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This study proposes a novel parametrization approach for the dimensionless Hubble parameter i.e.
E2(z) = A(z) + β(1 + γB(z)) in the context of scalar field dark energy models. The parameterization
is characterized by two functions, A(z) and B(z), carefully chosen to capture the behavior of the Hub-
ble parameter at different redshifts. We explore the evolution of cosmological parameters, including
the deceleration parameter, density parameter, and equation of state parameter. Observational data
from Cosmic Chronometers (CC), Baryonic Acoustic Oscillations (BAO), and the Pantheon+ datasets
are analyzed using MCMC methodology to determine model parameters. The results are compared
with the standard ΛCDM model using the Planck observations. Our approach provides a model-
independent exploration of dark energy, contributing to a comprehensive understanding of late-time
cosmic acceleration.

I. INTRODUCTION

In the past two decades, significant progress has been
made in observational cosmology, with various obser-
vations consistently supporting the notion of an accel-
erated expansion of the Universe at late times. Type Ia
Supernova (SNe) observations [1, 2], Cosmic Microwave
Background (CMB) measurements [3, 4], and Baryon
Acoustic Oscillations (BAOs) studies [5, 6] have all con-
tributed to reinforcing this understanding. To explain
this accelerated expansion, two main approaches have
been explored in the literature. The first approach in-
volves introducing an exotic form of matter known as
Dark Energy (DE) [7–9]. DE is characterized by hav-
ing a large negative pressure and is postulated to be
responsible for driving the observed cosmic accelera-
tion. The second approach considers modifications to
the laws of gravity itself [10]. In this context, various
modified gravity models have been proposed, such as
f (R) gravity [11–16], f (T) gravity [17–21], and f (Q)
gravity [22–27]. Furthermore, within the framework of
DE models, several candidates have been studied, in-
cluding quintessence [28], k-essence [29], phantom [30–
32], and scalar-tensor theories [33], each with its own
distinct features and implications for the evolution of
the Universe.
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While the ΛCDM model has been remarkably suc-
cessful in explaining various observational data, it is not
without its theoretical challenges [34–36]. One of the
major issues with the ΛCDM model is the fine-tuning
problem, which arises from the extremely small value
of the cosmological constant (Λ) required to match ob-
servations. This fine-tuning problem raises questions
about the underlying theoretical framework and why
the value of Λ is so precisely fine-tuned to produce the
observed cosmic acceleration [37]. Another theoretical
concern is the cosmic coincidence problem, which refers
to the puzzling coincidence that DE density and matter
density are comparable at the present epoch, leading to
the current accelerated expansion of the Universe. The
ΛCDM model does not provide a natural explanation
for this coincidence, and it has been a subject of ongoing
debate and investigation [38]. Furthermore, recent ob-
servations [39–42] have indicated that the ΛCDM model
may not be the best fit for the most recent low-redshift
cosmological data. While the ΛCDM model remains
consistent with a wide range of observations, some data
suggests that dynamical DE models, where the DE den-
sity evolves with time, might provide a more accurate
description of the observed Universe. These theoretical
and observational motivations have led researchers to
explore dynamical DE models that can address the lim-
itations of the ΛCDM model.

Indeed, while various dynamical DE and modified
gravity models have been proposed to explain late-time
cosmic acceleration, it remains essential to rigorously
analyze and scrutinize these models using cosmologi-
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cal observations. The need for a detailed analysis arises
from the complexity of the underlying physics govern-
ing late-time acceleration and the ever-increasing preci-
sion of observational data. To perform such analyses,
it is crucial to adopt appropriate parametrizations that
allow for model-independent descriptions of the late-
time cosmic acceleration [43–46]. Model-independent
parametrizations are particularly valuable because they
do not assume a specific theoretical framework, en-
abling a more agnostic approach to understanding the
observed data. Recently, Roy et al. [47] investigated
the nature of DE using a novel parametrization of the
Hubble parameter. The authors explored scalar field DE
models, including quintessence and phantom, through
a model-independent approach. Pacif et al. [48] pre-
sented an accelerating cosmological model based on
a parametrization of the Hubble parameter. The au-
thors introduced a novel approach to describe the ex-
pansion rate of the Universe, leading to an acceler-
ating phase. In their study, Koussour et al. [49]
proposed a novel parametrization of the Hubble pa-
rameter i.e. H2 (z) = H2

0

[
(1 − α) + (1 + z)

(
α + βz

)]
within the framework of f (Q) gravity. The authors
explored the behavior of the Hubble parameter us-
ing this new parametrization, shedding light on the
late-time cosmic acceleration and its implications in
f (Q) gravity models. Sahni et al. introduced the
concept of the statefinder, a novel geometric tool for
diagnosing the nature and behavior of DE, utilizing
a model-independent parameterization of H(z), i.e.
H2 (z) = H2

