − ˙̄ψσ3ψ

)
− a2V. (9)

Here the prime denotes the derivative with respect to the bilinear u. Because of homogeneity and
isotropy of the metric, it is assumed that the spinor field only depends on time t, i.e. ψ = ψ(t).
By using Euler-Lagrange equations for ψ and ψ̄, we obtain Dirac’s equations for the fermion
field ψ and its adjoint ψ̄ as

ψ̇ +Hψ + iV ′σ3ψ − ih′σ3ψ(f − fRR) + 2ih′fR(2Ḣ + 3H2)σ3ψ = 0, (10)

˙̄ψ +Hψ̄ − iV ′ψ̄σ3 + ih′ψ̄σ3(f − fRR)− 2ih′fR(2Ḣ + 3H2)ψ̄σ3 = 0, (11)

where H = ȧ/a denotes the Hubble parameter. On the other hand, from the point-like
Lagrangian (9) and by considering the Dirac’s equations, we find first Friedmann equation i.e.
the acceleration equation for a

ä

a
= −

p
f

2h
. (12)

Finally, we also consider the Hamiltonian constraint equation (EL = 0) associated with the
Lagrangian (9) which yields the second Friedmann equation as follows

H2 =
ρ
f

2hfR
. (13)

In Eqs. (12) and (13), ρ
f

and p
f

are the effective energy density and pressure of the fermion
field, respectively, so that they have the following expressions

ρ
f

= −(4hfRRṘH + 4h′fRHu̇− hf + hfRR+ V ) (14)

p
f

= 2h′(üfR +HfRu̇+ 2u̇fRRṘ) + 2h′′fRu̇
2 −

[
2h′fR(2Ḣ + 3H2) + V ′

]
u+ V+

+
(
h′u− h

)
(f − fRR) + 2h(fRRRṘ

2 + fRRR̈+ fRRṘH)
(15)

In order to solve the field equations, we have to choose a form for the coupling function and
for the potential density. To do this, in the following section we will use the Noether symmetry
approach.

3. Noether symmetry
Thanks to Pauli matrices, in terms of the components of the spinor field ψ = (ψ1, ψ2)

T and its
adjoint ψ̄ = (ψ1

†,−ψ2
†), the Lagrangian (9) can be rewritten as follows

L = a2hf − a2hfRR+ 4hfRRṘaȧ+ 2hfRȧ
2 + 4h′fRaȧ

2∑
i=1

εi(
˙
ψ†iψi + ψ†i ψ̇i)+

+
ia2

2

[
2∑
i

(ψ†i ψ̇i −
˙
ψ†iψi)

]
− a2V. (16)

where εi =

{
1 for i = 1
−1 for i = 2

.

A vector field X for the point Lagrangian (16) is
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X = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂R
+

2∑
i=1

(
νi

∂

∂ψi
+ δi

∂

∂ψ†i

)
, (17)

where α, βj and γj are depend on t, a, ψj and ψ†j and they are determined from the Noether
gauge symmetry condition. The first prolongation of X is given by

X[1] = X + αt
∂

∂ȧ
+ βt

∂

∂Ṙ
+

2∑
i=1

νit ∂
∂ψ̇i

+ δit
∂

∂
˙
ψ†i

 , (18)

where

αt = Dtα− ȧDtτ,

βt = Dtβ − ṘDtτ,

νjt = Dtνj − ψ̇jDtτ,

δjt = Dtδj −
˙
ψ†jDtτ. (19)

and Dt is the operator of total differentiation with respect to t

Dt =
∂

∂t
+ ȧ

∂

∂a
+ Ṙ

∂

∂R
+

2∑
i=1

(
ψ̇i

∂

∂ψi
+

˙
ψ†i

∂

∂ψ†i

)
. (20)

The significance of Noether gauge symmetry is clearly comes from the fact that if the vector

field X is the Noether gauge symmetry corresponding to the Lagrangian L(t, a, ψj , ψ
†
j , ȧ, ψ̇j ,

˙
ψ†j),

X[1]L+ LDt(τ) = DtB, (21)

Hence the Noether gauge symmetry condition (21) for the Lagrangian (16) leads to the following
the over-determined system of differential equations

4h

a

∂f

∂R

∂α

∂t
+ 4h

∂2f

∂R2

∂β

∂t
+ 4h′

∂f

∂R

2∑
i=1

εi

(
∂νi
∂t
ψ†i +

∂δi
∂t
ψi

)
− aV ∂τ

∂a

+ah

(
f − ∂f

∂R
R

)
∂τ

∂a
+
ia

2

2∑
i=1

εi

(
∂νi
∂a

ψ†i −
∂δi
∂a

ψi

)
− 1

a

∂B

∂a
= 0, (22)

4h
∂2f

∂R2

∂α

∂t
+ ah

(
f − ∂F

∂R
R

)
∂τ

∂R
+
ia

2

2∑
i=1

εi

(
∂νi
∂R

ψ†i −
∂δi
∂R

ψi

)
− 1

a

∂B

∂R
= 0, (23)

