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Abstract The cosmic acceleration observed in the expansion of the Universe has sparked extensive research into the nature of
dark energy, which is known to constitute approximately 70% of the Universe’s energy content. In this study, we explore two
parametrizations of the Hubble parameter, namely power-law and logarithmic corrections, as alternatives to the standard �CDM
model. Using observational data from Cosmic Chronometers (CC), Pantheon+, and the Baryonic Acoustic Oscillations (BAO)
datasets, we investigate the dynamics of essential cosmological parameters, including the deceleration parameter, energy density,
pressure, and equation of state (EoS) parameter. The Om(z) diagnostic test is employed to classify different dark energy models. Our
cosmological models, with the power-law and logarithmic corrections, are found to provide a good fit to the recent observational
data and efficiently describe the cosmic expansion scenario.

1 Introduction

The field of cosmology underwent a significant paradigm shift with the emergence of observational evidence supporting the accel-
erating behavior of cosmic expansion, as confirmed by Type Ia supernovae (SNeIa) searches [1, 2]. Over the past two decades, a
wealth of observational results, including studies of Baryon Acoustic Oscillations (BAO) [3, 4], Cosmic Microwave Background
(CMB) [5, 6], Large Scale Structure (LSS) [7, 8], and the Planck collaborations [9], have consistently supported the notion of
cosmic acceleration. The prevailing explanation for this accelerated scenario is the existence of a Dark Energy (DE) component,
characterized by an Equation of State (EoS) with a value of ω � −1.018 ± 0.057 in the context of a flat Universe [9]. The same
observations have revealed a remarkable and somewhat perplexing fact: approximately 95–96% of the content of the Universe
exists in the form of two enigmatic components known as DE and Dark Matter (DM). In contrast, only a mere 4–5% of the total
composition is attributed to baryonic matter [10, 11]. This discovery has highlighted the potential limitations of General Relativity
(GR), which, while successful in explaining gravitational phenomena at the scale of the Solar System [12], may prompt us to explore
its applicability to gravitational phenomena on galactic and cosmological scales. The shortcomings of GR become evident when
confronted with the two fundamental challenges that modern cosmology grapples with the DM and DE problems.

The most prominent description of DE in the framework of GR is the cosmological constant �, which exhibits an EoS of ω� � −1
and can be associated with the vacuum quantum energy [13]. While the cosmological constant aligns well with observational data,
it is plagued by two major issues: the cosmic coincidence problem and the cosmological constant problem,

• Cosmic coincidence problem:The cosmic coincidence problem questions why the energy densities of DM and DE in the Universe
are comparable in magnitude at the present epoch. It appears unlikely that these two components, which evolve differently over
time, would have similar magnitudes today without any underlying reason or mechanism [14].

• Cosmological constant problem: The cosmological constant problem pertains to the extremely small but non-zero value of the
cosmological constant, which is used to explain the accelerated expansion of the Universe. The problem lies in the significant
discrepancy between the predicted and observed values of �. The theoretical estimates for � are 120 orders of magnitude larger
than the value suggested by observational data, resulting in a fine-tuning challenge [15].
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Recently, the cosmological landscape has been further complicated by the emergence of the so-called 4.9σ ’Hubble tension’ [16].
This tension arises from a significant discrepancy between the value of the Hubble constant, denoted as H0 (expressed in km/s/Mpc),
as measured by the Planck satellite (67.4 ± 0.5) [9] and by nearby standard candles such as SNeIa (73.3 ± 1.1) [17]. Despite
the challenges posed by the cosmic coincidence problem and the fine-tuning issues associated with the cosmological constant, the
�CDM model, where the DE density remains constant throughout the evolution of the Universe, stands as the most widely accepted
cosmological model in contemporary astrophysics. To address these challenges, researchers have pursued two main approaches:

• Dynamical approach: This approach involves introducing dynamical models of DE and DM. Instead of assuming a cosmological
constant, these models propose time-evolving scalar fields or other dynamical components to describe DE. Examples of dynamical
DE models include quintessence [18], phantom [19–21], k-essence [22], and scalar-tensor theories [23].

• Modified gravity: The second approach explores modifications to the theory of gravity itself. Rather than introducing new
components like DE or DM, this approach postulates alternative gravitational theories that could explain the observed cosmic
acceleration without the need for additional exotic components. These modified gravity theories typically involve modifications
to GR on cosmological scales. Examples include f (R) gravity [24–28], f (T ) gravity [29–32], and f (Q) gravity [33–37].

