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In this paper, we propose a new parametrization of dark energy based on the Om(z) diagnostic tool
behavior. For this purpose, we investigate a functional form of the Om(z) that predicts the popular
dark energy dynamical models, namely phantom and quintessence. We also found the famous cos-
mological constant for specified values of the model’s parameters. We employed the Markov Chain
Monte Carlo approach to constrain the cosmological model using Hubble, Pantheon samples, and
BAO datasets. Finally, we used observational constraints to investigate the characteristics of dark
energy evolution and compare our findings to cosmological predictions.

I. INTRODUCTION

The General Theory of Relativity (GR) by Albert Ein-
stein is a magnificent achievement that has been vali-
dated by many years of experimental testing [1]. De-
spite the efficacy of GR in characterizing the Universe
and the solar system, it is widely agreed that GR, along
with the cosmological constant (Λ), is just an exception-
ally excellent estimate valid within the current range
of experimental observations. Lately, Modified Grav-
ity Theories (MGT) have received a lot of attention in
the hopes of finding observationally compatible alter-
natives to GR. This is owing to new observational find-
ings such as Type Ia supernovae (SNeIa) [2, 3], Baryon
Acoustic Oscillations (BAO) [4, 5], Cosmic Microwave
Background (CMB) [6, 7], Large Scale Structure (LSS)
[8, 9], and the Planck collaborations [10], indicating the
existence of two unexplained components that may in-
fluence the evolution of the Universe. In this regard,
measurements have resulted in the addition of new ex-
otic fluids such as Dark Energy (DE) of large negative
pressure, which leads to the accelerated expansion of the
Universe, and dark matter, which is the cause of the for-
mation of galaxies clusters, inside the standard model
of cosmology. On the other hand, the unclear nature of
these constituents can also be regarded as the possibil-
ity of GR collapse on an enormous scale. The ΛCDM
(Lambda Cold Dark Matter) model is probably the most
simple cosmological model that includes these two dark
constituents. A cosmological constant is added to the
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standard Einstein-Hilbert action in this scenario with
the Equation of State (EoS) ωΛ = −1. So, if one assigns
the cosmological constant to vacuum energy, it suffers
from a ”fine-tuning” problem, which relates to the dif-
ference between the observed and theoretically expected
values of the Λ [11, 12]. This issue has fueled impulses to
look for alternate DE models outside the ΛCDM model.

There are two major ways to work with such issues:
one involves different components inside the GR action
and then studies the possible impacts that may develop,
such as scalar fields, vector fields, or other matter field
types [13–18]. In addition, altering the background the-
ory and analyzing subsequent equations of motion is
another option for discovering novel characteristics that
may not be consistent with astronomical data, such as
f (R) gravity, f (T) gravity, and f (Q) gravity [19–33]. Re-
cently, several studies have been done in different mod-
ified theories of gravity in different aspects [34–39].

However, several studies have attempted to in-
vestigate the evolution of the Universe without re-
lying on any certain cosmological model. Such
approaches are sometimes referred to as model-
independent ways study of cosmological models or cos-
mological parametrization [40, 41]. To find the exact so-
lutions of Einstein field equations, this approach is gen-
erally based on the assumption of parametrization of ge-
ometrical parameters (such as the Hubble parameter H,
deceleration parameter q, jerk parameter j, and so on)
or physical parameters (such as the energy density ρ,
pressure p, EoS parameter ω, and so on). The approach
has no effect on the background theory and clearly pro-
vides solutions to the Einstein field equations. It also has
the benefit of reconstructing the cosmic evolution of the
Universe and explaining some of its features. Further-
more, this approach gives the easiest way to theoreti-
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cally overcome several of the standard model’s issues,
including the initial singularity problem, the cosmologi-
cal constant problem, and the late-time acceleration sce-
nario. In the literature, there are numerous ways of DE
parameterization, such as: see [42–45] for the Hubble
parameter, see [46–51] for the deceleration parameter,
see [52–54] for the jerk parameter, and see [55–62] for the
EoS parameter. Ref. [63] summarizes a large number of
different parameterization methods.

Following the approach, Sahni et al. [64] introduced
a successful diagnostic called Om(z), which is respon-
sive to the EoS of DE and so offers a null test of the
ΛCDM model and has been intensively researched in
numerous publications [65–67]. When the value of this
diagnostic tool remains constant for all redshift val-
ues, DE takes the form of a Λ, but varying Om(z) cor-
responds to various dynamical DE scenarios. How-
ever, the slope of Om(z) can differentiate between two
types of DE models: a positive slope suggests phan-
tom phase (ωDE < −1), whereas a negative slope shows
quintessence (ωDE > −1) [64]. Several previous studies
have used reconstructed Om(z) with the combination
of Gaussian processes and observations such as Hub-
ble datasets, SNeIa datasets, and BAO datasets to un-
dertake compatibility tests of the ΛCDM model [68, 69].
So, it is important to employ some parametrization to
analyze the Om(z) diagnostic in a cosmological model-
independent context. This method has both benefits and
drawbacks. One advantage is that it is not affected by
the Universe’s matter and energy content. One short-
coming of this formulation is that it does not describe
the source of the accelerated expansion [70].

