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Abstract: The present study reports a reconstruction scheme for f (R) gravity with the scale factor

a(t) ∝ (t∗ − t)
2
c2 describing the pre-bounce ekpyrotic contraction, where t∗ is the big crunch time.

The reconstructed f (R) is used to derive expressions for density and pressure contributions, and the
equation of state parameter resulting from this reconstruction is found to behave like “quintom”. It has
also been observed that the reconstructed f (R) has satisfied a sufficient condition for a realistic model.
In the subsequent phase, the reconstructed f (R) is applied to the model of the chameleon scalar field,
and the scalar field φ and the potential V(φ) are tested for quasi-exponential expansion. It has been
observed that although the reconstructed f (R) satisfies one of the sufficient conditions for realistic model,
the quasi-exponential expansion is not available due to this reconstruction. Finally, the consequences
of pre-bounce ekpyrotic inflation in f (R) gravity are compared to the background solution for f (R)
matter bounce.

Keywords: pre-bounce ekpyrotic contraction; f (R) gravity; reconstruction

1. Introduction

Observational evidence in support of the late time acceleration of the universe is documented in
a plethora of literature [1–4]. An exotic matter, characterized by negative pressure, is considered to be
responsible for this accelerated expansion and is dubbed “dark energy” (DE) [5–7]. Reviews on various
candidates of DE have been made in a considerable number of literature works. Some significant ones
include [5,7–9]. An approach, an alternative to dark energy, also known as “modified gravity”, has some
relative advantages. Although DE and modified gravity theories have some similarities in their basic
approach, modified gravity has some features that have made it attractive in the study of the late time
acceleration of the universe. One very promising modified theory of gravity is f (R) gravity [10–19].

A scheme of the reconstruction of modified gravity that is capable of realizing a unification of
the acceleration of late time and early inflation was demonstrated in [20]. In this reconstruction
scheme, Reference [20] reported models of modified gravity capable of presenting a successful transition
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from the phase of matter dominance to the late time accelerated phase of the universe. Another noteworthy
reference in this context is [21], which reported f (R) gravities that are viable and are reproduced through
e-folding numbers. The unification of late and early time acceleration was also reported in this study.
Another f (R) reconstruction by the imposition of the restrictions of a dynamical nature was presented
in [22]. Realization of ΛCDM through f (R) gravity was elaborated in [23]. Reference [24] demonstrated
how reconstruction schemes can be extended to modified gravity models so as to realize the transition
from matter dominance to dark energy dominance. This is due to the non-linear character of f (R) gravity
relevant to early inflation for large R [25]. The unification approach, as stated above, was also reported
in [26–29].

To avoid the measurable corrections to the occurrence of the local gravity, the models have to apply
the chameleon mechanism [30,31] to overcome the Solar System tests. References [32–35] suggested the
models that satisfy both the cosmological and the local gravity constraints. Studies including [36–39]
demonstrated exact solutions that are capable of explaining the current acceleration. For more details,
see [40,41]. The exact behaviour of the exotic matter that is thought to be responsible for the acceleration
of the current universe is yet to be fully understood. As a consequence, various candidates have been
proposed for DE to date, and modified theories also have a considerable variability in the approach,
and accordingly, the cosmological parameters have been studied. Among the several candidates proposed
so far for DE, holographic dark energy (HDE) is considered to be of immense potential. HDE was proposed
on the basis of the holographic principle [42–45]. The present work, as one of its primary objectives,
aims to reconstruct modified gravity based on holographic dark energy. Holographic reconstruction of
modified gravity has already been reported in the cosmological literature. Various authors [40,41,46–48]
have reconstructed different candidates of modified gravity from holographic dark energy (HDE) with
different IR cut-offs.