Among the various approaches considered, one of the most promising and widely used methods is to employ the model-independent
approach [38, 39]. Within the scientific literature, numerous physical arguments and motivations have emerged regarding this
approach to investigating the dynamics of DE models. Model-independent approaches, as the name suggests, do not rely on
assuming specific functional forms or parameterizations for DE or cosmological parameters. Instead, they allow for more freedom
in exploring a broader range of possibilities and deviations from the standard �CDM model. In this study, we adopt a similar
approach of cosmological parametrization, where we explicitly solve the field equations and explore the dynamics of the Universe
during various phases of its evolution. Our aim is to describe specific phenomena, such as the cosmological phase transition from
early inflation to deceleration, and subsequently from deceleration to late-time acceleration. To achieve this, we consider different
parametrizations of cosmological parameters. These parametrizations involve model parameters that can be constrained using
observational data. The majority of parametrizations in cosmology focus on characterizing the behavior of either the EoS parameter
ω(z) [40], or the deceleration parameter q(z) [41]. Several well-known parametrizations include the Chevallier-Porrati-Linder (CPL)
parametrization [44], the Jassal-Bagla-Padmanabhan (JBP) parametrization [45], and the Barboza-Alcaniz (BA) parametrization
[46]. These parametrizations primarily focus on characterizing the evolution of the EoS parameter ω(z). However, it is important to
note that there are other geometric and physical parameters that can also be parameterized. A critical examination of this subject
reveals that various other geometrical and physical parameters can also be subject to parametrization [47–49]. Recently, Roy et al.
[50] investigated scalar field DE models using a general parametrization of the Hubble parameter. The study explores whether the
observed cosmic acceleration can be described by quintessence or phantom scalar fields, offering insights into the nature of DE.

Motivated by the aforementioned discussions, this study explores two distinct parametrizations of the Hubble parameter H(z):
power-law and logarithmic corrections. The organization of this paper is as follows: In Sect. 2, we introduce the cosmological model
within the context of a spatially flat FLRW Universe, considering the two parametrizations of the Hubble parameter. In Sect. 3, we
delve into the observational data obtained from various sources, such as Cosmic Chronometers (CC), Baryonic Acoustic Oscillations
(BAO), and the recently released Pantheon+ datasets. In addition, we discuss the Methodology employed to determine the model
parameters. Section 4 focuses on the investigation of the dynamics of essential cosmological parameters, including the deceleration
parameter, energy density, pressure, and EoS parameter. Moreover, in Sect. 5, we use the Om(z) diagnostic test, which provides
a valuable tool for characterizing different cosmological models of DE. Lastly, in Sect. 6, we present a concise summary and our
conclusions based on the findings from this study.

2 Cosmological model

In this article, we will focus on studying a specific type of Universe known as a spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) Universe, which describes an isotropic and homogeneous Universe. This type of Universe is characterized by a time-
dependent scale factor denoted as a(t). The FLRW metric is fundamental in enabling us to describe and understand the expansion
of the Universe, forming a foundational framework in the field of cosmology. The metric for a spatially flat FLRW Universe is
represented as [51]

ds2 � dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdφ2)], (1)

where dt is the differential of time, and dr, dθ , and dφ are differentials of spatial spherical coordinates.
Moreover, the energy-momentum tensor for a perfect fluid, which we will consider in this context, is expressed in the following

form

Tμν � (p + ρ)uμuν − pgμν. (2)
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here the variables uμ, ρ � ρM + ρDE , p � pM + pDE , and gμν represent the four-velocity vector, the total energy density, the
total pressure, and the metric tensor, respectively. The subscript “M” refers to matter, which includes both dark matter and baryonic
matter, while the subscript “DE” represents dark energy.

The Einstein field equations for GR are a set of equations that describe the relationship between the geometry of spacetime and
the distribution of matter and energy within it. In their simplest form, the Einstein field equations are given by Gμν � κTμν , where
κ � 8πG � 1 and Gμν represents the Einstein tensor, which encapsulates the curvature of spacetime. By using Eqs. (1) and (2), we
can express the Einstein field equations for a spatially flat FLRW Universe as [52]

3H2 � ρ (3)

2Ḣ + 3H2 � −p (4)

where H � ȧ
a represents the current rate of expansion of the Universe. Furthermore, Eqs. (3) and (4) are commonly referred to as

the Friedmann equations. The first Friedmann equation establishes a connection between the expansion rate of the Universe and its
energy density. It reveals how the energy content of the Universe influences the rate at which it is expanding. On the other hand, the
second Friedmann equation relates the acceleration of the expansion rate to the pressure within the Universe. It describes how the
presence of pressure, whether positive or negative, affects the change in the expansion rate over time.

To further understand the cosmic history and potential transitions to an accelerated period, we introduce the total equation of
state (EoS) parameter ω. This parameter is defined as the ratio of the total pressure to the total energy density:

ω � p

ρ
(5)

By using Eqs. (3) and (4), we can express the EoS parameter as

ω � −2Ḣ + 3H2

3H2 � −2

3

(
Ḣ

H2

)
− 1. (6)

The EoS parameter ω provides valuable information about the nature of the dominant components driving the expansion of the
Universe. It characterizes the behavior and properties of the cosmic fluids or fields that contribute to the total energy density. The
EoS parameter allows us to categorize different types of matter and energy based on their pressure-to-density ratio. For example:

• For matter with negligible pressure, such as non-relativistic matter (e.g., dark matter and baryonic matter), ω � 0.
• For radiation, which consists of relativistic particles like photons, ω � 1

3 due to the relationship between pressure and energy
density.