In this paper, we investigate a new parametrization
of the Om(z) diagnostic and discuss the cosmic evo-
lution in the framework of GR. The Om(z) diagnos-
tic functional form is constructed such that it predicts
the popular DE dynamical models, namely phantom
and quintessence. The behavior of the Om(z) diagnos-
tic is determined by the model parameters that were
constrained by the observational data. Here, we con-
sider 31 data points of the Hubble expansion obser-
vations performed using the differential age approach
[73] and BAO data that include six points [74]. Scol-
nic et al. [75] published recently Pantheon, a huge SNe
Ia datasets with 1048 points across the redshift range
0.01 < z < 2.26. The Hubble, Pantheon samples,
and BAO datasets with the Markov Chain Monte Carlo
(MCMC) approach are used in our study to constrain
the cosmological model.

The following is how this work is organized: In
Sec. II, we describe briefly the newly suggested Om(z)
diagnostic parametrization, then apply it to a homo-

geneous and isotropic Universe in the framework of
GR theory. In Sec. III, we use the MCMC ap-
proach to constrain the model parameters using Hub-
ble datasets, Pantheon datasets, BAO datasets, and com-
binations such as Hubble+Pantheon datasets and Hub-
ble+Pantheon+BAO datasets. Sec. IV starts with a re-
view of observational constraints and a discussion of
findings. Lastly, Sec. V concludes with some final re-
marks.

II. COSMOLOGICAL MODEL

In this section, we present the essential cosmologi-
cal scenario equations for our model. The Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) model is the funda-
mental mathematical framework of cosmology, describ-
ing a homogeneous and isotropic Universe in which ev-
erything is the same in all directions and at all points.
The metric for a spatially flat Universe is expressed as,

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdϕ2)], (1)

where, r, θ, and ϕ are the spatial coordinates, t is the
time coordinate, and a(t) is the scale factor that repre-
sents the expansion of the Universe. For the purpose of
simplicity, we have fixed the scale factor to 1 currently.
However, it is important to note that the scale factor it-
self is not observable. What is observable is the ratio of
the scale factor at any given time to its value at some ref-
erence time, often taken to be the present time. For con-
venience, we have chosen to set the value of the scale
factor at the present time a0 to 1. This choice is equiv-
alent to referring to the ratio of the scale factor at any
given time to its value at the present time a/a0.

In addition, the energy-momentum tensor of a perfect
fluid (with no viscosity) defines the fluid’s energy den-
sity and pressure. It is presented by

Tµν =
(

p + ρ
)

uµuν − pgµν, (2)

where ρ is the energy density, p is the isotropic pressure
of the Universe, uµ is the fluid’s 4-velocity, and gµν is the
metric tensor. The indices µ and ν vary between 0 and 3.
If the fluid is at repose uµ =

{
1,
−→
0
}

, then T00 = ρ and
Tij = −pgij.

The Einstein field equations for GR are given by

Rµν −
1
2

gµν R = κTµν, (3)

where κ = 8πG = 1, Rµν is the Ricci curvature tensor,
and R is the scalar curvature.
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Using Eqs. (1)-(3), the Einstein field equations for a
spatially flat FLRW Universe can be expressed as,

3H2 = ρ (4)

2Ḣ + 3H2 = −p (5)

where H = ȧ
a is the Hubble parameter which is a mea-

sure of the Universe’s current rate of expansion, and a
dot denotes differentiation with respect to cosmic time
t. In the previous equation, ρ and p indicate the energy
density and pressure of the Universe, respectively. Also,
Eqs. (4) and (5) are known as Friedmann equations. The
first Friedmann equation connects the Universe’s expan-
sion rate (H) to its energy density, and the second Fried-
mann equation connects the acceleration of the expan-
sion rate to the pressure.

