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In this work, we argue that the observed differences in the value of the vector coupling constant extracted
from the decays ρ → ππ (gρ ¼ 6.0), ρ → lþl− (gρ ¼ 5.0) and ω → lþl− (gρ ¼ 5.7), where l ¼ e, μ, are an
indication of the important role played by the 1=Nc corrections in the description of these processes.
We show that an emission of a photon by charged meson loops in the ρ0;ω;ϕ → γ transitions is a key
process that allows to describe above vector meson decays into two leptons with a single value gρ ¼ 6.0.
Our result supports the idea of universality of neutral vector mesons and clarifies the role of accounting of
1=Nc corrections to its fulfilment.
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I. INTRODUCTION

It is well known that the hypothesis of vector-meson
dominance (VMD) [1,2] possesses one to compute the
lepton-pair decay rate of the neutral vector meson V ¼ ρ0;
ω;ϕ in terms of the vector-meson coupling constant fV
appearing in a current-field identity Jemμ ¼ P

V
m2

V
fV

Vμ. This
yields

ΓV→lþl− ¼ 4πα2

3f2V

�
1þ 2m2

l

m2
V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
l

q
; ð1Þ

where α ¼ e2=4π ¼ 1=137. Current experimental data on
V → lþl− decay widths [3] allow to determine from (1) the
phenomenological values of these constants. For instance,
considering the V → eþe− mode one finds fρ ≡ gρ ¼ 4.96,
fω ¼ 17.06, fϕ ¼ −13.44. On the other hand, the complete
ρ dominance of the electromagnetic form factor of π�
implies gρ ¼ gρππ [4], where the coupling constant of the
ρ → ππ decay is known to be gρππ ¼ 5.96, as it follows
from theoretical decay width of the ρ-meson

Γρ→ππ ¼
g2ρππ
48π

mρ

�
1 −

4m2
π

m2
ρ

�3
2

; ð2Þ

and the phenomenological value Γexp
ρ→ππ¼149.1�0.8MeV.

We see that describing the strong decay ρ → ππ, one
obtains the value gρ ≃ 6.0. At the same time, when
describing electromagnetic decays ρ → eþe−, one obtains
gρ ≃ 5.0, and when describing a related process ω → eþe−,
one finds gρ ¼ fω=3 ≃ 5.7. What is the reason for such
differences in extracted values of gρ?
Our expectation is based on the Sakurai idea of vector

meson universality, which suggests to consider the vector
mesons as a gauge bosons of a local isospin symmetry [5]
with universal coupling gρ of these gauge boson to
conserved currents. In accord with this idea, kinetic terms
and couplings of the rho-mesons with matter fields have the
Yang-Mills form, except a nonzero mass of vector mesons.
This idea was extensively studied at the tree-level order in
the framework of the “massive Yang-Mills” [6–9] and
“hidden-gauge” theories [10]. There are also reviews on the
subject [11,12].
We believe that the discrepancies between the predic-

tions of VMD model and experiment should rather be
attributed to its approximate nature than to the idea of
universality that lies behind it. In particular, we argue that
the above problem can be solved by going beyond the tree-
level approximation, namely, by considering the one-loop
meson diagrams accounting for 1=Nc corrections to a tree-
level result. Thus, we assume (and it will be argued in the
following) that the 1=Nc expansion [13–15], where Nc is a
number of colors, is a relevant approximation to the issue.
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Indeed, it is known that a tree-level V → γ → lþl− decay
amplitude, hadronic part of which is described by the
matrix element h0jJjVi of the vector quark current
Jμ ¼ q̄γμq, is of order

ffiffiffiffi
N

p
c [15]. The one-loop meson

corrections are suppressed by a factor 1=Nc. So, the V →
πþπ− → γ → lþl− amplitude is of order 1=

ffiffiffiffi
N

p
c. This is

precisely the order of the tree-level diagram describing the
ρ → ππ decay. Thus, the tree-level ρ → ππ amplitude has
the same weight as the ρ → lþl− amplitude obtained with
allowance for meson loops. From that we conclude that the
coupling constant fρ extracted from formula (1) should not
be directly compared with gρππ . Before such comparison
one should take into account that fρ contains both the tree-
level and one-meson-loop contributions. Only after sepa-
rating them one can judge if the hypothesis of universality
is fulfilled.
Further, from the set of all 1=

ffiffiffiffi
N

p
c order one-loop

amplitudes contributing to V → lþl− decay one may
exclude diagrams of the vector meson self-energy type.
These diagrams were considered in [16] with the con-
clusion that the coupling constant fV remains unaltered.
The argument is as follows. Expanding the self-energy
contribution Πμνðp2Þ¼gμνΠðp2Þþlongitudinalpart around
the physical mass of vector state mV

Πðp2Þ ¼ Πðm2
VÞ þ ðp2 −m2

VÞ
∂Π
∂p2

����
p2¼m2

V

þ…; ð3Þ

where p is the four-momentum carried by the vector
meson, one can require that ∂

∂p2 ReΠjp2¼m2
V
¼ 0. Then,

the first term Πðm2
VÞ will determine the physical mass of

the vector state through the equation m2
V¼m

∘ 2
VþReΠðm2

VÞ,
where m

∘
V is a “bare” mass of the vector meson, which it

would have if one-meson-loop contributions to its self-
energy were turned off. Thus, assuming that the meson
masses correspond to their empirical values, we implicitly
take into account all self-energy contributions. In the
following we assume this. Since we deal with the on-
mass-shell vector mesons, terms of higher degrees in
ðp2 −m2