One natural query of the present day cosmology is whether the universe’s evolution actually follows
the standard inflationary paradigm. In order for the standard inflation to follow, an initial singularity has
to exist. Otherwise, the cosmological bounce is considered, in which case there does not exist any initial
singularity [49]. Big bounce scenarios provide us with an alternative to the Big Bang cosmologies. A bounce
cosmology in f (R) cosmological settings was reported in [49], where it was observed that the bouncing
point is characterized by a type-IV singularity. In another interesting study, Odintsov and Oikonomou [50]
provided an f (R) gravity description of a ΛCDM bouncing model without depending on any matter fluid
or cosmological constant. In another study, the authors [51] demonstrated by conformally transforming
the Jordan frame singular bounce that the Einstein frame metric leads to a Big Rip singularity. The present
work endeavours to demonstrate a reconstruction scheme for f (R) gravity with a scale factor describing
the pre-bounce ekpyrotic contraction and to study the cosmological consequences for the chameleon scalar
field model. The rest of the paper is organised as follows: In Section 1, a brief overview of f (R) gravity is
presented. A reconstruction scheme for f (R) gravity is presented in Sections 2 and 3, demonstrating the
cosmology of the chameleon scalar field under reconstructed f (R) gravity. In Section 4, we discuss the
background evolution of matter bounce in f (R) gravity for a different choice of the bouncing scale factor.
The results and concluding remarks are presented in Section 5. Throughout the study, t represents cosmic
time, and it is known that, as per the Big Bang theory, the age of the universe is 13.799± 0.021 billion years.

2. Brief Overview of f (R) Gravity

The action of f (R) gravity is given by [15,17]:

S = d4x
√
−g
[

f (R)
2κ2 + Lmatter

]
(1)
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where κ2 = 8πG
c4 , where c stands for the velocity of light, g = det gµν is the determinant of the metric tensor

and Lmatter is the matter Lagrangian. The f (R) is some function of the Ricci scalar. In the remaining part of
the paper, we shall take κ2 = 1. f (R) is a non-linear function of R that contains corrections to the EHaction.
The gravitational field equations are given by:

H2 =
1

3 f ′(R)
(ρm + ρR) (2)

Ḣ = − 1
2 f ′(R)

(ρm + pm + ρR + pR) (3)

where ρR and pR are the density and pressure generated due to f (R) gravity, and they have the forms:

ρR =
1
2
[
− f (R) + R f ′(R)

]
− 3HṘ f ′′(R) (4)

and:
pR =

1
2
[

f (R)− R f ′(R)
]
+
[
2HṘ + R̈

]
f ′′(R) + Ṙ2 f ′′′(R) (5)

respectively. The density due to dark matter in f (R) gravity is:

ρm = 3H2 f ′(R)− ρR (6)

and we consider pressureless dark matter, pm = 0. In the subsequent section, we will consider f (R) gravity
with the scale factor describing the pre-bounce ekpyrotic contraction.

3. A Reconstruction Scheme for f (R) Gravity

In this section, we describe the reconstruction scheme for f (R) gravity in a bounce model developed
by Cai et al. [52] and further demonstrated by Koehn et al. [53], Odintsov and Oikonomou [54] and
Odintsov et al. [55]. In the model demonstrated by [53], a scalar field φ with non-canonical kinetic terms
and a potential V(φ) were used to develop the cosmological model in a non-supersymmetric framework.
In the present work, instead of taking the potential as the ekpyrotic potential, i.e., V(φ) ≈ −V0e−c(φ)φ

we consider the chameleon scalar field in the framework of f (R) gravity reconstructed for a scale factor
describing a pre-bounce ekpyrotic contraction, as was mentioned in [53]. It may also be noted that the
reconstruction procedure is similar to that of [55]. However, instead of introducing the e-folding number
N, contrary to what was presented in [55], we demonstrate a reconstruction scheme for f (R) through the
cosmic time t and subsequently in terms of the Ricci scale factor R. The presence of dark matter is also
considered. In Equation (7), t∗ is the big crunch time. However, instead of constraining c by the lower
bound of

√
6, we constrained it by non-negativity. The scale factor describing a pre-bounce ekpyrotic

contraction is [53]:

a(t) ∝ (t∗ − t)
2
c2 (7)

giving rise to:

ȧ = −2(t∗ − t)
2
c2−1

c2 (8)

It may be noted that t∗ is the big crunch time if the ekpyrotic phase were to continue until that time
and c is a parameter constrained to c >

√
6 [55]. In this connection, we would like to mention that in the

present work, we do not impose any prior constraint on c; rather, we generate a constraint on c based on
the solution of the reconstructed f (R). It may further be mentioned that the constraint on c was initially
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presented in [53], where the constraint of c >
√