Now, to characterize the cosmic history and the possi-
ble transition to an accelerated period, we use the total
equation of state (EoS) parameter ω, given as,

ω =
p
ρ

(6)

Using Eqs. (4) and (5), the EoS parameter is expressed
as,

ω = −2Ḣ + 3H2

3H2 = −1 − 2Ḣ
3H2 (7)

The Om(z) diagnostic, an intriguing null test of DE,
was proposed in [64]. The beauty of this concept comes
in its theoretical structure, which is formed from the
Hubble parameter H(z), a quantity that can be esti-
mated from observations of various astronomical phe-
nomena, such as SNeIa and BAO. This approach distin-
guishes between the cosmological constant and dynam-
ical models of DE. If the value of Om(z) remains con-
stant at any redshift, DE takes the form of a cosmological
constant, but varying Om(z) corresponds to various dy-
namical DE scenarios. Nevertheless, the slope of Om(z)
can differentiate between two sorts of DE models: a
positive slope suggests phantom phase (ωDE < −1),
whereas a negative slope shows quintessence (ωDE >
−1). Several previous research has undertaken con-
sistency checks of the ΛCDM model utilizing recon-
structed Om(z) based on the preceding conclusions
[68, 69, 71, 72]. Motivated by the physical evidence of
the Om(z) slope and the above discussion, we propose
a parametrization of Om(z) written in terms of redshift
z as,

Om (z) = α (1 + z)n (8)

Here, α and n are the two parameters of the model.
The above formula clearly shows that ΛCDM is entirely

recovered when α = Ω0
m and n = 0. The behavior of

Om (z) can be divided into three periods based on the
value of parameter n: quintessence (negative slope) for
n < 0, phantom (positive slope) for n > 0, and lastly the
cosmological constant (constant slope) for n = 0 (please
see Tab. I). Also, one of the advantages of the Om(z)
parametrization is that it exhibits a finite value at z = 0
(present). The introduction of the parameter n in the
above parametrization provides a novel cosmological-
model-independent method of discriminating between
a greater range of cosmological solutions with varying
EoS (ωDE < −1, ωDE > −1 and ωDE = −1).

n Om(z) slope ωDE Model
n = 0 Constant ωDE = −1 Flat ΛCDM
n < 0 Negative ωDE > −1 Quintessence
n > 0 Positive ωDE < −1 Phantom

TABLE I. Aspects of the Om(z) diagnostic with relation to the
value of n.

The dimensionless Hubble parameter can be ex-
pressed in terms of the Om(z) diagnostic as,

E2 (z) = Om (z)
[
(1 + z)3 − 1

]
+ 1, (9)

where E (z) = H(z)
H0

, and H0 is the present value of the
Hubble parameter.

Now, by using Eqs. (8) and (9) we have,

E2 (z) = α
[
(1 + z)3 − 1

]
(1 + z)n + 1. (10)

The redshift z is connected to the scale factor a (t) by
a (t) = (1 + z)−1. Since z is connected to the scale factor
a (t), it is necessary to quantify cosmological parame-
ters such as the energy density, pressure, EoS in terms of
z to investigate the history of the Universe in more de-
tail. Thus, the derivative of the Hubble parameter with
respect to cosmic time is expressed as,

.
H =

dH
dt

= − (1 + z) H (z)
dH (z)

dz
. (11)

From (9), Eq. (11) becomes,

.
H = −

αH2
0

2
[
3 + (3 + n)z(3 + z (3 + z))

]
(1 + z)n. (12)

Using Eqs. (4), (5), (10) and (11), the energy density ρ

and pressure p can be expressed in terms of redshift as,

ρ (z) = 3H2
0

{
α
[
(1 + z)3 − 1

]
(1 + z)n + 1

}
, (13)
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and

p (z) = H2
0

{
−3 + α

[
3 + nz

(
3 + z (3 + z)

)]
(1 + z)n

}
.

(14)
The EoS parameter in terms of redshift z for the phys-

ical model is derived as,

ω (z) =
−3 + α

[
3 + nz

(
3 + z (3 + z)

)]
(1 + z)n

3 + 3α
[
(1 + z)3 − 1

]
(1 + z)n . (15)

Moreover, the deceleration parameter q, a significant
cosmological quantity, is written as,

q = −1 −
.

H
H2 =

1
2
(1 + 3ω) , (16)

can be derived from Eq. (15) as,

q (z) = −1+
α

[(
3 + (3 + n) z

(
3 + z (3 + z)

))]
(1 + z)n

2 + 2α
[
3 + z (3 + z)

]
z (1 + z)n .

(17)
In next section, the possibility of a transition of the

Universe’s expansion from a decelerated to an accel-
erated state is examined. Also, Eq. (17) shows that
the q (z) is highly dependent on the values of the
model parameters, especially α and n. In general, one
can arbitrarily choose these parameters and investigate
the behavior of q(z) to compare them to observational
datasets. However, in this study, we first constrain the
model parameters α and n using multiple observational
datasets such as the Hubble, Pantheon, and BAO, and
then we use the best-fit values to solve the problem.