VÞ in (3) vanish, as does the entire longitudinal
part of the self-energy diagram. As a consequence, only the
one-loop diagrams of two types remain, namely V →
πþπ− → γ and V → KþK− → γ.
Neglecting the imaginary part of the self-energy vector

meson diagrams we neglect the relatively large width of the
ρ meson. The finite width effects are relevant for the
electromagnetic form factors of mesons, and are not
important for the rho-meson decays. This point has been
addressed in [4], where the authors, assuming the univer-
sality condition gρ ¼ gρππ, derived the electromagnetic
form factor of the pion with the finite width effect of the
ρ-meson. Its application to an optimal description of the
unified BABAR-BESIII data [17,18] at the elastic region

leads to the value of Γρ ¼ ð126.51� 0.13Þ MeV [19] that
differs by as much as 15% from experimental data on the
ρ-width. This indicates that the finite width is not only
effect which should be taken into account. Indeed, as it has
been recently reported [20], the πþπ− and KK̄ loops yield a
consistent ground to a description of the latest experimental
data on the production of the πþπ− pair in eþe− annihi-
lation at

ffiffiffi
s

p
< 1 GeV. Notice that when considering the

pion form factor, meson loops correct the extracted value of
the ρwidth to its phenomenological value. As we will show
below, in the case of V → lþl− decays, meson loops V →
ΦΦ → γ lead to the correct description of two-lepton decay
modes with the original value of the coupling constant
gρ ¼ 6.0.
The importance of taking one-loop meson diagrams into

account when describing the electromagnetic form factor of
the pion was also noted in [16]. Importantly, the dominant
role of the kaon loop in the electromagnetic decays of scalar
mesons f0ð980Þ → ωðρÞγ has been proved by calculations
made in [21]. It should be stressed that in spite of the great
work done on the study of the pion form factor, the role of
meson loops in the V → lþl− decays has not yet been
addressed.
Our consideration is based on the effective Lagrangian of

the extended SUð3Þ × SUð3Þ chiral symmetric Nambu-
Jona-Lasinio (NJL) model [22–30], where the ρ → ππ
decay coupling constant gρππ ¼ gρ ¼ 6.0 is one of the
main input parameters of the theory. This symmetry is
spontaneously and explicitly broken to its isospin SUð2Þ
subgroup. The electromagnetic interactions are chosen to
have a gauge invariant form

LγV ¼ e
2
Fμν

X
V

Vμν

fV
þ eAμJðmesÞ

μ ; ð4Þ

where Vμν ¼ ∂μVν − ∂νVμ, Fμν ¼ ∂μAν − ∂νAμ, Aμ is an

electromagnetic field, and JðmesÞ
μ is electromagnetic current

of mesons (see Eq. (38) for details). Otherwise, the theory
will not have the direct ππγ or KKγ couplings. This form
proves to be significantly better than the standard VMD
form without derivatives in the description of the electro-
magnetic form factor of the pion [16].
In the case of an exact SUð3Þ flavor symmetry,

mρ ¼ mω ¼ mϕ, there is only one independent coupling
constant fV , e.g., gρ ¼ 6.0. Two other constants can be
expressed through gρ as it follows fω ¼ 3gρ ¼ 18.0,
fϕ ¼ − 3ffiffi

2
p gρ ¼ −12.7. Using a phenomenological value

of mρ ¼ 775.26� 0.25 MeV, one finds from (1)

Γρ→eþe− ¼ 4.8 keV; ð7.04� 0.06 keVÞ; ð5Þ

Γω→eþe− ¼ 0.53 keV; ð0.60� 0.02 keVÞ; ð6Þ

Γϕ→eþe− ¼ 1.07 keV; ð1.26� 0.01 keVÞ; ð7Þ
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where in the parentheses the corresponding experimental
data are shown [3]. These simple estimates show qualita-
tively how the SUð3Þ symmetry, VMD and universality
work in the absence of the one-loop contributions.
The material of the paper is distributed as follows. In

Sec. II, we discuss the relationship between dynamic
symmetries and universality. In Sec. III, we consider
how universality arises in chiral theories. The important
role of the 1=Nc expansion for realistic theories is empha-
sized. These two sections are introductory and help to
understand the essence of further calculations. In Sec. IV,
the contribution of one-loop quark diagrams is calculated,
and, in Sec. V, calculations of one-loop meson diagrams are
presented. Here the main results of our calculations are
contained. Section VI summarizes the results.

II. DYNAMIC SYMMETRIES
AND UNIVERSALITY

The idea of universality is associated with dynamic
symmetries. These are specified either by local gauge
groups or by nonlinear and inhomogeneous realizations
of algebraic symmetries. As is known, dynamic symmetries
not only determine the form of the Lagrangian, but also
yield the low-energy theorems for massless (or very light)
bosons. These theorems impose restrictions on the response
of physical systems to slowly varying gauge fields and, as a
result, determine the universality of the interaction in the
sense that the first orders of the expansion in the coupling
constant begin to coincide with the first orders of the
expansion in powers of energy. This makes it possible,
regardless of the value of the coupling constant, to use the
corresponding effective field theory to obtain reasonable
results in the low-energy region. It is important that any
theory having the same low-energy spectrum of particles
will have the same answer for the leading corrections
independent of what the high-energy completion might turn
out to be.
To illustrate above statements let us give the classic

example from the quantum electrodynamics (QED) [31]. In
QED, at very low energies of photonsω ≪ me, whereme is
the electron mass, one can integrate out the nonessential
fermion degrees of freedom obtaining the effective
Lagrangian for constant electromagnetic field