6 is needed for the assumed form of ekpyrotic potential.
In this work, instead of considering a specific form of potential, firstly we reconstruct f (R) and then
consider the scalar field a chameleon one that has a non-minimal coupling with the matter Lagrangian
through an analytic function. For the above choice of scale factor, the Hubble parameter and its derivatives
turn out to be as follows:

H =
ȧ
a
= − 2

c2(t∗ − t)
, Ḣ = − 2

c2(t∗ − t)2 , Ḧ =
4

c2(t∗ − t)3 . (9)

Using the form of the Hubble parameter derived above the Ricci scalar, its derivatives are
derived below:

R = 6
(

2H2 + Ḣ
)
= − 12(c2 − 4)

c4(t∗ − t)2 , Ṙ =
24(4− c2)

c4(t∗ − t)3 , R̈ =
72(4− c2)

c4(t∗ − t)4 . (10)

It was already stated that the purpose of the present work is to reconstruct f (R) gravity and to
demonstrate the cosmology of the chameleon scalar field under this reconstruction. In view of the above,
f (R) gravity is reconstructed using Equations (9) and (10). Hence, the modified field equations give rise to
the Friedmann equation in FRW geometry as follows:

− 18
(

4H2Ḣ + HḦ
)

f ′′(R) + 3
(

H2 + Ḣ
)

f ′(R)− f (R)
2

+ ρm = 0, (11)

where ρm = ρm0 a(t)−3 indicates the dark matter density and R is the Ricci scalar as stated in Equation (10).
In Equation (10), we show how R can be expressed in terms of t based on the choice of the scale factor.
Hence, the modified Friedmann Equation (11) written above gives rise to a differential equation with t
as the independent variable, which upon solving gives us the solution for f (R) in terms of cosmic time t
as follows:

F(t) = 1728
1
c2 A1

[
− −4 + c2

c4(t∗ − t)2

] 3
c2

+ 12A2

[
− −4 + c2

c4(t∗ − t)2

]A2

C1 + 12A3

[
− −4 + c2

c4(t∗ − t)2

]A3

C2 (12)

where F(t) = f (R(t)). The above equation (12) is converted to a function of R, and finally, the reconstructed
f (R) takes the following form:

f (R) = A1R
3
c2 + RA2 C1 + RA3 C2, (13)

where:

A1 =
1

24− 13c2 + c4

21− 6
c2 3−

3
c2 ρm0 c2(−4 + c2)

(
4− c2

c4

)− 3
c2

 ,

A2 = − 1
4c2

[
2 + c

{
−3c +

(4 + c)
√

c4 + 20c2 + 4
c2 − 4

}]
+

2
√

c4 + 20c2 + 4
c2(c2 − 4)

,

A3 = − 1
4c2

[
2 + c

{
−3c +

(4 + c)
√

c4 + 20c2 + 4
c2 − 4

}]
+

√
c4 + 20c2 + 4
2(c2 − 4)

. (14)

Equation (14) shows that for A1 to be real, one needs 0 < c2 < 4. This choice does not affect A2

and A3.
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The derivatives of f (R) up to various orders are computed below:

f ′(R) =
1
R

3A1R
3
c2

c2 + A2RA2 C1 + A3RA3 C2

 , (15)

f ′′(R) =
1

R2

3A1(3− c2)R
3
c2

c4 + (−1 + A2)A2RA2 C1 + (−1 + A3)A3RA3 C2

 , (16)

f ′′′(R) =
1

R3 [
3A1(9− 9c2 + 2c4)R

3
c2

c6 + (−2 + A2)(−1 + A2)A2RA2 C1+

(−2 + A3)(−1 + A3)A3RA3 C2]. (17)

It is clear from the above expressions that the reconstructed f (R) is a real solution to Equation (11),
and derivatives up to the orders shown above exist. In Figure 1, we observe that f (R) shows an
increasing pattern with cosmic time for 0 < c2 < 4. This indicates that d

dt f (R) > 0 for 0 < c2 < 4.

Furthermore, Equation (10) shows that Ṙ > 0 for 0 < c2 < 4. Thus, f ′(R) =
˙f (R)
Ṙ > 0 for 0 < c2 < 4.