III. OBSERVATIONAL DATA

This section discusses the observational datasets and
the statistical analysis approach which will be employed
to constrain the different parameters of the model that
were previously mentioned, followed by a discussion of
the results produced from this study. In our work, we
employed current observational datasets from Hubble,
Pantheon Type Ia supernovae (SNe Ia) samples include
a number of SNe Ia data points, and baryon acoustic os-
cillation (BAO) observations. To evaluate the datasets,
we employ Bayesian statistical analysis and the emcee
package in Python language to perform a Markov chain
Monte Carlo (MCMC) simulation [76].

To begin, we will look at the priors on parameters,
which are shown in Tab. IV. In addition, to find out the
findings of our MCMC study, we employed 100 walkers

and 1000 steps for all datasets. The next subsections go
into further depth on the datasets and statistical analy-
ses.

A. Hubble datasets

The well-known cosmological principle assumes that
our Universe is homogenous and isotropic on a large
scale. This is the fundamental concept of contemporary
cosmology and is the basis of the aforementioned FLRW
metric. This idea has been tested multiple times in the
previous several decades and is validated by numerous
cosmological observations. In the investigation of ob-
servational cosmology, the Hubble parameter, H =

.
a
a ,

is used to directly analyze the Universe’s expansion sce-
nario, where

.
a denotes the derivative of the cosmic scale

factor a with respect to cosmic time t. As a function of
redshift, the Hubble parameter H(z) can be represented
as,

H(z) = − 1
1 + z

dz
dt

. (18)

Here, dz is obtained from spectroscopic surveys, and
hence dt provides the model-independent value of the
Hubble parameter. In principle, there really are two
well-known techniques for determining the value of the
Hubble parameter values H(z) at a given redshift z.
The first is H(z) extraction from line-of-sight BAO data,
while the second is the differential age (DA) approach.
In this paper, we have taken 31 points from the DA ap-
proach in the redshift range reported as 0.07 < z < 2.42
[73] and tabulated in Tab. II with references.

Further, we used the chi-square function to obtain the
best-fit values of the model parameters α, n, and H0
(which is equal to the maximum likelihood analysis),

χ2
Hubble =

31

∑
i=1

[Hth
i (α, n, H0, zi)− Hobs

i (zi)]
2

σ2
Hubble(zi)

, (19)

where Hth
i is the theoretical value of the Hubble param-

eter, Hobs
i denotes the observed value, and σ2

Hubble de-
notes the standard error in the observed value of H (z).
By using the aforementioned datasets, we computed the
best-fit values of the model parameters, α, n and H0 as
shown in Fig. 1 with the 1− σ and 2− σ confidence level
(CL) contour, and the numerical findings for the Hub-
ble are shown in Tab. IV. In addition, we have given
the error bar plot for the mentioned Hubble datasets
in Fig. 2 along with our resulting model compared to
the ΛCDM model (with Ω0

m = 0.3, Ω0
Λ = 0.7 and

H0 = 69 km.s−1.Mpc−1) [10]. The graph illustrates that
our model fits the observational Hubble datasets well.
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z H(z) σH Ref. z H(z) σH Ref.

0.070 69 19.6 [77] 0.4783 80 99 [81]
0.90 69 12 [78] 0.480 97 62 [77]
0.120 68.6 26.2 [77] 0.593 104 13 [79]
0.170 83 8 [78] 0.6797 92 8 [79]

0.1791 75 4 [79] 0.7812 105 12 [79]
0.1993 75 5 [79] 0.8754 125 17 [79]
0.200 72.9 29.6 [80] 0.880 90 40 [77]
0.270 77 14 [78] 0.900 117 23 [78]
0.280 88.8 36.6 [80] 1.037 154 20 [79]

0.3519 83 14 [79] 1.300 168 17 [78]
0.3802 83 13.5 [81] 1.363 160 33.6 [83]
0.400 95 17 [78] 1.430 177 18 [78]

0.4004 77 10.2 [81] 1.530 140 14 [78]
0.4247 87.1 11.2 [81] 1.750 202 40 [78]
0.4497 92.8 12.9 [81] 1.965 186.5 50.4 [83]
0.470 89 34 [82]

TABLE II. Hubble datasets with 31 data points.