Lγ ¼ −
1

4
F2 þ α2

360m2
e
½4F4 þ 7ðFF̃Þ2� þ…; ð8Þ

where the following notations are used F2 ¼ FμνFμν,
FF̃ ¼ FμνF̃μν, F̃μν ¼ 1=2eμνρσFρσ. Since the photon
energy is small, the tensor of electromagnetic field is
slowly varying. From (8), one reads off that the effective
Lagrangian is an expansion in powers of derivatives and
coupling constant α. The quantum correction to the leading
term is suppressed both by powers of ðω=meÞ4 and α2 ∼ e4,

i.e., the expansions in energy and in coupling constant
coincide. It is easy to understand that the structure of the
expansion is a consequence of the covariance of the theory
and its gauge symmetry. Due to covariance, the result
depends on the tensor of the electromagnetic field, and
the gauge nature of the photon-electron interaction makes
the degree of charge to be always equal to the degree of the
4-potential Aμ. This result is universal: if the problem was
considered in which the electromagnetic field would
interact with vacuum fluctuations of proton-antiproton
pairs, then one would get the same formula, but with a
replacement me → mp. Moreover, it is not at all necessary
that the charged pairs be fermions. The result will remain
the same for bosons. This becomes especially clear when
using the proper-time method of Fock and Schwinger [32],
where, even in the fermionic case, a transition is made from
the Dirac operator to its quadratic form—the second-order
Klein-Gordon differential operator to obtain (8).
The universality of electromagnetic interactions can also

be formulated as a statement about the nonrenormaliz-
ability of the electric charge by the effects of strong
interactions. It is a simple consequence of conservation
of the currents and some commutation properties of
charges, defined by these conserved currents [33].

III. LARGE Nc LIMIT AND UNIVERSALITY

In thinking about the low-energy regime of QCD, at the
first stage one can neglect the small bare masses of the up,
down and strange quarks. In this case, the left- and right-
handed quarks do not interact with each other and the
whole theory admits an Uð3ÞL ×Uð3ÞR chiral symmetry.
The Uð1ÞA axial anomaly reduces this to the SUð3ÞL ×
SUð3ÞR ×Uð1ÞLþR group. However, the chiral symmetry
is not realized in the Wigner-Weyl mode, the ground state is
asymmetric under SUð3ÞL × SUð3ÞR [22,23]. The result is
that chiral symmetry is spontaneously broken down to the
vectorial subgroup of flavor and hypercharge, generated by
the vector currents of SUð3ÞLþR ×Uð1ÞLþR group. In
accord with Goldstone theorem [34] the spectrum of
massless QCDmust therefore contain N2

f − 1 ¼ 8massless
pseudoscalar bosons.
Goldstone particles arise in systems with a degenerate

vacuum, the symmetry of which is lower than the symmetry
of the original Lagrangian. Qualitatively, this can be
interpreted as a reaction of the system aimed at restoring
the lost algebraic symmetry. In this case, the transformation
properties of Goldstone particles are determined by non-
linear transformations, which, together with the require-
ment of invariance of the effective Lagrangian with respect
to these chiral transformations, correspond to a symmetry
of dynamic type [35].
Of course, chiral symmetry is approximate, because in

the real world the quark masses are not exactly zero. This
gives rise to an explicit chiral symmetry breaking effects.
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As a result, the low-energy theorems following from the
chiral dynamics for Goldstone particles are not exactly
correspond to the nature: a careful study of the explicit
symmetry breaking effects is required. This is a subject of
the chiral perturbation theory [36–38].
Another distinction of chiral dynamics is the nonfunda-

mental character of pseudo-Goldstone states. Their quark-
antiquark structure significantly distinguishes these states
from fundamental gravitational or electromagnetic fields.
That mesons and nucleons are not fundamental states

was particularly emphasized by Sakurai [1,5] when for-
mulating his idea of the universality of vector mesons. How
does this circumstance affect the predictions based on the
idea of universality of strong interactions? We suppose that
this question can be answered within the framework of
1=Nc expansion. In various ways this expansion is rem-
iniscent of known phenomenology of hadron physics,
indicating that an expansion in powers of 1=Nc may be
a good approximation even at 1=Nc ¼ 1=3. This conclu-
sion can also be reached on the basis of the QCD sum rules,
provided the channels considered correspond to modest
values of the critical mass M2

crit [39]. For light mesons
and quarks M2

crit ∼ 2 GeV2. It will be argued here that it is
from the point of view of the 1=Nc expansion the
application of universality to the chiral dynamics makes
the most sense.
To spice up our discussion, it is useful to turn to the

theory with local four-quark interactions of the NJL type,
which provides a general framework for constructing
both linear and nonlinear effective meson Lagrangians
describing the dynamics of composite quark-antiquark
states. Let us consider the model with the Lagrange
density [40]

L ¼ q̄ðiγμ∂μ −MÞqþ GS

2
½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�

−
GV

2
½ðq̄γμτ⃗qÞ2 þ ðq̄γμγ5τ⃗qÞ2�: ð9Þ

Here q is an isodoublet spinor of light quarks q̄ ¼ ðū; d̄Þ;
summation over color indices is implicit, τ⃗ are the isospin
Pauli matrices; coupling constants GS and GV have the
same dimension ½GS� ¼ ½GV � ¼ M−2; a current quark
mass matrix M ¼ diagðm̂u; m̂dÞ is chosen in a form
(m̂u ¼ m̂d ≡ m̂) preserving the isospin symmetry.
Without a quark mass term L would possess a continu-

ous SUð2ÞV × SUð2ÞA symmetry. The global transforma-
tions of this group can be parametrized by six real
parameters: αi and βi, where i ¼ 1, 2, 3. The infinitesimal
transformation of quark fields δq ¼ q0 − q is