0

[
Ωm0(1 + z)3 + A + B(1 + z) + C(1 + z)2

]
[50]. Cunha and Lima conducted an investigation into
the concept of the transition redshift, which signifies
the shift from deceleration to acceleration in cosmic ex-
pansion. They presented novel kinematic constraints
derived from supernovae observations, employing two
different parameterizations of the deceleration param-
eter: q(z) = q0 + q1z and q(z) = q0 + q1z(1 + z) − 1.
Their analysis revealed a transition redshift value of
ztr = 0.61 [51, 52]. Mamon conducted an investiga-
tion into the reconstruction of the interaction rate within
the holographic DE model. This study employed the
Hubble horizon as the infrared cut-off and focused on
a specific parameterization of the effective EoS parame-
ter: ωe f f (z) = −1 + A

A+B(1+z)−n [53]. In the same con-
text, numerous parametrizations have been proposed
for various physical and geometrical parameters [54–
58].

The issue with most of these parametrizations lies
in their behavior at extreme values of redshift. In
the far future, many parametrizations lead to diver-

gent results for the deceleration parameter, which can
cause inconsistencies in predicting the long-term evo-
lution of the Universe. On the other hand, some of
these parametrizations are restricted to low redshifts
(i.e., z << 1) and fail to provide accurate predictions
for earlier cosmic epochs [59]. Motivated by the afore-
mentioned discussions and the need for a robust and
versatile parametrization approach, this study focuses
on exploring scalar field DE models using a general
scheme based on the dimensionless Hubble parameter.
The unique aspect of this approach is that it allows us to
express the relevant cosmological parameters in a form
that is independent of the specific nature of the scalar
field. By adopting this comprehensive parametrization
approach for the dimensionless Hubble parameter i.e.

E2(z) = H2(z)
H2

0
= A(z) + β(1 + γB(z)) (where β, γ are

free parameters, and A(z), B(z) are functions of the red-
shift z), we aim to address the challenges associated
with existing parametrizations that diverge in the far fu-
ture or are limited to low redshifts. The dimensionless
Hubble parameter plays a central role in understand-
ing the Universe’s evolution, making it a crucial and
significant parameter to investigate in cosmology. The
functions A(z) and B(z) are chosen in a manner that al-
lows the parametrization to capture the behavior of the
Hubble parameter at various redshifts. For this pur-
pose, we use measurements from Cosmic Chronome-
ters (CC), BAOs, and Pantheon+, which includes an ex-
panded dataset of Pantheon from Type Ia SNe. This
dataset comprises 1701 light curves from 1550 Type Ia
SNe, collected from different studies. The numerical
analysis is conducted using MCMC methods. Further-
more, we compare our parametrization with the ΛCDM
model using Planck observations.

This paper is structured as follows: Sec. II presents
the fundamental mathematical formulation and the dy-
namics of the scalar field. It introduces a comprehensive
parametrization approach for the dimensionless Hub-
ble parameter E(z). Furthermore, this section derives
analytical expressions for various cosmological param-
eters associated with this parametrization. Sec. III of
this paper focuses on the observational data obtained
from diverse sources, including Cosmic Chronometers,
BAO, and the recently released Pantheon+ datasets. The
methodology employed for determining the model pa-
rameters is also discussed in this section. The summary
of the evolution of the cosmological parameters is pro-
vided in Sec. IV. Finally, in Sec. V, we present a concise
summary and draw our conclusions based on the find-
ings from this study.
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II. COSMOLOGICAL MODEL

For a spatially flat, homogeneous, and isotropic
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) Uni-
verse described by the metric [60]

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdϕ2)], (1)

where a(t) is the scale factor of the Universe as a func-
tion of time, we consider the presence of two perfect flu-
ids. The first fluid represents ordinary matter, with neg-
ligible pressure, and the second fluid is a scalar field,
which is considered as a candidate for DE. In this sce-
nario, Einstein’s field equations and the Klein-Gordon
equation for the scalar field can be written as follows
(assuming 8πG = c = 1)

3H2 = ρm + ρϕ = ρm +
1
2

ϕ̇2 + V(ϕ), (2)

2Ḣ + 3H2 = −pϕ = −1
2

ϕ̇2 + V(ϕ), (3)

ϕ̈ + 3Hϕ̇ +
dV
dϕ

= 0. (4)

Here, H = ȧ
a represents the Hubble parameter, which

characterizes the rate of cosmic expansion. The symbols
ρm, ρϕ, and pϕ denote the energy densities of ordinary
matter, the scalar field (DE), and the pressure associated
with the scalar field, respectively. By solving these equa-
tions and imposing suitable initial conditions, one can
investigate the cosmic expansion history and the behav-
ior of the scalar field over cosmic time.