66 68 70
H0

0.6

0.4

0.2

0.0

0.2

n

0.2

0.3

0.4

0.5

0.6

H0 = 67.8+1.7
1.7

0.2 0.3 0.4 0.5 0.6

= 0.38+0.12
0.12

0.5 0.0
n

n = 0.25+0.28
0.25

Hubble datasets

FIG. 1. The confidence curves at 1− σ and 2− σ and posterior distributions for the model parameters using Hubble datasets. The
dark pink shaded areas represent the 1 − σ confidence level (CL), while the light pink shaded areas represent the 2 − σ CL. The
parameter constraint values are also presented at the 1 − σ CL.
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0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

H(
z)

Om(z) model
CDM

From Hubble datasets

FIG. 2. The variation of H(z) vs. z. The blue dots represent error bars, the red line represents our model’s curve, and the black
dashed line represents the ΛCDM model.

B. Pantheon datasets

Observational research on SNe from the golden sam-
ple of 50 points of Type Ia revealed that our Universe
is expanding at a faster rate. As a result, investiga-
tions on larger and larger samples of SNe datasets have
risen during the last 2 decades. The most recent sam-
ple of SNe Ia datasets, consisting of 1048 data points,
was just released. In this work, we used the Pantheon
datasets [83], which contain 1048 samples of spectro-
scopically validated SNe Ia spanning the redshift range
0.01 < z < 2.26 [75], which combines the SNe Legacy
Survey (SNLS), the Sloan Digital Sky Survey (SDSS), the
Hubble Space Telescope (HST) survey, the Panoramic
Survey Telescope, and the Rapid Response System (Pan-
STARRS1). These data points provide an estimate of the
distance modulus µobs

i in the redshift range 0 < zi ≤
1.41. In this paper, we compare the theoretical value µth

with the measured value µobs
i of the distance modulus to

estimate our model parameters of the produced model.
The theoretical distance modulus µth is defined as fol-

lows:

µth = µth (DL) = m − M = 5 log (DL) , (20)

where m and M indicates apparent and absolute magni-

tudes of a standard candle respectively.
The luminosity distance DL(z) given by,

DL(z) = c(1 + z)
∫ z

0

dz
′

H(z′)
(21)

Thus, the chi-square function for the Pantheon
datasets is defined as,

χ2
Pan =

1048

∑
i,j=1

∆µi

(
C−1

Pan

)
ij

∆µj. (22)

Here CPan is the covariance matrix [75], and ∆µi =
µth(zi, α, n, H0) − µobs

i is the difference between the ob-
served distance modulus value obtained from cosmic
data and its theoretical values created from the model
using the parameter space α, n, and H0. By minimizing
χ2

Hubble + χ2
Pan, the constraints of the model parameters,

α, n and H0 from the combination Hubble+Pantheon
datasets are shown in Fig. 4 and numerical findings
presented in Tab. IV. In addition, we have given the
error bar plot for the mentioned Pantheon datasets in
Fig. 3 along with our resulting model compared to the
ΛCDM model (with Ω0

m = 0.3, Ω0
Λ = 0.7 and H0 = 69

km.s−1.Mpc−1). The graph illustrates that our model fits
the observational Pantheon datasets well.
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0.0 0.5 1.0 1.5 2.0 2.5
z

32

34

36

38

40

42

44

46

(z
)

Om(z) model
CDM

From Pantheon datasets

FIG. 3. The confidence curves at 1 − σ and 2 − σ and posterior distributions for the model parameters using Pantheon datasets.
The dark pink shaded areas represent the 1 − σ confidence level (CL), while the light pink shaded areas represent the 2 − σ CL.
The parameter constraint values are also presented at the 1 − σ CL.

66 68 70
H0

0.4

0.2

0.0

0.2

n

0.3

0.4

0.5

H0 = 67.8+1.5
1.4

0.3 0.4 0.5

= 0.356+0.10
0.091

0.5 0.0
n

n = 0.20+0.24
0.21

Hubble+Pantheon datasets

FIG. 4. The confidence curves at 1 − σ and 2 − σ and posterior distributions for the model parameters using Hubble+Pantheon
datasets. The dark pink shaded areas represent the 1 − σ confidence level (CL), while the light pink shaded areas represent the
2 − σ CL. The parameter constraint values are also presented at the 1 − σ CL.
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C. Baryon Acoustic Oscillations (BAO) datasets

BAO are fluctuations in the density of the observable
baryonic matter of the Universe induced by acous-
tic density waves in the early Universe’s primordial
plasma. As shown in Tab. III, the BAO distance
datasets, which include the 6dFGS, SDSS, and WiggleZ
surveys, contain BAO values at six unique redshifts.
Also, the characteristic scale of BAO is governed by the
sound horizon rs at the epoch of photon decoupling z∗,
which is determined by the following relation:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb0/4Ωγ0)a
, (23)

where, Ωb0 and Ωγ0 are the current density of baryons
and photons, respectively.