δq ¼ iðαþ γ5βÞq; δq̄ ¼ iq̄ð−αþ γ5βÞ;
α ¼ αi

τi
2
; β ¼ βi

τi
2
: ð10Þ

Notice that SUð2ÞV × SUð2ÞA symmetry is realized here as
a homogeneous linear transformation that includes the
standard isospin transformation α and the chiral trans-
formation γ5β.
The description of collective modes can be facilitated if

one introduces the new Lagrangian with the same dynami-
cal content

Z¼
Z

DqDq̄DsDp⃗Dv⃗μDa⃗μ

×expi
Z

d4x

�
q̄Dq−

ðsþ m̂Þ2þ p⃗2

2GS
þ v⃗2

μ þ a⃗2
μ

2GV

�
: ð11Þ

Here D is the Dirac operator in the external boson fields

D ¼ iγμ∂μ þ sþ iγ5pþ γμvμ þ γμγ5aμ; ð12Þ

where s ¼ s · 1, p ¼ p⃗ τ⃗, vμ ¼ v⃗μτ⃗, aμ ¼ a⃗μτ⃗ are scalar,
pseudoscalar, vector and axial-vector auxiliary fields.
The infinitesimal action of the chiral group on quarks

(10) helps to obtain a transformation law for quark-
antiquark auxiliary fields

δs ¼ fβ; pg;
δp ¼ i½α; p� − fβ; sg;
δvμ ¼ i½α; vμ� þ i½β; aμ�;
δaμ ¼ i½α; aμ� þ i½β; vμ�: ð13Þ

Spontaneous symmetry breaking (s ¼ σ −m; hσi ¼ 0)
leads to the mixing between pseudoscalar and axial-vector
fields already in the one-quark-loop approximation, i.e., in
the same order at which the effective potential develops the
non-symmetric ground state. To avoid the mixing term one
should define a new axial-vector field Aμ

aμ ¼ Aμ þ κm∂μp: ð14Þ

Constant κ must be fixed to avoid pAμ mixing. The
replacement (14) adds to the Lagrange density (11) a
Yukawa-type vertex κmq̄γμγ5τ⃗q∂μp⃗ known from the
theory of pion-nucleon forces.
Integrating over the quark fields in (11), and keeping

only the leading terms in the inverse constituent quark mass
expansion of the corresponding heat kernel (it is assumed
that the Fock-Schwinger proper time technique [32] is
applied to generate 1=m2 expansion), one arrives to the
effective Lagrange density describing the strong dynamics
of collective boson fields.
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L0 ¼ −
m̂ trðσ2 þ p2Þ

4mGS
þ tr½v2μ þ ðAμ þ κm∂μpÞ2�

4GV

þ I2ðm2Þtr
�
ð▽μσÞ2 þ ð▽μpÞ2 − ðσ2 − 2mσ þ p2Þ2

−
1

3
ðv2μν þ A2

μνÞ
	
: ð15Þ

Here the trace is taken over isospin matrices. The main
elements of (15) are SUð2Þ × SUð2Þ covariant objects

▽μσ ¼ ∂μσ − faμ; pg;
▽μp ¼ ∂μp − i½vμ; p� þ faμ; σ −mg;
vμν ¼ ∂μvν − ∂νvμ − i½vμ; vν� − i½aμ; aν�;
Aμν ¼ ∂μAν − ∂νAμ − i½vμ; aν� − i½aμ; vν�: ð16Þ

The regularized mass-dependent factor I2ðm2Þ is

I2ðm2Þ ¼ Nc

16π2

�
ln
�
1þ Λ2

m2

�
−

Λ2

Λ2 þm2

�
; ð17Þ

where Λ is a covariant cutoff of the corresponding one-
quark-loop integral.
The gap equation arises in the form of the condition

which cancels a σ-tadpole contribution in (15). This
equation accounts for contributions of quarks of different
flavors Nf ¼ 2 and colors Nc ¼ 3, as well as the current
quark mass m̂

4π2

NfNcΛ2GS

�
1 −

m̂
m

�
¼ 1 −

m2

Λ2
ln

�
1þ Λ2

m2

�
: ð18Þ

The Lagrangian density L0 does not contain pAμ-mixing.
This is because of the cancellation which occurs between
three different contributions to the nondiagonal pAμ-mixing
term in L0. It gives the numerical value of κ

1

2κ
¼ m2 þ 1

16GVI2ðm2Þ : ð19Þ

The free part of the Lagrangian L0 will have a canonical
form after the rescaling of meson fields