• For a cosmological constant, which represents the energy associated with DE in �CDM model, ω� � −1, indicating a negative
pressure that drives cosmic acceleration.

By using Eqs. (3) and (4), it is possible to derive the following expression [53]

ä

a
� −1

6
(ρ + 3p). (7)

Hence, according to the derived expression, the current model predicts acceleration (ä > 0) only when ω < − 1
3 . In this accelerated

phase of evolution, two distinct periods can be identified based on the value of ω: −1/3 < ω < −1 corresponds to the quintessence
phase, while ω < −1 signifies the onset of the phantom era.

To enable a more convenient comparison between theoretical results and cosmological observations, we introduce the redshift z
as an independent variable instead of the conventional time variable t. The redshift z is defined by the following relation,

1 + z � 1

a(t)
. (8)

By imposing the condition that the present-day value of the scale factor is one (a(0) � 1), we can normalize the scale factor. Hence,
we can express the derivatives with respect to time as derivatives with respect to the redshift using the following relation,

d

dt
� dz

dt

d

dz
� −(1 + z)H(z)

d

dz
. (9)

Moreover, the sign of the deceleration parameter q, provides information about whether the model undergoes decelerating or
accelerating expansion. When q > 0, it indicates a deceleration in the expansion of the Universe. If q � 0, the expansion maintains
a constant rate. On the other hand, when −1 < q < 0, it signifies accelerating expansion. Notably, when q � −1, the Universe
experiences exponential expansion, known as de Sitter expansion. Furthermore, for q < −1, the Universe exhibits super-exponential
expansion. The deceleration parameter can be defined as

q(z) � − ä

aH2 � (1 + z)
1

H(z)

dH(z)

dz
− 1. (10)
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As mentioned in the introduction, the standard �CDM model encounters two significant challenges: the cosmic coincidence problem
and the cosmological constant problem. In the �CDM model, the Hubble parameter is expressed as

H (z) � H0
[
�m0(1 + z)3 + �� + �r0(1 + z)4] 1

2 , (11)

where H0 signifies the present-day expansion rate of the Universe, �m0 denotes the matter density parameter at the present epoch,
�� is the DE density parameter at the present epoch, and �r0 represents the radiation density parameter at the present epoch. While
radiation played a significant role during earlier cosmic times, our analysis is centered on late-time evolution, where its contribution
becomes negligible.

In our paper, we will employ a model-independent approach to the study of cosmological models and parameterization. The model-
independent methodology offers the potential to reconstruct the entire cosmic history of the Universe and provides a framework for
interpreting various cosmic phenomena. One of the key advantages of this approach is that it does not disrupt the background theory
and offers a straightforward mathematical means to reconstruct the Universe’s cosmic history. Furthermore, this strategy represents
the most straightforward theoretical pathway to addressing several challenges within the Standard Model, such as the issue of initial
singularities, the cosmological constant dilemma, and the persistent problem of decelerated expansion throughout cosmic history
[41]. Several captivating models of DE and modified gravity have emerged, stemming from a range of parameterization schemes
involving fundamental geometrical parameters, including the Hubble parameter, deceleration parameter, and jerk parameter [42,
43]. Hence, we investigate two different parametrizations of the Hubble parameter, specifically focusing on the correction terms
associated with DE. These parametrizations, namely the power-law and logarithmic corrections, allow for deviations from the
�CDM model at both low and high redshifts,

H1(z) �H0
[
�m0(1 + z)3 + B(1 + z)ε

] 1
2 , (12)

H2(z) �H0
[
�m0(1 + z)3 + B + ε log(1 + z)

] 1
2 , (13)

where B and ε are free parameters introduced to account for corrections beyond the standard �CDM model. The parameter ε

introduces power-law and logarithmic correction terms to the expansion rate, allowing for variations that evolve with redshift. While
the precise physical origin of the parameter ε is not directly linked to a specific physical theory in our current study, its inclusion
is motivated by the aim to explore potential deviations from the �CDM predictions. To achieve H � H0 at z � 0, it is necessary
to impose the condition that B � (1 − �m0). By satisfying this condition: ε � 0, the parameterizations given in Eqs. (11) can be
reproduced. In addition, the term B in the Hubble parameter models allows for deviations from the standard model specifically at
low redshifts.

Now, using the Friedmann equations (3), (4) and Eqs. (12), (13), we can determine the expressions for the energy density and
pressure in both models as

ρ1(z) �3H2
0

[
�m0(1 + z)3 + (1 − �m0)(1 + z)ε

]
, (14)

ρ2(z) �3H2
0

[
�m0(1 + z)3 + (1 − �m0) + ε log(1 + z)

]
, (15)

and

p1(z) � − H2
0

[
(�m0 − 1)(ε − 3)(1 + z)ε

]
, (16)

p2(z) �H2
0

[
3�m0 − 3ε log(1 + z) + ε − 3

]
, (17)

From Eqs. (6), (12) and (13), we can analytically express the EoS parameter for both models as

ω1(z) � (�m0 − 1)(ε − 3)(1 + z)ε

3(�m0 − 1)(1 + z)ε − 3�m0(1 + z)3 , (18)