Further, the energy density for ordinary matter
evolves with the scale factor as

ρm = ρm0a−3 = ρm0(1 + z)3, (5)

where ρm0 represents the current value of matter-energy
density. In addition, z denotes the redshift parame-
ter, defined as z = 1

a(t) − 1. On the other hand, the
energy density for the scalar field can be expressed a
ρϕ = 1

2 ϕ̇2 + V(ϕ), and the corresponding pressure com-
ponent as pϕ = 1

2 ϕ̇2 − V(ϕ) [61, 62]. The function V(ϕ)
represents the potential associated with the scalar field
ϕ.

By manipulating Eqs. (2), (3), and (4), one can derive
expressions for the derivative of the Hubble parameter
Ḣ and the scalar field potential V(ϕ) as

2Ḣ = −ρm0

a3 − ϕ̇2, (6)

and

V(ϕ) = Ḣ + 3H2 − ρm0

2a3 . (7)

By performing further manipulations of Eq. (6) and
employing the standard relation Ḣ = 1

2 a d
da (H2), we ob-

tain: a d
da (H2) + ρm0

a3 = −ϵϕ̇2. In addition, we can ex-

press ϕ̇ using the previous equations as ϕ̇ = aH
(

dϕ
da

)
.

Now, we can find the derivative of the scalar field ϕ with
respect to redshift z as

dϕ

dz
=

[
2E dE

dz − 3Ωm0(1 + z)2

E2(1 + z)

] 1
2

. (8)

Here, E ≡ E(z) represents the dimensionless Hub-
ble parameter (E(z) = H(z)

H0
), where H0 is the present

value of Hubble parameter, and Ωm0 = ρm0
3H2

0
denotes the

present-day density parameter of matter.
Likewise, applying a similar approach, we can ex-

press the scalar field potential, as given in Eq. (7) in
terms of z as

V(z)
3H2

0
= − (1 + z)

3
E

dE
dz

+ E2 − 1
2

Ωm0(1 + z)3. (9)

To characterize the nature of the cosmological expan-
sion, whether it is accelerating or decelerating, we in-
troduce the deceleration parameter q, which is defined
as

q(z) = −1 − Ḣ
H2 =

(1 + z)
E

dE
dz

− 1. (10)

When q > 0, this signifies a deceleration in the expan-
sion of the Universe. For q = 0, the expansion maintains
a constant rate. Conversely, when −1 < q < 0, it indi-
cates accelerating growth. Notably, when q = −1, the
Universe experiences exponential expansion, known as
de Sitter expansion. Moreover, for q < −1, the Universe
exhibits super-exponential expansion.

The density parameter for the matter field Ωm, and
the density parameter for the scalar field Ωϕ, are crucial
cosmological parameters that offer significant informa-
tion about the matter composition of the Universe,

Ωm(z) =
ρm

3H2 =
Ωm0(1 + z)3

E2 , (11)

Ωϕ(z) = 1 − Ωm(z) = 1 − Ωm0(1 + z)3

E2 , (12)

To gain a deeper understanding of the accelerated pe-
riod, we introduce the equation of state (EoS) parameter
ωϕ(z), which is defined as

ωϕ(z) =
pϕ

ρϕ
=

−1 − 2Ḣ
3H2

Ωϕ
. (13)
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Consequently, this leads to

ωϕ(z) =
2
3 (1 + z)E dE

dz − E2

E2 − Ωm0(1 + z)3 , (14)

From Eqs. (2) and (3), we can derive the equation that
describes the acceleration, as mentioned in [63],

..
a
a
= −1

6

(
ρm + ρϕ + 3pϕ

)
. (15)

Therefore, based on the derived expression, the cur-
rent model predicts acceleration (

..
a > 0) only when

ω < − 1
3 . During this accelerated phase of evolution,

three distinct periods can be identified, characterized by
the value of ω [64]:

• −1/3 < ω < −1: In this phase, DE behaves like a
quintessence field, with the pressure being greater
than − 1

3 but less than −1. The scalar field associ-
ated with DE evolves gradually, leading to cosmic
acceleration.

• ω = −1: This value represents the cosmologi-
cal constant in the ΛCDM model, associated with
DE. It signifies a constant negative pressure that
remains fixed over time, driving the cosmic accel-
eration in the ΛCDM model.

• ω < −1: This signifies the onset of the phan-
tom era, indicating DE with even stronger nega-
tive pressure than the cosmological constant. The
phantom era represents exotic DE characterized
by a rapidly evolving scalar field, resulting in the
accelerated expansion of the Universe.