σ ¼ gσσ̄; p⃗¼ gππ⃗; v⃗μ ¼
gρ
2
ρ⃗μ; A⃗μ ¼

gρ
2
a⃗1μ: ð20Þ

As a result, we have

g2σ ¼
1

4I2ðm2Þ ; g2π ¼ Zg2σ; g2ρ ¼ 6g2σ;

m2
π ¼

m̂g2π
mGS

; m2
σ̄ ¼ 4m2 þ Z−1m2

π;

m2
ρ ¼

3

8GVI2ðm2Þ ; m2
a1 ¼ m2

ρ þ 6m2; ð21Þ

where Z−1 ¼ 1–2κm2 ¼ gA.
What one can learn from this simple example? Let us

first indicate that as it follows from formulas (20) and (21)
there is a precise relation between coupling constants gσ,
gπ , gρ.
Next, let us consider the vector mesons. As can be

verified from (15), the following equalities hold

gρ ¼ gρππ ¼ gρρρ ¼ gρqq: ð22Þ

These are the well-known universality relations of Sakurai
[1] (up to the last term, where the rho-quark-quark coupling
replaces the rho-nucleon-nucleon coupling).
As one of the arguments in favor of universality relations

(22), a hypothesis was put forward about the invariance of
the interaction Lagrangian under the local action of the
group of the isospin symmetry. The role of gauge fields was
assigned to an isotriplet of vector rho-mesons [1]. Indeed,
four-quark interactions in (9) possess a higher symmetry.
They are invariant under local SUð2ÞV × SUð2ÞA trans-
formations. It is easy to see that the term q̄Dq in (11) is also
symmetric under the action of this group. Thus, dynamic
symmetry (if one neglects the ρ-meson mass term) is
hidden behind the relations (22), which makes them more
significant.
Despite the fact that mesons in the NJL model are

composite quark-antiquark states, in the Lagrangian (15)
them correspond the local fields. Of course, if one would
take into account the higher order terms (in derivative
expansion of the effective action) neglected in (15), one
would reveal the composite structure of meson states. In
momentum space, this would lead to the momentum
dependence of the coupling constants in (22), i.e.,
gρ → gρðq2Þ. The corresponding technique has been devel-
oped in [41,42]. For the slowly changing form factor,
gρðq2Þ, the principle of universality may still have sense
even for the on-shell coupling constants. On the other hand,
the large Nc limit teaches us that meson physics at Nc ¼ ∞
is described by the tree diagrams of an effective local
Lagrangian with the local meson fields. If we adhere to this
point of view (supposing that Nc ¼ 3 is a good approxi-
mation to the Nc ¼ ∞ case), then the calculation of the
momentum dependence of the coupling constants based on
one-quark-loop diagrams does not make sense. The point is
that the higher order terms of the expansion of the effective
action contribute at the same order in 1=Nc, and therefore
the model comes into the conflict with QCD at large Nc.
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In this case, one should account for meson loops instead,
which are suppressed as 1=Nc. Thus, limiting ourselves to
the Lagrangian (15), we assume that gρ is a constant on the
interval 0 < q2 < Λ2. Actually, this assumption is not new.
What is new is the observation that this hypothesis is true at
large Nc.
The effective Lagrangian of pseudo-Goldstone particles,

which we arrive at by excluding from (15) the scalar field σ
(see, for instance, [40]), collects all soft-pion low-energy
theorems (at tree-level order). It gives us the well-known
result of the nonlinear sigma model [43], which, due to its
universality, is used as a leading approximation in the chiral
perturbation theory.

IV. SUð3Þ VIOLATION: QUARK-LOOP LEVEL

Let us now turn to our main task. For this we will use a
more advanced version of the NJL model, which contains,
in addition to the up and down quarks, a heavy strange
quark [44]. In the NJL model, the constituent masses of the
up, down and strange quarks mu, md, ms are the result of
the spontaneous and explicit chiral symmetry breaking.
A gap equation (18) illustrates how this happens. Here we
consider the model with SUð2Þ isospin symmetry
mu ¼ md ≠ ms. The origin of the SUð3Þ flavor symmetry
violation is the nonzero values of the bare current quark
masses m̂u ¼ m̂d ≠ m̂s. The model estimation of these
values are m̂u ¼ m̂d ¼ 3 MeV and m̂s ¼ 90 MeV [44].
The current quarks get heavier in the phase with bro-
ken chiral symmetry, where they are constituent quarks
(with the following masses mu ¼ md ¼ 270 MeV, and
ms ¼ 420 MeV) inside the colorless mesons.
The effective local vertices of the induced meson

Lagrangian are obtained from the corresponding quark
one-loop diagrams with external meson fields by the series
expansion in the inverse powers of heavy quark masses.
The details of the model can be found in [44]. Here we only
remind the main steps which are essential for fixing
parameters of the model.
The decay process of a neutral vector meson, for instance

the ρ0-meson, is described by the diagram shown in Fig. 1.
In the NJL model, the calculation of the V → γ transition
through the quark loop, besides the standard photon-quark-
antiquark vertex, requires the Lagrangian density describ-
ing the strong interactions of vector mesons

Lq̄qV ⇒
gρ
2
ρ0μðūγμu − d̄γμdÞ

þ gω
2
ωμðūγμuþ d̄γμdÞ þ gϕffiffiffi

2
p ϕμs̄γμs; ð23Þ

where couplings gρ; gω; gϕ are chosen to redefine the
kinetic part of vector meson free Lagrangian to its standard
form. If isospin symmetry is fulfilled, gρ ¼ gω the calcu-
lation of V → γ transition of Fig. 1 leads to the Lagrangian
density (4), where fρ ¼ gρ, fω ¼ 3gρ, and fϕ ¼ − 3ffiffi

2
p gϕ.