ω2(z) � 3�m0 − 3ε log(1 + z) + ε − 3

3(�m0z(z(3 + z) + 3) + ε log(1 + z) + 1)
, (19)

Further, by using Eqs. (10), (12) and (13), we can calculate the deceleration parameter for both models as

q1(z) � (�m0 − 1)(ε − 2)(1 + z)ε − �m0(1 + z)3

2(�m0 − 1)(1 + z)ε − 2�m0(1 + z)3 , (20)

q2(z) � − 1 +
3�m0(1 + z)3 + ε

2(�m0z(z(3 + z) + 3) + ε log(1 + z) + 1)
, (21)

123



Eur. Phys. J. Plus         (2024) 139:179 Page 5 of 13   179 

3 Analysis of observational data and methodology

In the realm of observational cosmology, an integral aspect lies in constructing optimal cosmological models. To accomplish this,
it becomes imperative to rigorously constrain the model parameters such as �m0, ε as well as the Hubble constant H0, through the
analysis of observational data. In this study, we employ a diverse range of observational datasets, encompassing Cosmic Chronometers
(CC), Baryonic Acoustic Oscillations (BAO), and the latest Pantheon sample known as Pantheon+, derived from observations of
Type Ia Supernovae (SNe).

3.1 Dataset Hz: cosmic chronometers

The Cosmic Chronometers (CC) method is a valuable technique used to measure the Hubble rate by studying the properties of the
most ancient and passively evolving galaxies. These galaxies are carefully selected based on a small redshift interval, allowing for
the implementation of the differential aging method. The Hubble rate H, defined within the FLRW metric is given by

H � − 1

1 + z

dz

dt
.

This relationship allows us to infer the rate of expansion of the Universe at different points in time. One of the key advantages of
the CC method is its capacity to measure the Hubble parameter H(z) without relying on specific cosmological assumptions. This
attribute renders the CC method a valuable tool for testing and scrutinizing various cosmological models. Notably, R. Jimenez and
A. Loeb [54] introduced a procedure that directly retrieves Hubble parameter data by computing the rate of redshift change, dz/dt,
at a precise value of z.

In this study, a comprehensive dataset comprising 31 data points has been meticulously compiled from a range of reputable
surveys [55–62]. These data points are derived using the CC method, covering a broad spectrum of redshift values ranging from 0.1
to 2, out of which 15 correlated data points within the range 0.179 < z < 1.965 are derived from the measurements of [58, 60, 61].
The covariance matrix linked with the CC method can be formulated as

Covmn � CovS
mn + CovY

mn + CovM
mn + CovSM

mn . (22)

here the superscripts ’S’, ’Y’, ’M’, and ’SM’ represent the contributions to the covariance matrix arising from statistical errors,
contamination by the young component, sensitivity to the chosen model, and variations in stellar metallicity, respectively. The
contribution stemming from model-related covariance, CovM

mn , can be broken down further into segments originating from the star
formation history (sfh), initial mass function (imf), stellar library (sl), and the considered stellar population synthesis (sps) model

CovM
mn � Covsfh

mn + Covimf
mn + Covsl

mn + Covsps
mn . (23)

In this formulation, CovM
mn signifies the covariance due to overall model uncertainties. Meanwhile, Covsfh

mn , Covimf
mn , Covsl

mn , and
Covsps

mn denote contributions originating from uncertainties in the star formation history, initial mass function, stellar library, and
stellar population synthesis model, respectively. To perform an MCMC analysis, it is necessary to compute the chi-square function
for correlated CC measurements, which is defined as

χ2
cov(ϑ) � (�H )Cov−1(�H )T , (24)

where �Hk � Hth(zk , ϑ) − Hobs(zk).
Now, incorporating the utilization of the χ2 function for the remaining 16 non-correlated CC data points, we have

χ2
noncov(ϑ) �

16∑
k�1

[
(Hth(zk , ϑ) − Hobs(zk))2

σ 2
H (zk)

]
. (25)

here Hth corresponds to the theoretical estimation of the Hubble parameter for a particular model, having the model parameters ϑ .
Hobs signifies the observed values of the Hubble parameter and σH denotes the associated error in the estimation.

Thus, the resultant χ2 function for Hz data set is given by

χ2
Hz � χ2

cov + χ2
noncov. (26)

3.2 Dataset SNe: Pantheon+

The Pantheon+ analysis builds upon the original Pantheon analysis by incorporating an expanded dataset of supernova type Ia (SNe)
that includes those with measured Cepheid distances to galaxies. This comprehensive dataset comprises 1701 light curves from
1550 SNe, spanning a redshift range 0.001 ≤ z ≤ 2.2613, sourced from 18 different studies [63–66]. Out of the 1701 light curves
in the dataset, 77 of them are associated with galaxies that contain Cepheids. Compared to the original Pantheon compilation by
[67], the Pantheon+ compilation introduces significant enhancements. Primarily, it features an expanded sample size, particularly for
SNe at redshifts below 0.01. Additionally, notable improvements have been made in addressing systematic uncertainties associated
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with redshifts, intrinsic scatter models, photometric calibration, and peculiar velocities of SNe. It is significant that due to specific
selection criteria, not all SNe from the original Pantheon compilation are included in the enhanced Pantheon+ compilation.