Further, the parametrization of the dimensionless
Hubble parameter E(z) plays a crucial role in charac-
terizing the nature of the Universe’s expansion rate. In
a general setting, E(z) can be expressed as

E2(z) = A(z) + β(1 + γB(z)), (16)

where β, γ are free parameters, and A(z), B(z) are
functions of the redshift z. Indeed, the literature has
witnessed the proposal of various functional forms for
A(z) and B(z), aiming to address cosmological prob-
lems effectively [51–58]. However, as previously men-
tioned, some of these parameterizations suffer from a
lack of predictive capability concerning the future evo-
lution of the Universe, while others are valid only for
low redshift. In Ref. [65], the authors introduced a
parametrization of E(z) that includes two correction
terms associated with DE in the context of the ΛCDM
model. Their goal was to study the entire expansion
history of the Universe. Notably, they demonstrated

that this model aligns better with current observational
constraints when certain restrictions on model param-
eters are imposed. Despite these efforts, the search for
an appropriate functional form of E(z) that can adeptly
address cosmological challenges remains ongoing. Re-
searchers continue to explore novel parametrizations
that can account for the complexities of the Universe’s
expansion and offer a comprehensive understanding of
its dynamics.

In our study, the chosen dimensionless parametriza-
tion in Eq. (16) is favored for its flexibility in character-
izing the Hubble parameter’s behavior across various
redshifts. The choice of parametrization is motivated
by the need to understand the late-time cosmic accelera-
tion and the nature of DE without being tied to a specific
theoretical framework. The functions A(z) and B(z) are
chosen in a manner that allows the parametrization to
capture the behavior of the Hubble parameter at vari-
ous redshifts. By adjusting the value of the free param-
eters β, γ, and the functional forms of A(z) and B(z),
this parametrization can accommodate different cosmo-
logical models and allow for comparisons with obser-
vational data. To obtain the ΛCDM model using this
parametrization, we need to set the appropriate values
for β, γ, and A(z). The ΛCDM model is a specific case
of this parametrization, and the values are chosen as fol-
lows: β = ΩΛ, γ = 0, A(z) = Ωm0(1 + z)3. Based
on these considerations, in this current study, we intro-
duce a novel parametrization of the dimensionless Hub-
ble parameter. This parametrization includes correction
terms associated with DE in the context of the ΛCDM
model, and it can be expressed as A(z) = α(1 + z)3

and B(z) = z
1+z , where α = Ωm0 when γ = 0. Since

B(z = 0) = 0, it imposes an additional constraint on
the parameters of the model, reducing their number and
leading to the relationship α + β = 1.

Considering the specific choice of E(z) as given in Eq.
(16), Eqs. (10), (11), (12), and (14) can be expressed as

q(z) =
3α(1 + z)3 + (1 − α) γ

(1+z)[
α(1 + z)3 + (1 − α)

(
1 + γz

1+z

)]1/2 − 1, (17)

Ωm(z) =
Ωm0(1 + z)3

α(1 + z)3 + (1 − α)
(

1 + γz
1+z

) , (18)

Ωϕ(z) = 1 − Ωm0(1 + z)3

α(1 + z)3 + (1 − α)
(

1 + γz
1+z

) , (19)
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and

ωϕ(z) =
α (1 + z)2 (α (1 + z)− 1

)
+ (1 − α)

(
1 + γ(1+3z)

3(1+z)

)
[

α (1 + z)3 + (1 − α)
(

1 + γz
1+z

)]
− Ωm0(1 + z)3

.

(20)
To ensure comprehensiveness, by substituting Eq.

(16) into Eqs. (8) and (9), we have derived the expres-
sions for the potential ϕ(z) and V(ϕ) specific to this par-
ticular selection of E(z),

ϕ(z) =
∫ 3α (1 + z) + (1 − α) γ

(1+z)3 − 6Ωm0 (1 + z)

2
[

α (1 + z)3 + (1 − α)
(

1 + γz
1+z

)]


1
2

dz,

(21)
and

V(z)
3H2

0
= −

3α (1 + z)2 + (1 − α) γ
1+z

6
+[

α (1 + z)3 + (1 − α)

(
1 +

γz
1 + z

)]
− 1

2
Ωm0(1 + z)3.

(22)

In the next section, a statistical analysis was con-
ducted to constrain the parameters (H0, α, γ) of the
model. Using the best-fit values obtained for these pa-
rameters, the evolution of various relevant cosmological
parameters was thoroughly investigated.

III. ANALYSIS OF OBSERVATIONAL DATA AND
METHODOLOGY

Observational cosmology is characterized by the cru-
cial task of constructing optimal cosmological models.
To achieve this, it is essential to rigorously constrain the
model parameters, namely α, γ, and the present value of
the Hubble parameter H0, through meticulous analysis
of observational data. In this study, we use a diverse ar-
ray of observational datasets, which include CC, BAO,
and the latest Pantheon sample known as Pantheon+,
obtained from observations of SNe.