The BAO sound horizon scale is used to calculate the
angular diameter distance dA and the Hubble expansion
rate H (z) as a function of redshift z. If the observed an-
gular separation value of the BAO feature is represented
by △θ in the two-point correlation function of the galaxy
distribution on the sky, and the observed redshift sepa-
ration value of the BAO feature is represented by ∆z in
the same two-point correlation function along the line of
sight, we have the relation,

△θ =
rs

dA(z)
, (24)

where

dA(z) = c
∫ z

0

dz
′

H(z′)
, (25)

and

△z = H(z)rs. (26)

In this study, we employed BAO datasets of 6 points
for dA(z∗)/DV(zBAO), which collected from the Refs.
[74, 84–88] and presented in Tab. III, where z∗ ≈
1091 is the redshift at the epoch of photon decou-
pling and dA(z) is the co-moving angular diameter
distance combined with the dilation scale DV(z) =[

dA(z)2cz/H(z)
]1/3

. In addition, it must be noted that
the sound horizon and the redshift of decoupling de-
pend on the baryon and radiation densities, which are
not explicitly included in our parametrization. How-
ever, we assume that fixing the redshift of decoupling at
z∗ ≈ 1091 is a reasonable model-independent approxi-
mation, as it is consistent with previous measurements
and theoretical expectations.

The chi-square function for the BAO datasets is de-
fined as,

χ2
BAO = XTC−1

BAOX, (27)

where

X =



dA(z⋆)
DV(0.106) − 30.95

dA(z⋆)
DV(0.2) − 17.55
dA(z⋆)

DV(0.35) − 10.11
dA(z⋆)

DV(0.44) − 8.44
dA(z⋆)

DV(0.6) − 6.69
dA(z⋆)

DV(0.73) − 5.45


,

and the inverse covariance matrix C−1
BAO is represented in [88] as,

C−1
BAO =



0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738
−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751
−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574
−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437
−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441
−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022


.
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zBAO 0.106 0.2 0.35 0.44 0.6 0.73
dA(z∗)

DV (zBAO)
30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

TABLE III. Values of dA(z∗)/DV(zBAO) for distinct values of zBAO.

By minimizing χ2
Hubble + χ2

Pan + χ2
BAO, the constraints

from the combination Hubble+Pantheon+BAO datasets
are shown in Fig. 5 and numerical findings presented in
Tab. IV.

67 68 69 70
H0

0.1

0.0

0.1

n

0.20

0.25

0.30

0.35

H0 = 68.4+1.3
1.3

0.25 0.30 0.35

= 0.281+0.050
0.046

0.1 0.0 0.1
n

n = 0.010+0.10
0.094

Hubble+Pantheon+BAO datasets

FIG. 5. The confidence curves at 1 − σ and 2 − σ and posterior distributions for the model parameters using Hub-
ble+Pantheon+BAO datasets. The dark pink shaded areas represent the 1 − σ confidence level (CL), while the light pink shaded
areas represent the 2 − σ CL. The parameter constraint values are also presented at the 1 − σ CL.

datasets H0 (km/s/Mpc) α n ω0 q0 ztr

Priors (60, 80) (0, 1) (−10, 10) − − −
Hubble 67.8+1.7

−1.7 0.38+0.12
−0.12 −0.25+0.28

−0.25 −0.62+0.12
−0.12 −0.43+0.18

−0.18 0.710 ± 0.18
Hubble + Pantheon 67.8+1.5

−1.4 0.356+0.10
−0.091 −0.20+0.24

−0.21 −0.644+0.1
−0.091 −0.466+0.15

−0.1365 0.732+0.31
−0.17

Hubble + Pantheon + BAO 68.4+1.3
−1.3 0.281+0.050

−0.046 0.010+0.10
−0.094 −0.719+0.05

−0.046 −0.5785+0.075
−0.069 0.701+0.23

−0.15

TABLE IV. A summary of the MCMC findings obtained from several datasets.
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Hubble

Hubble+Pantheon

Hubble+Pantheon+BAO

Quintessence

ΛCDM

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.28

0.30

0.32

0.34

0.36

0.38

z

O
m
(z
)

FIG. 6. The behavior of the Om(z) diagnostic vs. redshift z.

Hubble

Hubble+Pantheon

Hubble+Pantheon+BAO

Deceleration zone (q>0)

Acceleration zone (q<0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

z

q
(z
)

FIG. 7. The behavior of the deceleration parameter q vs. red-
shift z.

IV. DISCUSSION OF THE FINDINGS

In this section, we will discuss the findings of the
statistical analysis and their application to the previous
cosmological parameters. The investigation of cosmo-
logical parameters is an essential technique to describe
many characteristics of the Universe. The parameteriza-
tions of various functions, plus some simple constants,
are utilized to explain the characteristics of cosmologi-
cal parameters. These parameters, including the expan-
sion rate and curvature, describe the global dynamics
of the Universe. Here, we investigated several of the
fundamental parameters of our current Om(z) param-
eterization in FLRW Universe, such as the deceleration
parameter, the density parameter, the pressure, and the
EoS parameter.