Determining the Hubble constant (H0) with the highest precision and shift in its extracted value involves a method that centers
around the utilization of SNe observations. These observations are calibrated through the use of Cepheid variable stars present
in galaxies hosting both SNe and Cepheid variables. To establish the calibration of Cepheids, geometric methods like parallax are
employed, both within our own Milky Way and in nearby anchor galaxies. This distance ladder method provides a direct measurement
of the H0. Pantheon+ offers an additional advantage by providing the ability to constrain the H0 along with model parameters. This
capacity arises from the incorporation of the distance moduli of SNe located in Cepheid host galaxies. These distance moduli are
directly derived from the distance ladder analysis performed by the SH0ES team [63].

Additionally, Pantheon+ encompasses the consideration of covariance between these SNe and those situated within the Hubble
flow. In contrast to the initial Pantheon sample, which encountered limitations in estimating H0 due to the degeneracy between H0

and the absolute magnitude M of SNe, the improved results of the Pantheon+ method overcome this challenge. By combining both
the apparent magnitude mB and the distance modulus μcd

k derived from Cepheids associated with SNe in Cepheid host galaxies,
the absolute magnitude M � mBk − μcd

k can be independently determined. This decoupling of the degeneracy between M and H0

provides the means to independently assess the value of H0 through the Pantheon+ dataset.
In order to obtain the best fits for the free parameters, it is necessary to optimize the χ2 function, which is expressed as

χ2
SNe � �μT (C−1

Sys+Stat )�μ. (27)

here CSys+Stat represents the covariance matrix of the Pantheon+ dataset, encompassing both systematic and statistical uncertainties.
�μ denotes the distance residual and is defined by

�μk � μk − μth(zk). (28)

In the above equation, μk signifies the distance modulus of the kth SNe. It is important to note that μk is calculated as μk � mBk−M ,
where mBk represents the apparent magnitude of the kth SNe and M denotes the fiducial magnitude of an SNe.

The theoretical distance modulus μth is determined using the exppression:

μth(z, ϑ) � 5 log10

(
dL (z, ϑ)

1 Mpc

)
+ 25, (29)

where dL denotes the model-based luminosity distance in Mpc, given by

dL (z, ϑ) � c(1 + z)

H0

∫ z

0

dζ

E(ζ )
. (30)

here c represents the speed of light and E(z) � H (z)
H0

.
Further, the distance residual is represented by

�μ̄ �
{

μk − μcd
k , if k is in Cepheid hosts

μk − μth(zk), otherwise
. (31)

here μcd
k refers to the Cepheid host-galaxy distance released by SH0ES. While calculating the covariance matrix for the Cepheid host-

galaxy, it can be combined with the covariance matrix for SNe. The combined covariance matrix, denoted as CSNe
Sys+Stat +Ccd

Sys+Stat ,

encompasses both statistical and systematic uncertainties from the Pantheon+ dataset. Thus, the χ2 function for the combined
covariance matrix employed to constrain cosmological models in the analysis is given by

χ2
SNe+ � �μ̄(CSNe

Sys+Stat + Ccd
Sys+Stat )

−1�μ̄T . (32)

3.3 Dataset BAO: Baryonic acoustic oscillations

Baryonic Acoustic Oscillations (BAO) represent fluctuations in the density of baryonic matter in the Universe, resulting from
acoustic density waves in the primordial plasma during the early stages of the Universe. These oscillations provide valuable insights
as they can be utilized to extract important cosmological parameters related to DE. By analyzing the BAO peaks in the matter
power spectrum, the Hubble distance DH (z) and the angular diameter distance DA(z) can be determined. The sound horizon r,
associated with the BAO peaks, allows for the computation of the angular separation δθ � r/(1+ z)DA(z) and the redshift separation
δz � r/DH (z) at a particular redshift z. These quantities play a crucial role in characterizing the spatial distribution of matter
and constraining cosmological models. By carefully selecting appropriate values of r and effectively constraining the parameters
governing the ratios DH (z)/r and DA(z)/r , one can accurately estimate the Hubble parameter H(z) at different redshifts. Through
several BAO data surveys [68–79] (see Table 4 of [80]) one can calibrate the Hubble value. Various surveys, such as Delubac et al.
(BOSS) [68], Blake et al. (WiggleZ) [69], Chuang et al. (SDSS III) [70], Ribera et al. (BOSS) [71], and others, provide measured
values of the angular distance function DA or the Hubble distance function DH . These values are employed to deduce the Hubble
parameter. Notably, the calculation of the Hubble parameter in some original articles involves specific selections of r. For instance,
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Fig. 1 2D likelihood contour for
the joint analysis of Hz, SNe, and
BAO datasets up to 2σ error. The
Orange contour represents Model
1, and the blue contour represents
Model 2

in [68], r is chosen as 147.4 Mpc, while in [70], it follows the value from Eisenstein [71, 81] on the other hand, adopts a r value of
147.49 Mpc. In these studies, the Hubble parameter is evaluated based on the respective r choices.