A. Hz dataset: CC

The CC method constitutes a valuable technique uti-
lized to determine the Hubble rate by studying the char-
acteristics of the most ancient and passively evolving
galaxies. These galaxies are meticulously chosen based
on a narrow redshift interval, enabling the application

of the differential aging method. The Hubble rate H(z)
defined within the FLRW metric, is given by the ex-
pression: H = − 1

1+z
dz
dt . The provided relationship en-

ables us to deduce the rate of the Universe’s expansion
at various time points. A significant advantage of the
CC method lies in its capability to measure the Hub-
ble parameter H(z) without being dependent on specific
cosmological assumptions. This feature makes the CC
method a valuable tool for testing and critically exam-
ining different cosmological models. Notably, Jimenez
and Loeb [66] introduced a procedure that directly ob-
tains Hubble parameter data by calculating the rate of
redshift change dz/dt, at a precise value of z. This di-
rect approach enhances the precision of the Hubble pa-
rameter measurements and contributes to a more robust
analysis of the Universe’s expansion history.

For this investigation, a meticulous compilation of a
comprehensive dataset comprising 31 data points has
been undertaken from a variety of reputable surveys
(readers may refer to Table 3 in [67]). These data points
are obtained using the CC method and encompass a
wide range of redshift values, spanning from 0.1 to 2.
The subsequent analysis employs the Markov Chain
Monte Carlo (MCMC) technique, incorporating the use
of the χ2 function to analyze cosmic chronometers. The
χ2 function is expressed as:

χ2
H(z)(H0, α, γ) =

31

∑
k=1

[
(Hth(zk, H0, α, γ)− Hobs(zk))

2)

σ2
H(zk)

]
.

(23)
Here, Hth represents the theoretical estimation of the

Hubble parameter for a specific model, characterized by
model parameters H0, α, and γ. Hobs denotes the ob-
served values of the Hubble parameter, and σH repre-
sents the associated error in the estimation.

B. BAO dataset

BAOs manifest as fluctuations in the density of bary-
onic matter throughout the Universe, originating from
acoustic density waves in the primordial plasma during
its early stages. These oscillations offer valuable insights
as they can be harnessed to extract significant cosmo-
logical parameters related to DE. In this study, we in-
clude the dataset from BAOs, which has been collected
from various surveys, including the 6dFGS, the SDSS,
and the LOWZ samples of the BOSS [68–73]. These sur-
veys have yielded exceptionally accurate measurements
of the positions of BAO peaks in galaxy clustering across
different redshifts. The characteristic scale of BAO, rep-
resented by the sound horizon rs at the epoch of photon
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decoupling with redshift zdec, is related through the fol-
lowing equation:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb,0/4Ωγ,0)a
, (24)

where Ωb,0 and Ωγ,0 represent the present density val-
ues of baryons and photons, respectively. The BAO
dataset used in this study comprises six data points for
the ratio dA(z∗)/DV(zBAO). These data points were ob-
tained from the sources cited in Refs. [68–73]. Here, z∗ ≈
1091 represents the redshift value for photon decou-
pling, and dA(z∗) = c

∫ z
0

dz′
H(z′) represents the comoving

angular diameter distance at decoupling. In addition,

we have the dilation scale DV(z) =
[
czd2

A(z)/H(z)
]1/3

.
The chi-square function, introduced in [73], is used to

evaluate the BAO dataset, and it can be expressed as

χ2
BAO = XTC−1

BAOX, (25)

where

X =



dA(z⋆)
DV(0.106) − 30.95

dA(z⋆)
DV(0.2) − 17.55
dA(z⋆)

DV(0.35) − 10.11
dA(z⋆)

DV(0.44) − 8.44
dA(z⋆)

DV(0.6) − 6.69
dA(z⋆)

DV(0.73) − 5.45


, (26)

and C−1
BAO represents the inverse of the covariance ma-

trix [73].

C. SNe dataset: Pantheon+

The Pantheon+ analysis goes beyond the original Pan-
theon analysis by incorporating an extended dataset of
SNe that includes those with measured Cepheid dis-
tances to galaxies. This comprehensive dataset consists
of 1701 light curves from 1550 SNe, covering a redshift
range of 0.001 ≤ z ≤ 2.2613, and has been collected from
a total of 18 distinct studies [74–77]. Among the 1701
light curves present in the dataset, 77 of them are linked
to galaxies that contain Cepheids. The Pantheon+ com-
pilation, in comparison to the original Pantheon compi-
lation by [78], brings substantial enhancements and im-
provements. Mainly, the Pantheon+ compilation show-
cases an enlarged sample size, with a notable increase
in the number of SNe at redshifts below 0.01. More-
over, substantial enhancements have been made to ad-
dress and mitigate systematic uncertainties related to

redshifts, intrinsic scatter models, photometric calibra-
tion, and peculiar velocities of SNe. It is essential to
note that, due to specific selection criteria, not all SNe
from the original Pantheon compilation are included in
the improved Pantheon+ compilation.