4h′εjψ
†
j

∂f

∂R

∂α

∂t
+ iαεjψ

†
j +

ia

2
δ + ah

(
F − ∂f

∂R
R

)
∂τ

∂ψj

−aV ∂τ

∂ψj
+
ia

2

2∑
i=1

εi

(
∂νi
∂ψj

ψ†i −
∂δi
∂ψj

ψi

)
− 1

a

∂B

∂ψj
= 0, (24)
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4h′εjψj
∂f

∂R

∂α

∂t
+ iαεjψj +

ia

2
ν + ah

(
f − ∂f

∂R
R

)
∂τ

∂ψ†j

−aV ∂τ

∂ψ†j
+
ia

2

2∑
i=1

εi

(
∂νi

∂ψj
†ψ
†
i −

∂δi

∂ψ†j
ψi

)
− 1

a

∂B

∂ψ†j
= 0, (25)

h′
∂f

∂R

[
2∑
i=1

εi

(
νiψ
†
i + δiψi

)
+ 2a

2∑
i=1

εi

(
∂νi
∂a

ψ†i +
∂δi
∂a

ψi

)]

+h
∂2f

∂R2

(
β + 2a

∂β

∂a

)
+ h

∂f

∂R

(
2
∂α

∂a
− ∂τ

∂t

)
= 0, (26)

ah′

[
∂2f

∂R2

2∑
i=1

εi

(
νiψ
†
i + δiψi

)
+
∂f

∂R

2∑
i=1

εi

(
∂νi
∂R

ψ†i +
∂δi
∂R

ψi

)]

+h
∂f

∂R

∂α

∂R
+ h

∂2f

∂R2

[(
α+ a

∂α

∂a

)
+ a

(
∂β

∂R
− ∂τ

∂t

)]
+ ahβ

∂3f

∂R3
= 0, (27)

h′′
∂f

∂R

2∑
i=1

εi

(
νi(ψ

†
i )

2 + δiψ
†
iψi

)
+ h′

∂f

∂R

2∑
i=1

εi

(
δi +

∂νi
∂ψi

ψ†i +
∂δi
∂ψi

ψi

)
+h

∂f

∂R

∂α

∂ψj
+ h′εjψ

†
j

∂f

∂R

[(
α

a
+
∂α

∂a

)
− ∂τ

∂t

]
+ εjψ

†
j

∂2f

∂R2

(
h′β + h

∂β

∂ψj

)
= 0, (28)

h′′
∂f

∂R

2∑
i=1

εi

(
νiψ
†
iψi + δi(ψi)

2
)

+ h′
∂f

∂R

2∑
i=1

εi

(
νi +

∂νi

∂ψ†i
ψ†i +

∂δi

∂ψ†i
ψi

)

+h
∂f

∂R

∂α

∂ψ†j
+ h′εjψj

∂f

∂R

[(
α

a
+
∂α

∂a

)
− ∂τ

∂t

]
+ εjψj

∂2f

∂R2

(
h′β + h

∂β

∂ψ†j

)
= 0, (29)

h
∂2f

∂R2

∂α

∂R
= 0, h′

∂f

∂R

∂α

∂ψj
= 0, h′

∂f

∂R

∂α

∂ψ†j
= 0, (30)

h′ψ†j
∂f

∂R

∂τ

∂ψj
= 0, h′ψj

∂f

∂R

∂τ

∂ψ†j
= 0, h

∂f

∂R

∂τ

∂a
= 0, h

∂2f

∂R2

∂τ

∂R
= 0 (31)

(
2α+ a

∂τ

∂t

)
V +

1

a

∂B

∂t
+ aV ′

2∑
i=1

εi

(
νiψ
†
i + δiψi

)
+ 2hα

(
∂f

∂R
R− f

)

+ah′
2∑
i=1

εi

(
νiψ
†
i + δiψi

)( ∂f
∂R

R− f
)
− ıa

2

2∑
i=1

(
ψ†i
∂νi
∂t
− ψi

∂δi
∂t

)
= 0. (32)



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012065

IOP Publishing
doi:10.1088/1742-6596/2090/1/012065

6

This system of equations given by Eqs. (22)-(32) are obtained by imposing the fact that the

coefficients of ȧ2, ȧ, Ṙ, Ṙ2, ψ̇j ,
˙
ψ†j , ȧψ̇j , ψ̇jψ̇l and so on, vanish. From the rest Noether gauge

symmetry equations, the complete solution is obtained as follows

α = − c1
2(n− 1)

a,

β =
c1

2(n− 1)
R,

νj =
c1

2(n− 1)
ψj − εjc2ψj ,

δj =
c1

2(n− 1)
ψ†j + εjc2ψ

†
j ,

τ = c1t+ c3, B = c4, (33)

and the coupling and the potential function are power law forms of the function of the bilinear
u

h(u) = h0u
n, (34)

V (u) = λu2−n, (35)

and

f(R) = f0R
2n−1, (36)

where cl, λ, f0, h0 and n constants of integration.

4. Cosmological solutions
Since the coupling function h depends on the bilinear function u, from Dirac’s equations (10)
and (11) one gets

u̇+ 2
ȧ

a
u = 0, (37)

which integrates to give

u =
u0
a2
, (38)

where u0 is a constant of integration. Using Friedmann equation (13) with (14) we obtain

ȧ

a
−

√
λ

6f0h0
= 0, (39)

which has the solution

a(t) = a0e
H0t, where H0 =

√
λ

6f0h0
(40)

5. Conclusions
In the present article, we have studied fermion field non-minimally coupled with (2+1)
dimensional f(R) gravity. We have derived full set of field equations for our model. By using
Noether symmetry approach with gauge term we get cosmological solutions.
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