In the present analysis, we consider the BAO measurements from [82] (ref Table 1) and [83] (ref Table 3) to constrain the model
parameters.

To find the χ2 function for BAO, we use the following relation

χ2
BAO (ϑ) �

12∑
k�1

[
(Hth(zi , ϑ) − Hobs(zk))2

σ 2
H (zk)

]
, (33)

For joint analysis of Hz, SNe, and BAO dataset, the χ2
joint function is defined as

χ2
joint � χ2

Hz + χ2
SNe + χ2

BAO . (34)

3.4 Observational results

The best-fit parameters are determined by minimizing the χ2 function, which is related to the likelihood through L ∝ exp
(
−χ2

2

)
.

By utilizing the Markov Chain Monte Carlo (MCMC) sampling technique with Python’s emcee library, we obtain numerical
constraints on the model parameters. The results are presented as contour plots, illustrating confidence levels up to 2-σ based on the
likelihood analysis.

The analysis yields the following mean values for the model parameters: �m0 � 0.285 ± 0.016, ε � −0.17+0.17
−0.15, and H0 �

73.92 ± 0.25 for power-law parametrization (Model 1) and �m0 � 0.285 ± 0.017, ε � −0.12 ± 0.12, and H0 � 73.93 ± 0.25
for logarithmic parametrization (Model 2). Figure 1 showcases the 2D likelihood contours up to 2σ errors corresponding to these
parameter values. A summary of the MCMC results can be found in Table 1. It is worth noting that our model demonstrates
consistency with all the utilized datasets in the analysis. Figure 2 showcases 1σ and 2σ bounds of the theoretical curves for the
parameterized Hubble functions along with the observed H(z) data. The error bars representing the observed distance modulus of
the 1701 SNe data points, as well as the corresponding best-fit theoretical curves for distance modulus functions, are presented in
Fig. 3. These figures depict the comparison between our parameterized models and the standard �CDM model.

Table 1 Summary of the results
from the MCMC analysis for the
parameters �m0, ε, and H0

Model �m0 ε H0

Model 1 0.285 ± 0.016 −0.17+0.17−0.15 73.92 ± 0.25

Model 2 0.285 ± 0.017 −0.12 ± 0.12 73.93 ± 0.25
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Fig. 2 Plot showing the behavior of the Hubble parameters based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The error
bands represent the 1σ and 2σ regions, the red curve corresponds to the mean values of the parameters and the black dotted line corresponds to �CDM
model with �� � 0.7, �m � 0.3 and H0 � 67.8

Fig. 3 Plot showing the behavior of distance modulus functions based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The
error bands represent the 1σ and 2σ regions, the red curve corresponds to the mean values of the parameters and the black dotted line corresponds to �CDM
model with �� � 0.7, �m � 0.3 and H0 � 67.8

3.5 Bayesian model comparison

To identify the optimal model among the two proposed parametrizations, we evaluate them using two widely accepted information
criteria for model selection, the Akaike Information Criterion (AIC) [84] and the Bayesian Information Criterion (BIC) [85]. Both
AIC and BIC are commonly employed in statistics and data science for this purpose, each imposing distinct penalties for additional
parameters, thereby potentially leading to disparate model selection outcomes. AIC, based on the likelihood function of the data
and the model’s parameter count, serves as a means to balance model complexity and goodness of fit. The AIC is mathematically
expressed as

AIC � 2p − 2 ln Lmax , (35)

where Lmax represents the maximum likelihood and p denotes the number of parameters in the model employed for MCMC. The
model with the lowest AIC, denoted as AICBest , is considered the optimal choice. To gauge the level of support for the nth model,
we compute the difference between AICn and AICBest , denoted as � AICn . If � AICn is less than 2, it implies that the nth model is
nearly as effective as the best model. However, a � AICn between 4 and 7 suggests considerably weaker support for the nth model.
When � AICn exceeds 10, it signals that the nth model is improbable to be the optimal choice and is therefore recommended for
exclusion from consideration.

Similar to AIC, BIC also penalizes models with a higher number of parameters while favoring those that exhibit better data fit.
However, BIC imposes a more substantial penalty on additional parameters compared to AIC. The BIC is computed as follows

BIC � p ln N − 2 ln Lmax , (36)

where N denotes the number of data points used in the analysis. The identification of the optimal model involves selecting the one
with the minimum BIC value, denoted as BICBest . To assess the relative support for the nth model, we calculate �BICn as the
difference between the BIC value of the nth model and the BIC value of the best model (BICBest ).
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Fig. 4 Plot showing the behavior of energy densities based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The error bands
represent the 1σ and 2σ regions, and the red curve corresponds to the mean values of the parameters

With M models under consideration, the magnitude of �BIC serves as evidence against the nth model being the optimal choice.
A �BICn less than 2 suggests very weak evidence favoring the nth model over the best model. Values between 2 and 6 indicate
positive evidence against the nth model, while a range of 6 to 10 suggests strong evidence against it. A �BICn greater than 10
signifies very strong evidence, implying that the nth model is improbable as the optimal choice.

