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Abstract. In this paper, we study the generalized Heisenberg ferromagnet equation,
namely, the M-CVI equation. This equation is integrable. The integrable motion of the
space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan
(geometrical) equivalence between the M-CVI equation and the two-component Camassa-
Holm equation is established.

1. Introduction
The celebrated Camassa-Holm equation (CHE) has the form

ut + κux − uxxt + 3uux = 2uxuxx + uuxxx, (1.1)

where u = u(x, t) is the fluid velocity in the x direction and κ = const is related to the critical
shallow water wave speed. The CHE shares most of the important properties of integrable
equations like the N -soliton solutions, the bi-Hamiltonian structure, the Lax representation
(LR) and so on. In the case, when κ = 0, the CHE (1.1) has the so-called peakon solutions.
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Several important generalizations of the CHE including integrable cases but many other (non-
integrable or whose integrability has not been determined) have been discovered [1]-[19]. In
particular, the two-component CHE (2-CHE) was constructed. Our main interest in this
paper is to go further with the investigation initiated in our previous papers (see, e.g. [20]-
[21]). In this paper, we study the 2-CHE, its relation with the geometry of space curves and
the equivalent spin system.

The paper is organized as follows. In Section 2 we present main fact for the M-CVI
equation. Basic information on the 2-CHE we give in Section 3. The integrable motion of
space curves induced by the M-CVI equation and the 2-CHE is studied in Section 4. In
Section 5, we consider the gauge equivalence between the M-CVI equation and the 2-CHE.
Finally, in Section 6 we present a discussion of our achievements and how they impact some
recent results found in the recent literature.

2. M-CVI equation
There are several integrable and non-integrable generalized Heisenberg ferromagnet equations
(gHFE) (see, e.g. [20]-[21]). In this paper, we consider one of the gHFE, namely, the M-CVI
equation. The M-CVI equation is integrable. It shares most of the important properties
of integrable systems like the Lax representation (LR), the bi-hamiltonian structure, the
N -soliton solutions, infinite hierarchy of symmetries and conservation laws and so on. The
M-CVI equation also can admits the so-called peakon solutions.

2.1. Equation
Consider the M-CVI equation

[A,Axt + (uAx)x]− 1

β2
Ax − 4βρρxZ = 0. (2.1)

Here m = det (A2
x)

4β2 = u − uxx, ρ2 = − tr(A2
x)+2det(Ax)

8β4 , u = 0.25β−2(1 − ∂2x)−1 det (A2
x) are

some real functions, β = const and

Z =
0.5β

ux + uxx
[A,At + (u− 0.5β−2)Ax], A = (A1, A2, A3), (2.2)

A =

(
A3 A−

A+ −A3

)
, A± = A1 ± iA2, A2 = I, A2 = 1. (2.3)

2.2. Lax representation
The LR of the M-CVI equation reads as

Ψx = U1Ψ, (2.4)

Ψs = V1Ψ. (2.5)

Here

U1 =

(
λ

4β
− 1

4

)
[A,Ax] + (λ3 − β2λ)ρ2Z, (2.6)

V1 =

(
1

4β2
− 1

4λ2

)
A+

u

4

(
β

λ
− λ

β

)
[A,Ax] +

(
β

4λ
− 1

4

)
[A,At] + vρ2Z (2.7)

where v = λ(0.5+β2u)−λ3u−0.5β2λ−1. The compatibility condition U1t−V1x+[U1, V1] = 0
is equivalent to the M-CVI equation (2.1).
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2.3. Reductions
One of the reductions of the M-CVI equation is the so-called M-CIV equation. Let ρ = 0.
Then the M-CVI equation takes the form

[A,Axt + (uAx)x]− 1

β2
Ax = 0. (2.8)

It is nothing but the M-CIV equation (see, e.g. [?]-[21]). The LR of the M-CIV equation
follows from the LR of the M-CVI equation (2.4)-(2.5) as ρ = 0. So that the LR of the M-CIV
equation is given by [?]

Ψx = U3Ψ, (2.9)

Ψs = V3Ψ, (2.10)

where

U3 =

(
λ

4β
− 1

4

)
[A,Ax], (2.11)

V3 =

(
1

4β2
− 1

4λ2

)
A+

u

4

(
β

λ
− λ

β

)
[A,Ax] +

(
β

4λ
− 1

4

)
[A,At]. (2.12)

3. 2-CHE
3.1. Equation
The two-component CHE (2-CHE) is given by [1]

mt + umx + 2mux − ρρx = 0, (3.1)

ρt + (ρu)x = 0, (3.2)

where m = u− uxx + 0.5κ. If ρ = 0, the 2-CHE reduces to the CHE (1.1).

3.2. Lax representation
The LR of the 2-CHE is given by (see, e.g. [1])

φxx = (
1

4
−mς + ρ2ς2)φ, (3.3)

φt = −(
1

2ς
+ u)φx +

ux
2
φ, (3.4)

where ς is a spectral parameter and m = u− uxx + 0.5κ (κ = const).

