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Abstract

Annealing of color centers was studied in lithium fluoride crystals, irradiated with 23-MeV nitrogen
and 28-MeV oxygen ions. Basing on the optical absorption spectroscopy and reaction-rate modelling,
anew interpretation of the annealing kinetics at the practically important temperatures below 500 K is
suggested. Proposed model explains simultaneous decrease of the F and F,/F3 peaks as a result of
migration of the F centers and formation of larger aggregates, and does not include additional
assumptions about impurities and cation vacancies. It specifies the migration energy of the F centers in
the ground state to be about 1.3 eV, that corresponds to earlier studies.

1. Introduction

Lithium fluoride is a very popular object of basic and applied researches due to its relatively simple structure,
which however provides a rich variety of properties, among those radiation defects—the color centers are of
particular interest. Similarly to the other alkali halides, LiF is very sensitive for ionizing irradiation, that creates
defects in the anion sublattice via decay of the electronic excitations [1]. Note, that in lithium fluoride the color
centers cannot be obtained with the additive coloration technique [2].

Investigations of the radiation damage with swift ions are aimed to understanding of both peculiarities of the
material modification and interaction of swift projectiles with wide-band dielectrics in general [3—12]. Swift
ions, depositing most of their energy to the electronic subsystem of target materials, effectively create primary
Frenkel pairs in the fluorine sublattice of the lithium fluoride crystals. Further kinetics of the defects depends on
the irradiation conditions, in particularly on the temperature [13]. At room temperature constituents of the
Frenkel pairs can be actively separated due to diffusion, and form stable color centers [14—16]. Thus, the anion
vacancies capture electrons, forming stable F centers and their aggregates F,,. Meanwhile the single fluorine
interstitials (H centers) are highly mobile at room temperature, and those, avoided recombination, form
aggregates or complex centers with impurities and cation vacancies [17]. Due to the strong ion binding of the
lithium fluoride even intensive ion irradiation does not cause amorphization, although XRD can reveal
nanostructuring of the crystals [18].

Our study is focused on the thermal stability of the color centers, formed in lithium fluoride with energetic
nitrogen and oxygen ions. Accumulation of the stable defects and their annealing behavior is important for
functional properties of optical materials and dosimetry application [19-22]. Results of the study can be valid for
other alkali-halide crystals, having similar kinetics of the point defects [5]. However they should be applied with
a caution to halides of alkali-earth metals due to the considerably higher defect formation energy in the crystals,
which provide high radiation resistance of the materials [10, 23-26].

UV-vis absorption spectroscopy, employed in our research, is a widely used and reliable method for
investigation of color centers. Supported with results of other techniques, it allows to attribute the absorption
peaks to the certain color centers [26—28]. Thus, modification of the absorption spectra because of the heating

© 2024 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Electronic energy losses of the nitrogen and oxygen ions in lithium fluoride according to SRIM [29].

Table 1. Color centers in lithium
fluoride at room temperature [31].

Absorption maximum

Center

(nm) (eV)
F 248 5.00
F, 444 2.79
Fr 685 1.81
Fs 317,377 3.91,3.29
Fi 448 2.77
F5 950 1.31
F, 518,540 2.39,2.30

allows to estimate changes of the defects’ concentrations. However, the microscopic interpretation of their
kinetics in some cases remains unclear. In particular, the main attention in our study is paid to the practically
important temperature range of 400-500 K.

2. Experimental procedure and results

Lithium fluoride crystals were grown in vacuum from the pre-purified charge in JSC ‘Research and Production
Corporation SI Vavilova’ (SI Vavilov State Optical Institute, Saint-Peterburg, Russia). Our XRD measurements
confirm perfect crystallinity of the samples. Irradiations with 23-MeV '*N and 28-MeV '°O ions were carried
out at DC-60 accelerator (Astana, Kazakhstan) at room temperature. According to the SRIM code [29] the
stopping ranges R of the ions are 14.13 and 14.91 microns correspondingly, which are less than sample
thicknesses. The electronic energy losses alongside the ion trajectories are plotted in the figure 1, the nuclear ones
are negligible till the very end of the ion paths. As the stopping power of the both projectiles remains fair below
10 keV nm ™', one should not expect the track core formation [30].