Pantheon+ presents an additional advantage by en-
abling the constraint of the Hubble constant (H0) along-
side model parameters. To obtain the best fits for the
free parameters, the optimization of the χ2 function is
necessary, as expressed below:

χ2
SNe = ∆µT(C−1

Sys+Stat)∆µ. (27)

In this context, CSys+Stat corresponds to the covari-
ance matrix of the Pantheon+ dataset, encompassing
both systematic and statistical uncertainties.

The term ∆µ signifies the distance residual and is de-
fined as follows:

∆µk = µk − µth(zk). (28)

Here, µkrepresents the distance modulus of the kth

SNe. It is crucial to note that µk is calculated as µk =
mBk − M, where mBk corresponds to the apparent mag-
nitude of the kth SNe and M denotes the fiducial magni-
tude of a SNe.

The theoretical distance modulus µth is calculated us-
ing the following expression:

µth(z, H0, α, γ) = 5 log10

(
dL(z, H0, α, γ)

1 Mpc

)
+ 25, (29)

where dL represents the luminosity distance in Mpc,
which is model-based and given by:

dL(z, H0, α, γ) =
c(1 + z)

H0

∫ z

0

dy
E(y)

, (30)

where c represents the speed of light. Furthermore, the
parameters M and H0 display degeneracy, particularly
in the analysis of SNe, but considering the recent SH0ES
results relaxes these constraints. As a result, the distance
residual can be expressed as:

∆µ̄ =

µk − µcd
k , if k is in Cepheid hosts

µk − µth(zk), otherwise
, (31)

where µcd
k represents the Cepheid host-galaxy distance

released by SH0ES. When calculating the covariance
matrix for the Cepheid host-galaxy, it can be com-
bined with the covariance matrix for SNe. The result-
ing combined covariance matrix, denoted as CSNe

Sys+Stat +

Ccd
Sys+Stat, ncorporates both statistical and systematic un-

certainties from the Pantheon+ dataset and Cepheid
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FIG. 1. Likelihood contour for Hz, Hz + BAO, and Hz +

BAO + SNe datasets with 1 − σ and 2 − σ confidence levels.

host-galaxy data. Thus, the χ2 function for the com-
bined covariance matrix used to constrain cosmological
models in the analysis is given by

χ2
SNe+ = ∆µ̄(CSNe

Sys+Stat + Ccd
Sys+Stat)

−1∆µ̄T . (32)

D. Joint Analysis

Finally, we explore various combinations of the afore-
mentioned observational datasets. The following com-
binations will be employed for our study:

Hz + BAO, (33)

Hz + BAO + SNe. (34)

The model parameters are constrained by minimiz-
ing their respective χ2 values, which are related to the

likelihood through L ∝ exp
(
− χ2

2

)
, using the Markov

Chain Monte Carlo (MCMC) sampling technique and
the emcee library. The obtained results are summarized
in Tab. I. Fig. 1 depicts the 1− σ and 2− σ contour plots
for Hz, Hz + BAO, and Hz + BAO + SNe, respectively.

IV. RESULTS FROM DATA ANALYSIS

In the preceding section, we analyzed the observa-
tional constraints on the parameters H0, α, and γ. Now,

let us explore the evolution of the cosmological param-
eters based on these constraints. In our analysis, we
specifically concentrate on three datasets: Hz, Hz +
BAO, and Hz + BAO + SNe. Using the best-fit values
of H0, α, and γ (Tab. I), we reconstruct the decelera-
tion parameter q(z), and the results are presented in Fig.
2. The plot clearly shows that q(z) indicates past de-
celeration (q > 0) and recent acceleration (q < 0) of the
Universe. This is crucial for understanding the structure
formation of the Universe. The present values of q(z)
are found to be q0 = −0.57+0.46

−0.46, q0 = −0.50+0.36
−0.35, and

q0 = −0.53+0.29
−0.29 for Hz, Hz + BAO, and Hz + BAO +

SNe datasets, respectively. In addition, the best-fit val-
ues for the transition redshift (ztr) are determined as
ztr = 0.59+0.4

−0.4, ztr = 0.65+0.08
−0.06, and ztr = 0.65+0.09

−0.08 for Hz,
Hz+ BAO, and Hz+ BAO+ SNe datasets, respectively.
These results are consistent with previous findings by
various researchers using different approaches [80–83].
In Fig. 2, we also compare the reconstructed plots of
q(z) for our model and the standard ΛCDM model. The
plot demonstrates that our model’s evolution of q(z) is
consistently compatible with the ΛCDM model across
different datasets. Furthermore, it is evident that the
best-fit values of q0 and ztr align well with the predic-
tions of the standard ΛCDM model. However, as z ap-
proaches −1, we observe a slight deviation in the evolu-
tion of q(z) from the ΛCDM model, particularly for both
Hz and Hz + BAO datasets. The observed behavior of
q(z) could potentially be attributed to the choice of the
function B(z) in Eq. (16). As previously mentioned, the
term B(z) represents a correction to the ΛCDM model
and plays a significant role in shaping the future evolu-
tion of the Universe.