3.3. Reciprocal transformation
From the equation (3.2) follows that the 1-form

ω = ρ dx− ρ u dt (3.5)

is closed. This means that we can define a reciprocal transformation (x, t) 7→ (y, s) by the
relation [1]

dy = ρ dx− ρ u dt, ds = dt. (3.6)

So we obtain
∂

∂x
= ρ

∂

∂y
,

∂

∂t
=

∂

∂s
− ρ u ∂

∂y
. (3.7)
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Then the spectral problem (3.3)-(3.4) takes the form [1]

ϕyy =
(
λ2 − P λ−Q

)
ϕ, (3.8)

ϕs = − ρ

2λ
ϕy +

ρy
4λ
ϕ, (3.9)

where

ϕ =
√
ρ φ, P =

m

ρ2
, Q = − 1

4ρ2
− ρyy

2ρ
+

ρ2y
4ρ2

. (3.10)

The compatibility condition of the equations (3.8)-(3.9) gives

Ps = ρy, , (3.11)

Qs +
1

2
ρPy + P ρy = 0, (3.12)

1

2
ρQy +Qρy +

1

4
ρyyy = 0. (3.13)

Hence we get the equation [1]

ρ2Q+
1

2
ρ ρyy −

1

4
ρ2y = C = −1

4
. (3.14)

From the equation (3.11) follows

P =
∂f(y, s)

∂y
, ρ =

∂f(y, s)

∂s
, (3.15)

where f(y, s) is some function. This function satisfies the equation [1]

fss
2f3s

+ fyfys −
fssf

2
ys

2f3s
+
fysfyss

2f2s
+

1

2
fsfyy +

fssfyys
2f2s

− fyyss
2fs

= 0. (3.16)

Finally we come to the following theorems [1]

Theorem 3.1 Let f be a solution of the equation (3.16), and

u = fyf
2
s +

fssfys
fs

− fyss, ρ = fs. (3.17)

If x(y, s) is a solution of the following system of ODEs:

∂x

∂y
=

1

ρ
,

∂x

∂s
= u, (3.18)

then (u(y, t), ρ(y, t), x(y, t)) is a parametric solution of the 2-CHE (3.1)-(3.2).

Theorem 3.2 Let f(y, s) be a solution of the equation (3.16). Define the functions x =
x(y, s), u = u(y, s), ρ = ρ(y, s) by

x = f(s, y), u =
∂x

∂s
,

1

ρ
=
∂x

∂y
. (3.19)

Then (u(y, t), ρ(y, t), x(y, t)) is a parametric solution of the 2-CHE (3.1)-(3.2).
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3.4. Relations to the first negative flow of the AKNS hierarchy
Let us briefly present the well-known result about relation between the 2-CHE and the AKNS
spectral problem following the paper [1]. The AKNS spectral problem reads as(

φ1
φ2

)
y

=

(
λ −q
r −λ

)(
φ1
φ2

)
. (3.20)

The first negative flow of the AKNS problem is given by(
φ1
φ2

)
s

=
1

4λ

(
a b
c −a

)(
φ1
φ2

)
. (3.21)

The compatibility condition of the equations (3.20)-(3.21) gives

qs =
1

2
b, (3.22)

rs =
1

2
c, (3.23)

by = 2 a q, (3.24)

cy = 2 a r, (3.25)

ay + b r + c q = 0. (3.26)

Hence we get the condition [1]
a2 + b c = ε2, (3.27)

where ε = const. We have the following theorems [1]:

Theorem 3.3 Let (a, b, c, q, r) be a solution of the equations (3.23)–(3.26) with ε2 = 1, then
any function f(y, s) satisfying

2a = b e−f − c ef (3.28)

gives a primary solution of the 2-CH system.

Theorem 3.4 If f is a primary solution of the 2-CHE system (3.1)-(3.2), then we can
construct a solution of the first negative flow of the AKNS hierarchy by the following formulae

q =
ef

2

(
fy +

ε− fys
fs

)
, r =

e−f

2

(
fy −

ε− fys
fs

)
, b = 2 qs, c = 2 rs, a =

b e−f − c ef

2
.

(3.29)
where ε = 1 or ε = −1.

3.5. Bi-Hamiltonian structure
Let us again briefly present some basic facts about the bi-Hamiltonian structure of the 2-CHE
following the paper [1]. Note that both bi-Hamiltonian structures of the CHE and the KdV
hierarchies are deformations of the following bi-Hamiltonian structure of hydrodynamic type
[1]

{u(x), u(y)}1 = δ′(x− y),

{u(x), u(y)}2 = u(x)δ′(x− y) +
1

2
u(x)′δ(x− y). (3.30)
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This means that the dispersionless limits of the CHE and KdV hierarchies have the same
forms. One of the main features of the integrable hierarchies that correspond to bi-
Hamiltonian structures with constant central invariants is the existence of τ -functions. It
is well known that integrable hierarchies of nonlinear partial differential equations with one
spatial variable possess bi-Hamiltonian structures that are deformations of bi-Hamiltonian
structure of hydrodynamic type with constant central invariants, and the existence of τ -
functions plays an important role in the study of these integrable systems. The CHE hierarchy
is an exceptional example of integrable systems which does not possess τ -functions.