Initially, we examined various data samples and es-
timated the constraint values for the model parameters
α, n and H0. We also constructed two-dimensional like-
lihood contours with 1 − σ and 2 − σ errors and 68%

Hubble

Hubble+Pantheon

Hubble+Pantheon+BAO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

z

ρ
/3
H
02

FIG. 8. The behavior of the density parameter ρ vs. redshift z.

Hubble

Hubble+Pantheon

Hubble+Pantheon+BAO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3.0

-2.5

-2.0

-1.5

-1.0

z

p

FIG. 9. The behavior of the pressure p vs. redshift z.

and 95% CL for Hubble, Hubble+Pantheon, and Hub-
ble+Pantheon+BAO datasets (Figs. 1, 4, and 5 show
this). The likelihood functions for all datasets are ex-
tremely well fitted to a Gaussian distribution function,
as shown in Figs. 1, 4, and 5. At first, we examined the
Hubble datasets, which contain 31 data points. Thus,
we got the value: 0.38+0.12

−0.12 for the model parameter α,
and the constraint value is −0.25+0.28

−0.25 for the parame-
ter n, which differentiates between different DE models.
The value of the parameter n from the Hubble datasets
shows that Om(z) has a negative slope indicating the
quintessence epoch. For combined Hubble+Pantheon
datasets, we obtain the values, α = 0.356+0.10

−0.091 and
n = −0.20+0.24

−0.21, which indicates the same behavior
as the Hubble datasets. Finally, we get these values
from the combined Hubble+Pantheon+BAO datasets:
α = 0.281+0.050

−0.046 and n = 0.010+0.10
−0.094, which approxi-

mately corresponds to the constant slope i.e. the cos-
mological constant. The best-fit curves of Om(z) di-
agnostic with various values of model parameters con-
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Hubble

Hubble+Pantheon

Hubble+Pantheon+BAO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

z

ω

FIG. 10. The behavior of the EoS parameter ω vs. redshift z.

strained from the Hubble, Hubble+Pantheon, and Hub-
ble+Pantheon+BAO datasets is shown in Fig. 6 with fur-
ther details. It is important to note that Fig. 6 shows
only the best-fit model for each dataset, and that it does
not necessarily represent the full range of allowed varia-
tions in Om(z). Indeed, as shown in Tab. IV, all datasets
are compatible with a constant Om(z), corresponding to
the standard ΛCDM model, within the uncertainties.

In addition, to compare our Om(z) parameterization
to the ΛCDM model, we examined the Hubble param-
eter H(z) curve and distance modulus µ (z) curve with
the constraint values of model parameters α and n for
Hubble and Pantheon samples datasets, as shown in
Figs. 2 and 3. The red line in the graphics indicates
the theoretical curve for the best-fit values obtained by
the Hubble and Pantheon datasets. It is noticed that our
Om(z) parameterization matches the observational re-
sults well in both cases. Furthermore, it can be shown
that our parameterization is pretty similar to the curve
of the ΛCDM model (the black dashed line). Here, we
estimated the current Hubble parameter values (z = 0)
to be: H0 = 67.8+1.7

−1.7 km/s/Mpc, H0 = 67.8+1.5
−1.4

km/s/Mpc, and H0 = 68.4+1.3
−1.3 km/s/Mpc for the Hub-

ble, Hubble+Pantheon, and Hubble+Pantheon+BAO
datasets, respectively, which are very consistent with re-
cent Planck’s measurements [10] and other studies in a
similar context [89–92].

Fig. 7 depicts the best-fit curve of q(z) for each
datasets to show the differences in the behavior of
q(z) for each dataset. Using our Om(z) parameteriza-
tion, the current value of the deceleration parameter
(i.e. z = 0) is approximated as q0 = −0.43 ± 0.18,
q0 = −0.466+0.15

−0.1365, and q0 = −0.5785+0.075
−0.069 for the Hub-

ble, Hubble+Pantheon, and Hubble+Pantheon+BAO
datasets, respectively. It is important to note that the val-
ues of q0 constrained in this study are compatible with

the value obtained in Refs. [92–94]. As a consequence,
the suggested model’s results are consistent with cur-
rent data [10]. Furthermore, we can see that the early
Universe was in a decelerated period (q > 0) of expan-
sion while the present Universe accelerated (q < 0).
Thus, the Universe with our Om(z) parameterization
reflects a transition (i.e. q = 0) with signature flip-
ping at ztr = 0.710 ± 0.18, ztr = 0.732+0.31

−0.17, and ztr =

0.701+0.23
−0.15 for the Hubble, Hubble+Pantheon, and Hub-

ble+Pantheon+BAO datasets, respectively. These transi-
tion redshift estimates are consistent with the previously
constrained value of [95], ztr = 0.72. The transition
from deceleration to acceleration in the Om(z) param-
eterization process occurs at a redshift of ztr = 0.701 in
the combined Hubble+Pantheon+BAO datasets, which
is consistent with the results of [95–97] As a result, we
see that our model supports the most current scientific
findings in all three scenarios.