Hz

Hz+BAO

Hz+BAO+SNe

ΛCDM

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

z

q
(z
)

FIG. 2. This figure shows the evolution the deceleration pa-
rameter q(z) against z for constrained values from Hz, Hz +
BAO, and Hz + BAO + SNe datasets. In additon, we include
a comparison to the ΛCDM model using the parameter values
from Planck observations [79].
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TABLE I. Summary of MCMC analysis results for parameters H0, α, and γ.

Dataset H0 α = Ωm0 γ

Hz 67.8 ± 1.8 0.33 ± 0.11 −0.2 ± 1.8
Hz + BAO 67.9+1.8

−1.7 0.310+0.042
−0.038 0.10+0.94

−0.90
Hz + BAO + SNe 68.0+1.6

−1.5 0.309+0.041
−0.038 0.01+0.70

−0.71

Figs. 3 and 4 illustrate the evolution of the den-
sity parameters for matter and the scalar field, respec-
tively. These plots provide important information on
the composition of the Universe. Initially, the Universe
is predominantly dominated by non-relativistic matter,
including dark matter and baryonic matter, while the
contribution from the scalar field density parameter re-
mains negligible. As the Universe expands, the density
parameter for matter gradually decreases due to the ex-
pansion of the Universe. However, with the passage of
time, the scalar field’s density parameter becomes in-
creasingly significant, eventually surpassing the contri-
bution from matter. This shift in dominance leads to
the acceleration of the Universe’s expansion, marking
a crucial transition in cosmic evolution. In addition,
the present-day density parameters are found as Ωm0 =
0.33 ± 0.11, Ωm0 = 0.310+0.042

−0.038, and Ωm0 = 0.309+0.041
−0.038

for the Hz, Hz + BAO, and Hz + BAO + SNe datasets,
respectively. In ΛCDM model, Ωm0 = 0.315± 0.007 [84–
87]. It is clearly seen that these values of our model are
consistent with those of ΛCDM.

Hz

Hz+BAO

Hz+BAO+SNe

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

z

Ω
m
(z
)

FIG. 3. This figure shows the evolution of the density parame-
ter for matter Ωm(z) against z for constrained values from Hz,
Hz + BAO, and Hz + BAO + SNe datasets.

Fig. 5 displays the evolution of the EoS parameter
of the scalar field ωϕ, which provides crucial insights
into the various epochs of accelerated and decelerated
expansion of the Universe, as discussed previously. It
is clear that the Universe has experienced a transition

Hz

Hz+BAO

Hz+BAO+SNe

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

z
Ω

ϕ
(z
)

FIG. 4. This figure shows the evolution of the density parame-
ter for scalar field Ωϕ(z) against z for constrained values from
Hz, Hz + BAO, and Hz + BAO + SNe datasets.

from quintessence to phantom, and the present EoS of
the scalar field lies in the quintessence region (ωϕ > −1)
for Hz + BAO and Hz + BAO + SNe datasets, while
in the phantom region (ωϕ < −1) for the Hz dataset.
At early epochs, the effect of the function B(z) on the
EoS parameter is not very significant, but its impact be-
comes apparent in the future evolution of the Universe.
Further, the present values of ωϕ(z) are found to be
ω0 = −1.07+0.68

−0.68, ω0 = −0.97+0.32
−0.30, and ω0 = −0.99+0.23

−0.23
for Hz, Hz + BAO, and Hz + BAO + SNe datasets, re-
spectively [88, 89].

V. FINAL REMARKS AND PERSPECTIVES

In the present work, we have conducted an in-depth
investigation of the dynamics of the accelerating sce-
nario within the framework of scalar field DE models.
Our approach is based on a novel and comprehensive
parametrization of the dimensionless Hubble parame-
ter i.e. E2(z) = A(z) + β(1 + γB(z)). The functions
A(z) and B(z) in our parametrization have been care-
fully selected to ensure a comprehensive representation
of the Hubble parameter over a wide range of redshifts,
thereby enhancing the accuracy of our analysis. By em-
ploying the chosen parameterization, we derived an-
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FIG. 5. This figure shows the evolution of the EoS parameter
for scalar field ωϕ(z) against z for constrained values from Hz,
Hz + BAO, and Hz + BAO + SNe datasets.

alytical solutions for various cosmological parameters,
including the deceleration parameter, density parame-
ter, and EoS parameter.