The χ2
min values for model 1 and model 2 are 1741.5290 and 1741.8759 respectively. Based on this, we choose model 2 as our

reference model. We now compare our model 1 with the reference model. The value �AIC �BIC for model 1 is 0.3469. Further, it
is crucial to examine the �AIC and �BIC values for the �CDM model. Using the equations for the computation of AIC and BIC,
we have �AIC and �BIC for the �CDM model (11) as 1.3883, meaning our model fits the data similar to that of �CDM model.

4 Dynamics of cosmological parameters

Cosmological parameters play a fundamental role in shaping our understanding of the Universe and its evolution. These parameters
are essential quantities used to describe the fundamental properties and dynamics of the cosmos. They encompass various aspects,
including the geometry of space, the composition of matter and energy, the expansion rate, and the state of cosmic expansion.
The role of cosmological parameters extends beyond theoretical modeling; they are also vital for interpreting observational data.
By comparing theoretical predictions based on specific parameter values with observed cosmic phenomena, cosmologists can test
and refine cosmological models. This interplay between theory and observation allows us to constrain the values of cosmological
parameters.

In this section, we delve into an examination of the cosmological parameters that encompass energy density, pressure, the EoS
parameter, and the deceleration parameter. All of these cosmological parameters are plotted with respect to the redshift (z) of the
model parameters, constrained through a joint analysis of Hz, SNe, and BAO datasets for both the power-law and logarithmic models.
The plotted figures also include their corresponding 1σ and 2σ error bands.

Figure 4a and b provide the expected behavior of energy densities in both models. As anticipated, the energy densities demonstrate
a positive trend and gradually decrease as the Universe expands. This behavior is consistent with our understanding of the present
and far future of the Universe, where energy densities naturally diminish over time. The plots in Fig. 5a and b, on the other hand,
reveal a negative behavior of the pressure for both models. This negative behavior signifies the occurrence of late-time cosmic
acceleration in the Universe, aligning with the current understanding that the expansion of the Universe is accelerating. The negative
pressure indicated in these plots supports the presence of a form of DE that drives the observed cosmic acceleration. Together, these
findings from Figs. 4a and b, 5a and b provide valuable evidence for the expected behavior of energy densities and the late-time
cosmic acceleration of the Universe in both models.

The EoS parameter serves as a valuable tool for characterizing the different phases of the expanding Universe. In our analysis,
EoS parameters have been derived for both Model 1 and Model 2. These parameters provide insights into the nature of the dominant
components driving the evolution of the Universe. Figure 6a illustrates the behavior of the EoS parameter for Model 1. It is noteworthy
that the EoS parameter approaches the behavior of the �CDM model for lower values of z. This alignment with the �CDM model
suggests that Model 1 exhibits similar characteristics to the standard cosmological model in the future Universe. As the redshift
increases, the EoS parameter indicates a matter-dominated era of the Universe, consistent with the expected behavior during the
matter-dominated epoch. In the present epoch, the EoS parameter exhibits quintessence-like behavior, implying the presence of a
slowly evolving scalar field driving the current accelerated expansion of the Universe [18]. Moving on to Fig. 6b, we observe similar
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Fig. 5 Plot showing the behavior of pressures based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The error bands represent
the 1σ and 2σ regions, and the red curve corresponds to the mean values of the parameters

Fig. 6 Plot showing the behavior of EoS parameters based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The error bands
represent the 1σ and 2σ regions, and the red curve corresponds to the mean values of the parameters

behavior in the graph of the EoS parameter for Model 2. The EoS parameter follows a comparable pattern to that discussed for
Model 1, further supporting the consistency of their respective behaviors. Through the process of fitting the model to observational
data, we have determined the present value of the EoS parameter. The constrained values of the model parameters yield an EoS
parameter of ω0 � −0.756+0.057

−0.053 for Model 1 and ω0 � −0.755+0.015
−0.057 for Model 2 [86–88].

The dynamics of the deceleration parameter for Model 1 exhibit a positive behavior for higher values of z, as depicted in Fig. 7a.
As the value of z decreases, we observe a transition to the negative behavior of the deceleration parameter. This transition signifies
that Model 1 undergoes a decelerated phase during the early times of the Universe, followed by an accelerated phase as z decreases.
Similar behavior can be observed for Model 2, as illustrated in Fig. 7b, where the deceleration parameter exhibits the same trend.
This consistent behavior of the deceleration parameter in both models indicates a decelerated phase in the early Universe and a
transition to an accelerated phase as redshift decreases. The value of the transition redshift ztr for both models exhibits fluctuations
within the range of 0.3 to 1.0, as indicated by recent observational data [89]. Further, the present value of the deceleration parameter
has been evaluated to have a value of q0 � −0.633+0.085−0.080 for Model 1 and q0 � −0.633+0.022−0.086 for Model 2 [41, 90, 91].