Fig. 8 depicts the predicted positive behavior of the
density parameter as it decreases with the expansion of
the Universe in the current time. However, we would
like to clarify that the density parameter being referred
to in this figure corresponds to the total matter-energy
density of the Universe, which includes both dark mat-
ter and DE. Therefore, this density parameter should in-
crease with redshift for any type of DE model, includ-
ing the cosmological constant, quintessence, or phan-
tom models. Fig. 9 displays the negative behavior
of the pressure p, reflecting the Universe’s late-time
cosmic acceleration. It can be shown that the Hub-
ble, Hubble+Pantheon, and Hubble+Pantheon+BAO
datasets display similar pressure evolutions in the past.
However, the current negative behavior indicates accel-
eration. Furthermore, it is generally understood that the
EoS parameter also plays an important role in explain-
ing the many energy-dominated evolution processes of
the Universe. The current state of the Universe may be
predicted via the quintessence phase (−1 < ωDE < − 1

3 )
or the phantom phase (ωDE < −1). Fig. 10 depicts
the best-fit curve of ω(z). So, with the current model,
we got ω0 = −0.62 ± 0.12, ω0 = −0.644+0.1

−0.091, and
ω0 = −0.719+0.05

−0.046 for the Hubble, Hubble+Pantheon,
and Hubble+Pantheon+BAO datasets, respectively. We
note that the quintessence-like behavior of the EoS pa-
rameter for our Om(z) parameterization, as seen in Fig.
10, is expected due to the dominant pressureless mat-
ter contribution at high redshifts. Our findings on ω(z)
are consistent with the findings of certain observational
studies [98, 99]. The current values for various cosmo-
logical parameters H0, q0, ztr and ω0 are summarized in
Tab. IV.
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V. FINAL REMARKS AND PERSPECTIVES

The Om(z) diagnostic method holds significant im-
portance in testing cosmology within the framework of
GR as well as various modified theories of gravity. In
essence, this research paper presents a novel approach
to parameterizing the Om(z) diagnostic and examines
its behavior within the context of GR. This diagnostic is
specifically designed to make predictions for both phan-
tom and quintessence models of Dark Energy, and the
model parameters are meticulously determined by ana-
lyzing observational data, including 31 data points from
Hubble expansion observations, six Baryon Acoustic
Oscillation (BAO) data points, and an extensive datasets
of 1048 SNe Ia from Pantheon. To further refine the
cosmological model, the Markov Chain Monte Carlo
(MCMC) approach has been employed.

Our investigation shows that the new parametriza-
tion of Om(z) stands in good agreement with the Hub-
ble expansion observations. The best-fit values of the
model with Hubble data are: H0 = 67.8+1.7

−1.7 km/s/Mpc,
α = 0.38+0.12

−0.12 and n = −0.25+0.28
−0.25. In the next phase,

we considered both Hubble+ Pantheon datasets and ob-
tain best-fit values: H0 = 67.8+1.5

−1.4 km/s/Mpc, α =

0.356+0.10
−0.091 and n = −0.20+0.24

−0.21, which is compara-
tively well constrained in comparison to the previous
results obtained by us. Further, to enhance the re-
sults, we consider Hubble+Pantheon+ BAO and obtain:
α = 0.281+0.050

−0.046, n = 0.010+0.10
−0.094 and H0 = 68.4+1.3

−1.3
km/s/Mpc.

These results provide valuable insights into the evo-
lution of the cosmos and enhance our understanding of

the nature of Dark Energy. Furthermore, the proposed
parameterization of the Om(z) diagnostic capable of ex-
plaining phantom and quintessence has the potential to
facilitate the testing of alternative Dark Energy models,
thereby leading to a better understanding of the Uni-
verse’s evolution.

This novel parameterization of the Om(z) diagnos-
tic can be used in different modified theories of grav-
ity, including f (R) gravity, f (Q) gravity, Rastall grav-
ity etc., to examine the behavior of Universe’s evolution
and other cosmographic parameters as well. We keep
this as a future prospect of the study.
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