The coupling constants are

gρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2I2ðm2
uÞ

s
; gϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2I2ðm2
sÞ

s
: ð24Þ

The logarithmically divergent integrals I2ðm2
1; m

2
2Þ are

regularized through the covariant cutoff Λ

I2ðm2
1; m

2
2Þ ¼ −i

Nc

ð2πÞ4
Z

d4k
θðΛ2 þ k2Þ

ðm2
1 − k2Þðm2

2 − k2Þ : ð25Þ

The shorthand I2ðm2
uÞ in (24) is introduced for the case of

equal masses I2ðm2
uÞ≡ I2ðm2

u; m2
uÞ. In this specific case,

the expression coincides with (17).
In the case of charged pions and kaons, the quark-meson

vertices are described by the Lagrangian density

Lq̄qΦ ⇒
ffiffiffi
2

p
ūiγ5ðgππþdþ gKKþsÞ þ H:c: ð26Þ

The coupling constants gπ and gK are given by

gπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zπ

4I2ðm2
uÞ

s
; gK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZK

4I2ðm2
u; m2

sÞ

s
: ð27Þ

There are two types of contributions here. First, the
integrals I2 determine the redefinition of pseudoscalar
fields to make that kinetic part of their free Lagrangian
to have standard form. Second, due to spontaneous sym-
metry breaking, the partial Higgs mechanism takes place.
The axial-vector—pseudoscalar mixing term, Aμ∂μΦ,
appears in the free meson Lagrangian. This nondiagonal
term must be canceled by an appropriate redefinition of the
longitudinal component of the massive axial-vector field
Aμ ¼ A0

μ þ κm∂μΦ. The result is that the kinetic term of a
free pseudoscalar field get an additional factor, which must
also be compensated by the specific choice of constants Zπ

and ZK . They are

Z−1
π ¼ 1 − 6

m2
u

m2
a1

; Z−1
K ¼ 1 −

3

2

ðmu þmsÞ2
m2

K1A

: ð28Þ

The coupling Zπ originated by the mixing between the
pion and the a1ð1260Þ mesons (ma1 ¼ 1230� 40 MeV).

FIG. 1. The tree-level diagram of ρ→eþe− decay. The ρ-meson
emits the photon through the quark loop.
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The factor ZK is due to the mixing between the kaon and
the K1 fields. There are two candidates, known as
K1ð1270Þ and K1ð1400Þ. These physical states are the
mixture of K1A and K1B fields. The latters have different
types of couplings with quark-antiquark pair, namely
K1A ∝ γ5γμ, K1B ∝ γ5∂μ. The constant m2

K1A
is determined

through the mixing angle α ¼ 57° of these states [45,46]

m2
K1A

¼
�

sin2 α
m2

K1ð1270Þ
−

cos2 α
m2

K1ð1400Þ

�−1
: ð29Þ

A general mathematical framework to deal with axial-
vector–pseudoscalar mixing in the effective Lagrangians
has been developed in [47].
Finally, let us fix the parameters of the model. The

value of gρ is determined from the ρ → ππ decay,
that gives gρ ¼ 6.0. Then, using Eq. (24), one finds
I2ðm2

uÞ ¼ 3=ð2g2ρÞ ¼ 0.042. The charged pion weak decay
constant πþ → μþνμ, fπ ¼ 92.2 MeV, and the quark-level
Goldberger-Treiman relation gπ ¼ mu=fπ allow us to
establish an equation for the nonstrange quark mass

mu ¼
1

2
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zπ

I2ðm2
uÞ

s
¼ fπgρ

ffiffiffiffiffiffi
Zπ

6

r
: ð30Þ

This quadratic equation can be easily solved in terms of
known phenomenological parameters. As a result we have

m2
u ¼

m2
a1

12

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2gρfπ
ma1

�
2

s �
: ð31Þ

It allows us to obtain the value of constituent quark masses
mu ¼ md ¼ 270 MeV (for the negative sign in the solution
(31)). Now from I2ðm2

uÞ we find the quark loop cutoff
parameter Λ ¼ 1265 MeV.
To establish the value of strange quark mass we use the

Goldberger-Treiman relation for the kaon gK

gK ¼ mu þms

2fK
; ð32Þ

where fK ≃ 1.2fπ [48]. Using Eq. (27), one comes to the
formula, where ms is the only unknown parameter

fK ¼ ðmu þmsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ðm2

u; m2
sÞ

ZK

s
: ð33Þ

Solving numerically this equation we obtain the value of
the constituent strange quark mass ms ¼ 420 MeV. For
above values of the quark masses and the cutoff Λ ¼
1265 MeV, the condensates are hūui1=3 ¼ hd̄di1=3 ¼
−304 MeV, hs̄si1=3 ¼ −335 MeV. These values can be

compared with the lattice QCD results hl̄liMSð2 GeVÞ ¼
ð−283ð2Þ MeVÞ3 and hs̄siMSð2GeVÞ¼ð−290ð15ÞMeVÞ3,

where l is a light quark with mass equal to the average of
the u and d quarks [49].
It is known that the gap-quation of the NJL model leads

to underestimated values of the current quark masses,
which is reflected in the magnitude of the quark conden-
sates. The latter is due to the fact that the value of the chiral
condensate is related with masses of pseudoscalars through
the well-known Gell-Mann, Oakes, Renner relation

m2
πf2π ¼ −

m0
u þm0

d

2
ðhūui þ hd̄diÞ: ð34Þ

So, all is arranged in such a way that model describes
correctly the masses of pions and kaons (it is interesting to
note that this parametrization of the model leads to a perfect
agreement with the experimental value for the kaon mass,
giving mK ¼ 494 MeV).
Now, we can estimate gϕ ¼ 7.5, and, as a consequence,

this predicts Γϕ→eþe− ¼ 0.9 keV. One can see that SUð3Þ
symmetry breaking at the level of quark loops leads to an
even greater disagreement with the experimental data on
the ϕ → eþe− decay mode.