Optical absorption spectra of the irradiated samples were measured in the range of 1.5-6.5 eV by means of
the spectrophotometer SF-2000 (Russia). The spectra reveal absorption peaks of various color centers, which are
listed in the table 1. Without thermal annealing or optical excitation (bleaching) these centers are known to be
stable at room temperature [31, 32]. Their behavior during thermal annealing was studied by heating an
irradiated sample in the muffle furnace in atmosphere up to increasingly higher temperatures (T') and holding
there for a certain time At (15 minutes for the samples irradiated with '*N, and 10 min for '°O). The
temperature was controlled by the chromel-alumel thermocouple, mounted close to the sample holder. The
heating rate was 5 K per second, so the heating times were noticeable less than At. Then the sample was cooled
down the room temperature, and the corresponding absorption spectrum was measured.
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Figure 2. Absorption spectra of LiF crystals after irradiation with 4 x 10'*23-MeV '*N ions per cm? and subsequent annealing.

Absorption spectra of the lithium fluoride crystals after irradiation and subsequent annealing steps are
shown in the figures 2 and 3. All spectra until annealing above 550 K contain F peak with maximum at 5 eV,
which is slightly distorted, presumably due to cation defects [33—35]. Various F,, centers (see the table 1) form the
absorption band in the range 1.77-4.13 eV [31]. Further aggregation of the F centers (n > 4)leads to formation
of nF aggregates—precursors of Li colloids with the absorption maximum at2.79 eV [31, 32, 36].

In the figure 2 one can see the absorption spectra of LiF crystals, irradiated with 23-MeV nitrogen ions. The F
peak is dominating since the projectile energy and applied fluence of 4 x 10'*ions cm ™ are not high enough to
provide active aggregation process [27, 28]. Similarly in the figure 3(a) the spectrum of the samples after
irradiation with 28-MeV oxygen ions demonstrates higher F peak for the fluence of 1 x 10" ions cm 2.,
Contrarily in the figure 3(b), corresponding to the fluence of 1 x 10" jons cm 2, the F, band is dominating.

The main contribution to the F, band is given by F, and F5 centers, possessing very close absorption peaks
(table 1). They can be better distinguished by luminescent spectroscopy [37-39], including the ion-beam
luminescent measurements [40, 41]. However, one can see that F3 peak is decreasing faster than F, with the
heating treatment, especially for high fluence (figure 3(b)).

3. Analysis and discussion

Optical density at the F-peak absorption maximum ODy. allows to evaluate the surface concentration of the F
centers according to the Smakula-Dexter formula [42, 43], which at room temperature gives [3]:

nplcm™2] = 9.48 x 10" x ODp (1)

The average volume concentration of the F centers in the irradiated layer can be estimated as nz /R, and the
average distance between them correspondingly as

d = (np/R)"3 @)

For the irradiated samples before annealing with spectra shown in the figures 2 and 3 the equation (2)
evaluates d of 3.8—4.8 nm, that means 13—17 interatomic (F-F ion) distances. Note, that the actual distribution is
not uniform, and close to the ion trajectories the color centers can be separated by just a few interatomic
distances [44].

From the other hand, the number of diffusional hops at a constant temperature is

1
M= (At Vexp(—kE—l;))z (3)
B

where v is the attempt frequency factor about 10" s~ [45], Ez—the activation energy of the F centers, and
kg—the Boltzmann constant.

Absorption spectra in the figures 2 and 3 demonstrate that above 400 K both F and F, peaks are starting to
decrease. In this paper we suggest, that the early stage of annealing can be described as a result of the F centers’

3
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Figure 3. Absorption spectra of LiF crystals, irradiated with 23-MeV '°0 ions and stepwise annealed. Fluences of 1 x 10'? (a) and
1 x 10" ions cm ™2 (b) were applied.

diffusion, assuming their migration energy in the ground state of about 1.10-1.40 eV (figure 4), which seems
quite plausible. We suppose the following reactions, comprising the mobile F centers:
F+F—F, F+§ — Ky, F+Hy— Ho 4)

The following equations describe kinetics of the F centers and their aggregates [9, 46]:

9 o0 o
8—J;1 = DHfl(3rF(1)fl + > mmf, + > rH(n)hn)
n=1 n=1

+ Duhl(re(2) f, — re(D) f)
% pefenyf, -~ @) f
+ Duh(re(3) f; — 1:(2) f,)
of,
8: =Dpfi(rr(n — 1) f, | — re(n) f,)
+ Duh(e(n + 1 f,, ) — () f), n >3 (5)
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Figure 4. Number of diffusional jumps of F centers during the annealing step At = 600 s versus temperature for different migration
energies Ep according to the equation (3).

where f,, f,, f, are the distribution function for F, F, and F,, centers correspondingly. For n > 4 we assume nF
aggregates.

Reaction F + H, — H releases mobile interstitials, and those further interactions should be considered.
Thus, for distributions of H centers (h;) and their aggregates (h,, h,,) we have:

% = —DHh1(3TH(1)h1 + > b, + Y TF(”)fn)

n=1 n=1

+ Dr f,(ru(2)hy — (1) hy)

Oh
2 = Dy Qra(1)hy — rg(2)hy)

ot
+ Dr f,(ru(3) hs — 15 (2) hy)

Ooh,,
ot

= Dyhi(ry(n — Dh,_ — rg(n)hy,)
+ D f(ru(n + Dhyyy — rg(mhy), n >3 (6)

Here Dp and Dy are the diffusion coefficients, 7z and r are the reaction factors, describing interaction of
the corresponding aggregates with mobile defects. We assume [46]

2 2
re(n) = n3, ry(n) = ns3 7

as a simple model of the reaction rates, proportional to the aggregate surface areas.

Initial distribution of the color centers can be taken from the modelling of irradiation at room temperature
[46], then equations (5), (6) should be solved to find their concentration after a given time of annealing, which
can be expressed as the number of diffusional hops M according to the equation (3). Typical results of the
calculations are presented in the figure 5.

Below 500 K we do not take into account possible evaporation of the single F centers from F,, centers and
smaller nF aggregates, that would result in the Ostwald ripening, leading to formation of larger nF aggregates and
metal colloids [5, 32, 47, 48].

The modelling confirms our suggestion that the reactions (4), caused by mobility of the single F centers,
provide decrease of both Fand F, centers in favor to larger aggregates. In earlier investigations such
simultaneous decrease of both absorption peaks was attributed to decay of the interstitial aggregates [45], release
of the H centers and their subsequent recombination with F and F,, centers. Alternatively, decay of complexes,
composed of the anion vacancy and a trace element (e.g. oxygen) or cation vacancy, and appearance of the
mobile anion vacancies was proposed in [31]. Anyway, the F centers were supposed to be immobile until 500 K
to explain the effect formerly. But assuming the reactions (4) those mechanisms become unnecessary. The H
centers, despite their high mobility, seemingly do not initiate the annealing reactions below 500 K due to strong
binding within their aggregates.
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Figure 5. Calculated concentrations of the F centers and their aggregates (F,,, nF) as irradiated and after annealing, providing M
hopping distances for the single F centers.

Additional decrease of the F,/F3 peak can be associated with reactions of the F3 centers, providing new
color centers, whereas appearance of the new charged F3 centers is very unlikely during annealing,

4, Conclusion

Optical absorption spectra of the lithium fluoride crystals, irradiated at room temperature with 23-MeV
nitrogen and 28-MeV oxygen ions, comprise of the F and F,, peaks, and both are decreasing during the thermal
annealing, starting from about 400 K. The new interpretation of the effect is suggested.

We assume that below 500 K the annealing process is originated by mobility of the single F centers, their
mutual interactions, and reactions with other color centers. Proposed model does not assume additional
mechanisms, like release of the anion vacancies [31], for this annealing stage. Reaction-rate kinetic modelling of
the color centers during annealing confirms this interpretation and gives migration energy of the F centers about
1.3 eV, that is consistent with the earlier data [24]. It also explains faster decrease of the F5 (2.77 eV) peak relative
totheF, (2.79eV).

Annealing at the temperatures above 500 K demonstrates further decrease of the absorption peaks and
should include decay of the complex color centers and defect aggregates, that will be considered elsewhere.
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