4. Motion of space curves induced by the M-CIV equation. Lakshmanan
(geometrical) equivalence
In this section, we would like to find the integrable motion of the space curves induced by
the M-CVI equation. To do that, let us consider a smooth space curve in R3 given by

γ(x, t) : [0, X]× [0, T ]→ R3, (4.1)

where x is the arc length of the curve at each time t. Then the following three vectors

e1 = γx, e2 =
γxx
|γxx|

, e3 = e1 ∧ e2, (4.2)

are the unit tangent vector, the principal normal vector and the binormal vector of the curve,
respectively. The corresponding Frenet-Serret equation is given by e1

e2
e3


x

= C

 e1
e2
e3

 =

 0 κ1 κ2
−κ1 0 τ
−κ2 −τ 0

 e1
e2
e3

 , (4.3)

where τ , κ1 and κ2 are torsion, geodesic curvature and normal curvature of the curve,
respectively. Let the deformation of the curves are given by e1

e2
e3


x

= C

 e1
e2
e3

 ,

 e1
e2
e3


t

= G

 e1
e2
e3

 . (4.4)

Here

C = −τL1 + κ2L2 − κ1L3 =

 0 κ1 κ2
−κ1 0 τ
−κ2 −τ 0

 , (4.5)

G = −ω1L1 + ω2L2 − ω3L3 =

 0 ω3 ω2

−ω3 0 ω1

−ω2 −ω1 0

 , (4.6)

where

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 (4.7)

are basis elements of so(3) algebra. The compatibility condition of the equations (4.4) has
the form

Ct −Gx + [C,G] = 0 (4.8)
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or in components

κ1t − ω3x − κ2ω1 + τω2 = 0, (4.9)

κ2t − ω2x + κ1ω1 − τω3 = 0, (4.10)

τt − ω1x − κ1ω2 + κ2ω3 = 0. (4.11)

As usual, we consider the following identification A ≡ e1. We have

κ1 = i, κ2 = λ(m− 1) + λ3ρ2, τ = −i[λ(m+ 1) + λ3ρ2], (4.12)

where κ2 + iτ = 2mλ + 2ρ2λ3 and κ2 − iτ = −2λ, λ = const. Finally we get the following
expressions for the functions ωj

ω1 = i[(uλ− 0.5λ−1)(m+ 1)− 0.5λ−1(ux + uxx)− 0.5λρ2 + λ3uρ2], (4.13)

ω2 = [(0.5λ−1 − λu)(m− 1) + 0.5λ−1(ux + uxx) + 0.5λρ2 − λ3uρ2], (4.14)

ω3 = i[0.5λ−2 − u− ux]. (4.15)

Substituting these expressions to Eqs.(4.9)-(4.11) we get the following equations for m, ρ:

mt + 2uxm+ umx − ρρx = 0, (4.16)

ρt + (uρ)x = 0, (4.17)

m− u+ uxx − 0.5κ = 0, (4.18)

which is the 2-CHE. So, we have proved the Lakshmanan (geometrical) equivalence between
the M-CVI equation (2.1) and the 2-CHE (3.1)-(3.2).

5. Gauge equivalence
In the previous section, we have shown that the M-CIV equation (2.1) and the 2-CHE (3.1)-
(3.2) are the geometrical equivalent each to other. As it was established in [20], between these
equations takes place also the gauge equivalence. In fact, consider the gauge transformation
Φ = gΨ, where g = Φ|λ=β. Then we have

U1 = g−1U2g − g−1gx, V1 = g−1V2g − g−1gt. (5.1)

As result, we get the following LR for the 2-CHE

Φx = U2Φ, (5.2)

Φt = V2Φ, (5.3)

where

U2 =

(
−0.5 λ

mλ+ ρ2λ3 0.5

)
, (5.4)

V2 =

(
0.5(u+ ux)− 0.25λ−2 0.5λ−1 − uλ

0.5(m+ ux + uxx)λ−1 − um+ 0.5ρ2λ− uρ2λ3 0.25λ−2 − 0.5(u+ ux)

)
. (5.5)

The compatibility condition

U2t − V2x + [U2, V2] = 0 (5.6)

gives the 2-CHE.



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012068

IOP Publishing
doi:10.1088/1742-6596/2090/1/012068

8

6. Conclusion
In this paper, we have considered the M-CVI equation and the 2-CHE. First, we have
presented some well-known main facts on these equations. In particular, we briefly present
the reciprocal transformation between the 2-CHE and the first negative flow of the AKNS
hierarchy which includes in particular the well known sine-Grodon and the sinh-Gordon
equations. This transformation gives the correspondence between solutions of the first
negative flow of the AKNS hierarchy and the 2-CHE. Then we have studied the motion
of the space curves induced by these equations. Using this result, we have proved that the
M-CVI equation and the 2-CHE is the Lakshmanan (geometrical) equivalent each to other.
Last but not least, we would like to note and believe that the ”spinalization” of integrable
systems gives some new informations on their nature.
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