V. SUð3Þ VIOLATION: MESON-LOOP LEVEL

Let us consider now the contributions to the amplitudes
due to the meson loops. The corresponding diagrams for
the ρ → eþe− decay are shown in Fig. 2.
The vertices, describing V → ΦΦ decays in the case of

exact SUð3Þ symmetry are given by the Lagrangian density

LVΦΦ ¼ −i
gρ
4
trðVμ½Φ; ∂μΦ�Þ

¼ −i
gρ
2
½ρ0μð2πþ∂μ

↔
π− þ Kþ∂μ

↔
K− þ K̄0∂μ

↔
K0Þ

þ ðωμ −
ffiffiffi
2

p
ϕμÞðKþ∂μ

↔
K− − K̄0∂μ

↔
K0Þ�: ð35Þ

The left-right derivative is ϕ1∂μ
↔
ϕ2 ¼ ϕ1∂μϕ2 − ð∂μϕ1Þϕ2,

and nonets of the pseudoscalar Φ and vector V fields are
given by the following matrices

Φ ¼

0
B@

π0
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþffiffiffi

2
p

π− −π0
ffiffiffi
2

p
K0ffiffiffi

2
p

K−
ffiffiffi
2

p
K̄0 0

1
CAþ

X
a¼0;8

ηaλa; ð36Þ

FIG. 2. Diagrams describing contributions from meson loops to
ρ → eþe− decay. The dotted line indicates pions or kaons.
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V ¼

0
B@

ωþ ρ0
ffiffiffi
2

p
ρþ

ffiffiffi
2

p
K�þffiffiffi

2
p

ρ− ω − ρ0
ffiffiffi
2

p
K�0ffiffiffi

2
p

K�− ffiffiffi
2

p
K̄�0 ffiffiffi

2
p

ϕ

1
CA; ð37Þ

where the last term in (36) contains neutral singlet and octet
components η0 and η8, the superposition of which describes
physical η; η0 states; λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I, with I the 3 × 3 identity,

and λ8 ¼ 1=
ffiffiffi
3

p
diagð1; 1;−2Þ. We assume in (37) that

vector ρ0;ω;ϕ mesons have the following quark structure:
ρ0 ¼ ðuū − dd̄Þ= ffiffiffi

2
p

, ω ¼ ðuūþ dd̄Þ= ffiffiffi
2

p
, and ϕ ¼ ss̄

consists only of strange quarks. Therefore, in the following
we neglect the small ϕ − ω mixing.
To take into account the effects of SUð3Þ symmetry

breaking, we, as in the previous section, should consider
the quark triangle diagrams leading to the effective
Lagrangian (35) by taking into account the strange quark
effects. The only consequence of such calculations is that
one should replace the coupling gρ → gϕ in the ϕK̄K vertex
of (35).
TheUð1Þ gauge invariant electromagnetic interactions of

the pseudoscalar Φ mesons in the NJL model are given by
the effective Lagrangian density

LγΦΦ ¼ ie
2
AμtrðQ½∂μΦ;Φ�Þ

¼ −ieAμðπþ∂μ

↔
π− þ Kþ∂μ

↔
K−Þ; ð38Þ

where Q ¼ diagð2=3;−1=3;−1=3Þ is the quark charge
matrix in relative units of the proton electric charge
e > 0. This is the usual form which can be obtained
independently by the standard Uð1Þ gauging of the free
meson Lagrangian.
Using these Lagrangians in the calculations of diagrams

in Fig. 2 one obtains the following amplitudes

Tρ→eþe− ¼ e2

gρ

�
1þ g2ρ

6m2
ρ
ð2Iρπ þ IρKÞ

�
ϵμðpÞlμ; ð39Þ

Tω→eþe− ¼ e2

3gρ

�
1þ g2ρ

2m2
ω
IωK

�
ϵμðpÞlμ; ð40Þ

Tϕ→eþe− ¼
ffiffiffi
2

p

3

e2

gϕ

�
1þ g2ϕ

2m2
ϕ

IϕK

�
ϵμðpÞlμ: ð41Þ

Here the first term in the parentheses represents the tree-
level contribution of order

ffiffiffiffi
N

p
c, the other terms accounts

for 1=
ffiffiffiffi
N

p
c corrections. We also assume that mρ ¼ mω

(SUð2Þ symmetry), ϵμðpÞ is a polarization 4-vector of the
corresponding vector meson with 4-momentum p, lμ is a
vector lepton current lμ ¼ ēγμe. The integral over the pion-
loop for the decay ρ → eþe− after regularization (the
covariant cutoff Λπ is introduced) has the form

Iρπðm2
ρÞ¼

1

16π2

�
2Λ2

πþðm2
ρ−6m2

πÞ ln
�
1þΛ2

π

m2
π

�

þ2ð2Λ2
πþm2

ρ−4m2
πÞDðΛ2

πÞarctan
1

DðΛ2
πÞ

þ2m2
ρDð0Þ3 arctan 1

Dð0Þ
�
− Itpðm2

π;Λ2
πÞ; ð42Þ

where

DðΛ2
πÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðΛ2

π þm2
πÞ

m2
ρ

− 1

s
; ð43Þ

and the last integral in (42) represents the contribution of
the tadpole diagram, shown in Fig. 2