To validate our results, we utilized observational data
from diverse sources, such as CC, BAO, and the Pan-
theon+ datasets. Employing the MCMC methodology,
the best-fit values of the model parameters (H0, α, γ),
along with the corresponding 1-σ and 2-σ confidence re-
gions, have been determined and are presented in Tab.
I and Fig. 1, respectively. The deceleration parameter
q(z) was examined in Fig. 2 for various redshift val-
ues, indicating the transition between decelerated and
accelerated phases of the Universe. The analysis of the
deceleration parameter reveals that the present values
are found to be q0 = −0.57+0.46

−0.46, q0 = −0.50+0.36
−0.35, and

q0 = −0.53+0.29
−0.29 for Hz, Hz + BAO, and Hz + BAO +

SNe datasets, respectively. Furthermore, the best-fit val-
ues for the transition redshift (ztr) are determined as
ztr = 0.59+0.4

−0.4, ztr = 0.65+0.08
−0.06, and ztr = 0.65+0.09

−0.08 for
Hz, Hz + BAO, and Hz + BAO + SNe datasets, respec-
tively. In comparing the Hubble constant values ob-
tained for our model with those of the ΛCDM model, a
noteworthy consistency emerges. Our model’s Hubble
constant values, derived from the Hz, Hz + BAO, and
Hz + BAO + SNe datasets, are remarkably close, with
central values of 67.8, 67.9, and 68.0, respectively. On the
other hand, the ΛCDM model, as determined by Planck
measurements [79], yields a Hubble constant value of
H0 = 67.4 ± 0.5. The comparison demonstrated the
effectiveness of our parametrization in describing the
late-time cosmic acceleration and its compatibility with
the ΛCDM model at different redshifts. We reached a
similar conclusion using the current values of the den-
sity parameters of our model and the ΛCDM model.

We have determined the present-day density parame-
ters as follows: Ωm0 = 0.33 ± 0.11, Ωm0 = 0.310+0.042

−0.038,
and Ωm0 = 0.309+0.041

−0.038 for the Hz, Hz + BAO, and
Hz + BAO + SNe datasets, respectively. These values
are remarkably close to the corresponding ΛCDM’s den-
sity parameter, which is Ωm0 = 0.315 ± 0.007. This
convergence with the ΛCDM model indicates a strong
agreement with the observed data and underscores the
robustness of our findings.

Furthermore, we analyzed the density parameter in
Figs. 3 and 4, which provided valuable information
about the relative contributions of different components
to the total energy density of the Universe. This en-
abled us to understand the dominant energy compo-
nents during different epochs of the Universe’s evo-
lution. In addition, the EoS parameter for the scalar
field was studied (Fig. 5), which is a critical quantity
characterizing the nature of DE. Our results shed light
on whether the DE behaves as quintessence (with EoS
greater than -1) or phantom (with EoS less than -1), in-
dicating whether the Universe’s expansion is driven by
an evolving scalar field or a cosmological constant, re-
spectively. The present values of EoS are found to be
ω0 = −1.07+0.68

−0.68, ω0 = −0.97+0.32
−0.30, and ω0 = −0.99+0.23

−0.23
for Hz, Hz + BAO, and Hz + BAO + SNe datasets, re-
spectively.

In conclusion, the model we consider appears to be
compatible with ΛCDM in terms of the evolution and
present values of dynamic and kinematic quantities
such as the deceleration parameter and density param-
eters. Therefore, our model is able to explain the ex-
pansion evolution of the universe in a manner consis-
tent with observations, without facing the problems that
the ΛCDM model currently faces, and moreover, as we
have already mentioned above, it offers the opportu-
nity to analyze in a wider redshift range due to the
existence of the function B(z) seen in the parametriza-
tion (16), which can be considered as a correction to
the ΛCDM, and thus providing predictions about fu-
ture evolution can be considered as the advantages of
our model over the ΛCDM model. Our parametrization
of the dimensionless Hubble parameter offers a versa-
tile approach to exploring scalar field DE models [81].
The flexibility in choosing the functions A(z) and B(z)
allows for addressing various concerns and scenarios
within the standard model. In future research, it is valu-
able to compare our parametrization with alternative
models, such as the linear model (B(z) = z), the si-
nusoidal model (B(z) = sin(z)), and the logarithmic
model (B(z) = log(z + 1)), to assess their respective
strengths and weaknesses. These comparative analyses
can significantly enrich our understanding of DE and its
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role in the late-time Universe evolution. Moreover, ex-
ploring additional parametrization forms beyond these
alternatives offers promising opportunities for achiev-
ing a more adaptable approach to modeling cosmic ex-
pansion. Furthermore, expanding our analysis to incor-
porate additional observational datasets and integrat-
ing other cosmological probes, such as the CMB radi-
ation data from the Planck mission [90], has the poten-
tial to yield even more comprehensive and robust con-
straints on the model parameters. This extended ap-

proach would enhance the reliability and depth of our
research findings.
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