Hence, it is observed that f (R) gravity so obtained is free from ghost instability. Furthermore, from Figure 2,
we observe that for 0 < c2 < 4, we have an increasing pattern of f ′(R) with cosmic time t. Hence, the time

derivative of f ′(R) would be positive. Therefore, we will have
˙f ′(R)
Ṙ = f ”(R) > 0. In this connection,

we would like to mention that f (R) gravity belongs to the class of modified gravity models for which
the stability conditions have been investigated in the literature in an extensive manner (e.g., [56–58]).
These literature works have demonstrated the high curvature regime stable against small perturbations to
be a condition for the stability of f (R) gravity. This leads to the requirement of a positive mass squared
for the scalaron, i.e., m2

f R ≈
1+ f ′(R)

f ”(R) > 0. In the present case, both f ′(R) and f ”(R) are positive, m2
f R > 0.

The tachyonic instability manifests in the negative mass terms leading to an unstable low-k regime [58].
In the present case, squared mass comes out to be positive for the reconstructed f (R). Thus, the model
of f (R) obtained through the reconstruction scheme presented above is free from tachyonic instability.
This proves the physical viability of the reconstructed f (R) model.

Figure 1. Evolution of reconstructed f (R) (Equation (12)).
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Figure 2. Evolution of reconstructed f ′(R).

4. Chameleon Scalar Field under Modified f (R) Gravity

In this section, the reconstructed f (R) gravity will be considered to reconstruct the chameleon scalar
field and chameleon potential to investigate whether they can lead to quasi-exponential expansion in
the framework of the reconstructed f (R) gravity. In this connection, it may be noted that an equivalence
between f (R) and scalar–tensor theories was discussed in [59,60]. In these references, it was discussed
how one may consider φ = R to reproduce the original action of the chameleon mechanism [61]. In a flat
homogeneous universe, the action for the relevant scalar field and potential is given by [62]:

S =
√−gd4x

[
f (φ)L+ 1

2 φ,µφ,µ + R
16πG −V(φ)

]
(18)

where φ is the chameleon scalar field and V(φ) is the chameleon potential. R and G represent the Ricci
scalar and Newtonian constant of gravity, respectively. f (φ) is an analytic function of φ, and f (φ)L is the
modified matter Lagrangian. Variation of the action with respect to metric tensor components in an FRW
cosmology leads to the following modified field equation (assuming 8πG = 1).

H2 =
1
3

[
(ρm + ρR) f (R) +

1
2

φ̇2 + V(φ)

]
, (19)

2Ḣ + 3H2 =
1
2

[
−pR f (R)− 1

2
φ̇2 + V(φ)

]
. (20)

It may be noted that as we consider the chameleon scalar field in the f (R) gravity framework,
we chose the density to be ρm + ρR, the pressure to be pR and the analytic function to be replaced by a
function of the Ricci scalar R.

Solving Equations (4), we get the reconstructed density contribution due to f (R) gravity as follows:



Symmetry 2020, 12, 1559 7 of 17

ρR = − 1
2c2(−4+c2)

[
1728

1
c2 A1

(
30− 13c2 + c4) { 4−c2

c4(t∗−t)2

} 3
c2
+

c2
{

12A2(−1 + A2)
{

4 + (−1 + 2A2)c2} {− −4+c2

c4(t∗−t)2

}A2
C1+

12A3(−1 + A3)
{

4 + (−1 + 2A3)c2} {− −4+c2

c4(t∗−t)2

}A3
C2

}]
.

(21)

Similarly, from Equation (5), we derive the expression for pressure contribution of this reconstructed
f (R) gravity as follows:

pR = 1
6c2(−4+c2)

[
−21+ 6

c2 31+ 3
c2 A1

(
−3 + c2) { 4−c2

c4(t∗−t)2

} 3
c2
+

c2
{
−12A2(−1 + A2)

{
−12 + (3− 4A2)c2 + A2(−1 + 2A2)c4} {− −4+c2

c4(t∗−t)2

}A2
C1−

12A3(−1 + A3)
{
−12 + (3− 4A3)c2 + A3(−1 + 2A3)c4} {− −4+c2

c4(t∗−t)2

}A3
C2

}] (22)

Now, using the reconstructed f (R) and ρR in Equation (6), the form of dark matter density in the
f (R) gravity framework turns out to be the following:

ρm = 1
2(−4+c2)

 1728
1
c2 A1(24−13c2+c4)

{
4−c2

c4(t∗−t)2

} 3
c2

c2 +

12A2
{
−4 + c2 + A2

{
2 + (−3 + 2A2)c2}} {− −4+c2

c4(t∗−t)2

}A2
C1+

12A3
{
−4 + c2 + A3

{
2 + (−3 + 2A3)c2}} {− −4+c2

c4(t∗−t)2

}A3
C2

]
.