5 Om(z) diagnostics

TheOm(z) diagnostic serves as a valuable tool for categorizing various cosmological models of DE [92]. This diagnostic is particularly
appealing due to its simplicity, as it relies solely on the first-order derivative of the cosmic scale factor. In the case of a spatially flat
Universe, the Om(z) diagnostic can be expressed as

Om(z) �
(
H(z)
H0

)2 − 1

(1 + z)3 − 1
. (37)
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Fig. 7 Plot showing the behavior of the deceleration parameters based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The
error bands represent the 1σ and 2σ regions, and the red curve corresponds to the mean values of the parameters

Fig. 8 Plot showing the behavior of Om(z) based on the values obtained from the joint analysis of Hz, SNe, and BAO datasets. The error bands represent
the 1σ and 2σ regions, and the red curve corresponds to the mean values of the parameters

The behavior of the Om(z) function can be interpreted based on the slope of its curve. A negative slope indicates quintessence-type
behavior, where the DE component behaves similarly to a slowly evolving scalar field. Conversely, a positive slope corresponds to
phantom behavior, suggesting the presence of an extremely negative pressure that drives an exponentially accelerating expansion. In
contrast, a constant value of Om(z) reflects the behavior predicted by the �CDM model, where DE is represented by a cosmological
constant. In this case, the energy density of DE remains constant throughout the evolution of the Universe.

Using Eqs. (12) and (13), we can mathematically express the Om(z) diagnostic for both models as

Om1(z) �−((�m0 − 1)(1 + z)ε) + �m0(1 + z)3 − 1

(1 + z)3 − 1
, (38)

Om2(z) ��m0 +
ε log(1 + z)

z(z(3 + z) + 3)
. (39)

Using the same set of model parameters obtained from the joint analysis of Hz, SNe, and BAO datasets, we further examine
the behavior of the Om(z) diagnostic. In Fig. 8a, the Om(z) diagnostic is displayed for Model 1, while Fig. 8b presents the Om(z)
diagnostic for Model 2. Both plots exhibit a positive slope, indicating that both Model 1 and Model 2 behave as phantom. So, the
negative slope of the Om(z) diagnostic suggests that the dominant component in the Universe, described by these models, possesses
properties similar to quintessence.

We now examine the CPL model, a widely recognized parametrization introduced in references [93, 94]. The model is mathe-
matically defined by the following equation

ω(z)cpl � b + a
z

1 + z
, (40)
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To explore its implications, we perform a statistical MCMC analysis using observational datasets. The value of χ2
min so obtained

is 1738.0245. The primary reason for the choice of a well-known CPL model is its ability to explain quintessence as well as a
phantom state [93, 94]. Now, using the Bayesian model comparison technique discussed earlier, �AIC and �BIC assuming the
same reference model turn out to be 3.5045 which is a greater value than 2, implying the evidence against the model is positive.

6 Conclusions

In this study, we have investigated the dynamics of the Universe’s expansion and the behavior of DE using two parametrizations of the
Hubble parameter: power-law and logarithmic corrections. By employing a model-independent approach [38, 39] and confronting
the cosmological model with observational data from 31 points of CC samples, 1701 points of Pantheon+, and 12 points of BAO
samples, we have constrained the model’s parameters �m0, ε, and H0 using MCMC analysis (see Table 1). The best-fit values of
the model parameters and the corresponding 1σ and 2σ confidence regions are depicted in Fig. 1. Our analysis reveals that the
cosmological model with power-law and logarithmic corrections presents a compelling fit to the recent observational data (Figs. 2a,
2b, 3a, and 3b). It effectively describes the observed cosmic acceleration scenario and offers a correction to the standard �CDM
model.

Moreover, the study of essential cosmological parameters, including the energy density, pressure, deceleration parameter, and
EoS parameter, offers deeper insights into the behavior of DE. The behavior of cosmological parameters for both the power-law
and logarithmic corrections models exhibits intriguing characteristics. In the power-law model, we observed notable deviations
from the standard �CDM model. The energy density and pressure exhibit distinct positive and negative behaviors, respectively
(Figs. 4a, 5a). The deceleration parameter indicates transitions between different cosmic phases (Fig. 7a). Moreover, the EoS
parameter demonstrates intriguing dynamics, exhibiting quintessence-like behavior (Fig. 6b). We observed similar behavior for the
logarithmic model (Figs. 4b, 5b, 6b, and 7b). A notable observation is that the models showcase contrasting evolutionary paths
for the cosmological parameters in the future, while displaying similar behavior in the past. As we examine the trajectories of the
parameters over time (or redshift), it becomes evident that the models deviate in their predictions for the future evolution of the
Universe.

Finally, we applied the Om(z) diagnostic test to both the power-law and logarithmic corrected models to categorize and classify
their behavior (Fig. 8a and b). For both models, the Om(z) diagnostic displayed a distinct positive slope, indicating phantom-like
behavior, which is consistent with the observed accelerated expansion of the Universe.

Data Availability All data used in this study are cited in the references and were obtained from publicly available sources.
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