Itpðm2
π;Λ2

πÞ ¼
3

8π2

�
Λ2
π −m2

π ln

�
1þ Λ2

π

m2
π

��
: ð44Þ

If expression (42) is expanded in a series in terms of the
square of the mass of the ρ-meson, then such an expansion
begins with a term that is completely canceled out by the
contribution of the tadpole Itpðm2

π;Λ2
πÞ. Thus, the integral

Iρπ contains only a logarithmically divergent (at Λπ → ∞)
part. The other consequence is that Iρπð0Þ ¼ 0 at fixed Λπ .
The integrals IρK; IωK , and IϕK are obtained from Iρπ by

replacing the masses mπ → mK , mρ → mω; mϕ and the
cutoff Λπ → ΛK correspondingly. The cutoff ΛK ¼
750 MeV is fixed from the decay width ϕ → eþe−.
Then, the cutoff parameter Λπ ¼ 850 MeV is fixed from
the experimental width of the processes ρ → eþe−. As a
result, the process ω → eþe− and three μþμ− decay modes
have no arbitrary parameters, and the theoretical widths for
all of them agree with the experimental data. The results are
shown in the Table I.
The first column shows the modes of two-lepton

decays of neutral vector mesons, and the second contains
estimates made on the bases of the tree approximation
(

ffiffiffiffi
N

p
c-order). One can see that the tree level result under-

estimates the decay widths considered. It corresponds the
following values of coupling constants: fρ ¼ 6, fω ¼ 18,

TABLE I. Decay widths of neutral vector mesons into lepton
pairs (in keV). The tree-level NJL results are given in the second
column. The full results which take into account the one-meson-
loop corrections are shown in the third column.

Modes NJL NJL+mes. loops Experiment [3]

ρ → eþe− 4.8 6.99 6.98� 0.12
ω → eþe− 0.53 0.62 0.62� 0.02
ϕ → eþe− 0.90 1.26 1.26� 0.02
ρ → μþμ− 4.28 6.22 6.72� 0.46
ω → μþμ− 0.48 0.56 0.63� 0.16
ϕ → μþμ− 0.84 1.18 1.22� 0.08
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fϕ ¼ −15.9. Notice, that in the case of decays of ρ and ω
mesons, we deal with the case of unbroken SUð3Þ
symmetry, and for the ϕ meson our result takes into
account the SUð3Þ breaking effect arising from the heavier
quark mass of the strange quark, ms > mu. The numbers
presented in the third column include the one-meson-loop
effects. They correct the results to their phenomenological
values. The decay rates of similar decays of neutral vector
mesons into a muon pair are also in satisfactory agreement
with experiment.
It seems necessary to discuss in more detail the use of the

cutoff ΛΦ in the integrals IVΦ. Usually, in such cases,
dispersion methods are used [16,20]. Our remark is that
since the vector mesons are on the mass-shell, the two
methods are equivalent. Indeed, the dispersion approach for
the meson loop gives the following result for the integral
with two subtractions

IVΦðp2Þ ¼ c0 þ cΦp2 þ p4

π

Z
∞

4m2
Φ

ds
ImIVΦðsÞ

sðs − p2 − iϵÞ ; ð45Þ

where the subtraction constants c0 and cΦ need to be
determined. Due to gauge symmetry c0 should vanish. In
our case c0 is also vanish because of a tadpole contribution.
It is clear now that on the mass shell p2 ¼ m2

V the value of
this integral depends on the only free parameter cΦ.
Therefore, one can always establish the one-to-one corre-
spondence between cΦ and cutoff ΛΦ by equating the
integrals.

VI. CONCLUSIONS

We have shown that one-loop meson diagrams with the
emission of the photon, i.e., the V → πþπ− → γ and V →
KþK− → γ transitions, can be an efficient mechanism for
linking the hypothesis of vector meson universality with the
empirical data on the electromagnetic vector meson decays
into the lepton pair. The problem considered is well-known.
We argue that it can be solved in the framework of 1=Nc
expansion. An important step of our study is the gauge-
invariant form of the Lagrangian describing the transition
of the vector meson to a photon. Since in the processes
under consideration the photon is far from its mass shell,

this interaction does not vanish. One should recall that the
standard VMD picture does not have the V → γ transitions
through the meson loop.
In our estimates, we have not calculated the self-energy

diagrams of vector mesons. It is implied that the renorm-
alization of vector-meson masses are already performed to
their physical values, as it has been also assumed in [16].
Our result is based on the effective meson Lagrangian of

the NJL model and the SUð3Þ → SUð2Þ symmetry break-
ing mechanism which is implemented in the model, as like
as in QCD, i.e., through the corresponding mass term of the
free quark Lagrangian. The gap equation, which relates the
masses of the current and constituent quark fields, makes it
possible to trace the consequences of such a violation up to
the vertices of the effective meson Lagrangian. We stress
the importance of this step for the problem considered here.
To summarize: we have demonstrated that in the frame-

work of the 1=Nc approximation, the ρ → ππ decay
constant gρ ¼ 6. It is this value that should be also used
in the theoretical description of two-lepton decays of
neutral vector mesons. This finding supports the idea
of vector meson universality, showing the importance of
taking into account the contributions of the 1=Nc sup-
pressed meson one-loop diagrams. These contributions do
not exceed 30% in comparison with the tree result for the
V → lþl− decays and thereby bring the results of theoreti-
cal calculations into full agreement with experimental data
and universality.
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