(23)

The equation of the state parameters, as defined below, can be modified using the reconstructed
pressure and densities elaborated above.

wR =
pR
ρR

(24)

we f f =
pR

ρm + ρR
(25)

At this juncture, we consider the modified field equations for the reconstruction of the chameleon
scalar field. Using modified field Equations (19) and (20), we can have:

2V − φ̇2 = 8Ḣ + 12H2 + 2pR f (R) (26)

where H, pR and f (R) were already derived. The cosmological parameters derived above will now be
explored through plots, and the outcomes will be discussed in the subsequent section.

5. Background Solution for f (R) Matter Bounce

In the previous sections, we discussed the various outcomes of a scale factor describing the pre-bounce
ekpyrotic contraction. In this section, we demonstrate a comparison of the results with the bounce scale
factor proposed in [63]:

a(t) = a0

(
1 +

3σt2

2

) 1
3

(27)
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where a0 is a scale factor at the bouncing point and σ is a positive parameter. It was demonstrated
in [63] that apart from presenting bouncing behaviour corresponding to matter-dominated contraction
and expansion, such an ansatz presented in Equation (27) additionally exhibits the advantage of allowing
for semi-analytic solutions.

With the help of this scale factor, we derive the Hubble parameter (H), the Ricci scalar (R), and their
derivatives in terms of cosmic time t as follows:

H =
2tσ

2 + 3t2σ
, Ḣ =

2σ(2− 3t2σ)

(2 + 3t2σ)2 , Ḧ =
36tσ2(t2σ− 2)
(2 + 3t2σ)3 (28)

R =
12σ(2 + t2σ)

(2 + 3t2σ)2 , Ṙ = −24tσ2(10 + 3t2σ)

(2 + 3t2σ)3 , R̈ =
24σ2 (−20 + 3t2σ(44 + 9t2σ)

)
(2 + 3t2σ)4 (29)

This choice of a(t) presents the bouncing behaviour corresponding to matter-dominated contraction
and expansion. Furthermore, t ranges from −∞ to +∞. Bounce occurs at t = 0. Using the expression for
R, we can straight away express t as:

t(R) = ±


√

2
3

√√√√−Rσ +
(

σ2 ±
√

σ3(4R + σ)
)

Rσ2

 (30)

The above inversion is valid if −
√

2
3σ < t <

√
2

3σ . At the bouncing point, we take a0 = 1 and

ρm0 = 1.41× 10−5. Roughly based on the CMB spectrum, σ = 7× 10−6.
With H, R and a(t) discussed above, clearly, with this choice,

f ′(R) = −
(
2 + 3t2σ

)3 f ′(t)
24tσ2 (10 + 3t2σ)

and:

f ′′(R) =
(
2 + 3t2σ

)5 ((−20 + 132t2σ + 27t4σ2) f ′(t) + t
(
20 + 36t2σ + 9t4σ2) f ′′(t)

)
576t3σ4 (10 + 3t2σ)

3 .

Because of the complicated form of the coefficients, the differential equation (Equation (11)) with
f ′(R), f ′′(R) in the above forms cannot be solved analytically. The reconstructed f (R) is obtained
numerically, and the solution in terms of cosmic time t is graphically presented in Figure 3. Here, in the
numerical solutions, the positive parameter σ plays a significant role. Therefore, we take three values of
σ = 0.75, 1.25, 1.75 from the interval (0.7, 2) for the entire calculation. In the following figures, the red,
green and blue lines indicate the values σ = 0.75, 1.25 and 1.75, respectively. It is observed in Figure 3 that
f (R) → 0 as t → 0 before, as well as after bounce. Before bounce, the reconstructed f (R) tends to zero
from the negative side. However, after attaining zero at the bouncing point, it starts increasing towards the
positive direction. Hence, f (R)→ 0 irrespective of the pre- or post-bounce scenario. Hence, it is apparent
that a realistic solution is available with this choice of the bounce scale factor. Secondly, Figure 4 shows that
f ′(R)

R > 0 before bounce and < 0 after bounce. Hence, in the pre-bounce phase, the model is not affected
by tachyon instability, and this is consistent with the pre-bounce ekpyrotic contraction presented in the
previous section. However, after bounce, f ′(R)

R < 0. Hence, the post-bounce scenario is characterized by
tachyon instability. As we study 2V − φ̇2, we observe that it is positive in the pre-, as well as post-bounce
scenario (see Figure 5). However, for t− < t < t+, i.e., in the vicinity of the bouncing point, 2V − φ̇2 is
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nearly flat, and after bounce, it starts increasing sharply; hence, we may consider it to be consistent with
the inflationary expansion.

-300 -200 -100 0 100 200 300

-1.0×107

-5.0×106

0

5.0×106

1.0×107

1.5×107

t

f(
R
)

Figure 3. Evolution of the reconstructed f (R) gravity over cosmic time t for scale factor

a(t) = a0

(
1 + 3σt2

2

) 1
3 .

-300 -200 -100 0 100 200 300

-5×1017

0

5×1017

t

f'
(R

)/
R

Figure 4. Evolution of f ′(R)
R .
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-300 -200 -100 0 100 200 300

0

5.0×1014

1.0×1015

1.5×1015

2.0×1015

2.5×1015

3.0×1015

3.5×1015

t

(2
V
-

2

)

Figure 5. Evolution of the reconstructed 2V −φ̇2 over cosmic time t in the reconstructed f (R) gravity
(Figure 3) framework.

6. Results and Conclusions

In the present work, we carried out a reconstruction scheme for f (R) gravity with the scale factor

in the form a(t) = (t∗ − t)
2
c2 . Initially, a Hubble parameter H was computed, and its time derivatives of

different orders also were derived for this scale factor to get the Ricci scalar R. Subsequently, the field
equation for the f (R) gravity Equation (11) were solved in the presence of dark matter. The reconstructed
f (R) was obtained this way as a function of t in Equation (12), which was reexpressed as a function of R in
Equation (13). This reconstructed f (R) is plotted against cosmic time t for a range of values of 0 < c2 < 4
in Figure 1. It is observed in Figure 1 that f (R) has an increasing pattern with t. Furthermore, Equation (13)
shows that limR→0 f (R) = 0. This satisfies a sufficient condition for a realistic model [64,65]. Furthermore,
the non-existence of ghost and tachyonic instability was established. Hence, it can be said that the
reconstructed f (R) model is a realistic model. It may be noted that C1 = 0.5, C2 = 0.3, t∗ = 4.1, ρm0 = 0.32
and 0 < c2 < 4 were used while creating the plots. The choice of C1, C2 was made through trial and error;
t∗ and c2 were set keeping the real solution for f (R) in mind. It may be noted that the formulation of the
reconstruction approach was inspired by [24].

It was further observed that the increasing pattern of f (R) is influenced by the value of c. For larger
values of c, f (R) maintains approximately a flat pattern for a considerable period of cosmic time and
exhibits a sudden increase at a later stage of the universe. Different derivatives of this reconstructed f (R)
were also computed and presented in Equations (15)–(17). In the next part of this study, we demonstrated
the behaviour of the chameleon scalar field under this modified form of f (R). The modified field equations
in the presence of the chameleon scalar field and potential were presented in Equations (19) and (20).
While reconstructing the chameleon scalar field and potential under this reconstructed f (R) model, we
first reconstructed the density and pressure due to f (R) using Equation (13). Based on the reconstructed
pR and ρR, we demonstrated the behaviour of the EoS parameter wR due to f (R) gravity in Figure 6 and
the effective EoS parameter we f f in Figure 7. It is observed in Figure 6 that wR stays at the negative level
for the evolution of the universe. This holds true for the entire range of c. Hence, it may be concluded that
wR due to reconstructed f (R) gravity behaves like the phantom. The phantom behaviour is stronger for
lower values of c than the higher values. However, if we consider we f f with the same choice of parameters,
it is found that for 0 < c / 0.5, we f f ≈ −1, i.e., behaving approximately like the cosmological constant.
In Figure 8, it is observed that the fractional energy density Ωm = ρm

3H2 based on the reconstructed ρm, and



Symmetry 2020, 12, 1559 11 of 17

the scale factor describing the pre-bounce ekpyrotic contraction stays at the positive level. This satisfies
the weak energy condition (WEC). Furthermore, the model produces fractional matter density that decays
with the evolution of the universe. This indicates a transition from matter domination in the early stage to
dark energy domination in the late stage.

In Figure 9, the evolution of 2V − φ̇2 is studied against z for a range of values of c. This figure shows
that 2V − φ̇2 ≤ 0, which violates the condition for inflationary expansion. Hence, quasi-exponential
expansion is not available with the chameleon scalar field considered in the framework of modified f (R)

gravity in the presence of the scale factor a(t) = (t∗ − t)
2
c2 describing the pre-bounce ekpyrotic contraction.

This observation is in contradiction with the study of Chattopadhyay et al. [66], where quasi-exponential
expansion was found to be possible for a linear f (T) gravity based on holographic Ricci dark energy.

Figure 6. The EoS parameter wR =
pR
ρR

(Equations (21) and (22)) due to the reconstructed f (R) gravity.



Symmetry 2020, 12, 1559 12 of 17

Figure 7. The behaviour of the effective EoS parameter (we f f =
pR

ρR+ρm
) (Equations (21)–(23)).

Figure 8. The evolution of the fractional matter density Ωm =
ρm

3H2 in the reconstructed f (R) gravity.
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Figure 9. The evolution of 2V −φ̇2 in the reconstructed f (R) gravity framework.

While concluding, we should mention that the reconstruction of f (R) gravity was demonstrated in
the model to unify the bouncing behaviour in the early universe, and the late time accelerated expansion
of the universe at the dark energy-dominated stage can occur within a unified model. In view of the
same, a scale factor describing the pre-bounce ekpyrotic contraction was chosen, and the reconstructed
f (R) was demonstrated to be capable of transiting the universe from the matter-dominated to the dark
energy-dominated phase. Furthermore, the reconstructed f (R) was found to be free from ghost and
tachyonic instabilities, and hence, it was interpreted that the reconstructed f (R) is realistic. We could
explicitly derive the f (R) gravity model capable of demonstrating the pre-bounce ekpyrotic contraction and
the late time acceleration in a single model framework. This kind of reconstruction approach was earlier
demonstrated in [67] in the framework of f (G) gravity. As a future study, we propose to demonstrate
whether this reconstruction scheme works for any arbitrary choice of the scale factor and to compare the
results with the conventional reconstruction scheme using e-foldings.

We demonstrated the background matter bound for f (R) with another bouncing scale factor
introduced in [63] and found that although in the pre-bounce scenario, the model has tachyonic stability,
the tachyonic stability is lost after the bouncing point. At the bouncing point, we found that f (R) → 0
for t → 0−, as well as t → 0+. At this juncture, we must mention some important works in the
direction of matter bounce solutions in the modified gravity framework. With the scale factor in the form
a(t) = (a0t2 + 1)n, Reference [68] demonstrated that the Lagrange multiplier f (R) is more adequate than
the standard f (R) in realizing the cosmological bounce. The matter bounce scenario, the singular bounce,
the superbounce, and a symmetric bounce scenario in modular f (R) were discussed by [69]. The present
work primarily focused on the pre-bounce ekpyrotic contraction scenario. Nevertheless, the bouncing
scenarios demonstrated in [69] are proposed to be incorporated into the study of exit from the pre-bounce
ekpyrotic contraction in the modified gravity framework.
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Finally, let us make a note of the behaviour of the EoS parameter obtained while reconstructing
f (R) gravity. In this connection, let us mention the very recent work of [70], where the authors presented
unification models of gravity realizing the inflationary era along with a post-inflationary early dark energy
era, with the late-time dark energy era. In line with [70], the current study can be extended to have a
further insight into the unification approach by fine- tuning the EoS parameter towards a more successful
unification of dark energy of the different eras.
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