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A B S T R A C T

The quadratic-phase Fourier transform (QPFT) has gained much popularity in recent years
because of its applications in image and signal processing. However, the QPFT is inadequate for
localizing the quadratic-phase spectrum, which is required in some applications. In this paper,
the quadratic-phase wave packet transform (QP-WPT) is proposed to address this problem,
based on the wave packet transform (WPT) and QPFT. Firstly, we propose the definition of
the QP-WPT and give its relation with windowed Fourier transform (WFT). Secondly, several
notable inequalities and important properties of newly defined QP-WPT, such as boundedness,
reconstruction formula, Moyal’s formula, reproducing kernel are derived. Finally, we formulate
several classes of uncertainty inequalities, such as Leib’s uncertainty principle, logarithmic
uncertainty inequality and the Heisenberg uncertainty inequality.

. Introduction

The Fourier transform (FT) is an important tool in optical communication and signal processing [1]. However, owing to its
lobal kernel the FT is incapable of obtaining information about local properties of the signal. But, the actual signals are often
on-stationary or time-variable, so to overcome this problem, the short-time Fourier transform (STFT) is employed that uses a time
indow of fixed length applied at regular intervals so that we can obtain a portion of the signal considered to be stationary [2].
he resulting time-varying spectral depiction is critical for non-stationary signal analysis, but in this case it comes at fixed spectral
nd temporal resolution. The wavelet analysis [3,4] provides an attractive and pinch-hitting tool to the STFT by using an optical
ultichannel correlator with a bank of wavelet transform (WT) filters, which can provide a better illustration of the signal instead

f the STFT. Nonetheless, in the high frequency region WT has poor frequency resolution. To solve this defect the wave packet
ransform (WPT) was proposed by combining the merits of STFT and WT [5,6]. WPT is a linear transform which uses the Weyl
perator and the wave packages.

In recent years, researchers have successfully applied WPT in the fields of wireless communication, denoising, and image
ompression [7–14]. WPT is used widely in signal processing as it has some better morality than WT [15,16]. Moreover, it can
ealize multilevel decomposition and analyze the high frequency decomposition that is not achieved in traditional discrete WT. The
requency subbands of signal are selected via wave packet decomposition, that improves the time–frequency resolution capability
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of the signal. However, the WPT is defined as the FT of the signal windowed with the wavelet, so the results obtained by WPT will
not be optimal in dealing with chirp signals whose energy is not well concentrated in FT domain.

A superlative generalized version of the FT called quadratic-phase Fourier transform (QPFT) has been introduced by Castro
t al. [17,18]. This novel transform has overthrown all the applicable signal processing tools as it provides a unified analysis of
oth transient and non-transient signals in an easy and insightful fashion. The QPFT is actually a generalization of several well
nown transforms like Fourier, fractional Fourier and linear canonical transforms whose kernel is in the exponential form. Due
o its extra degrees of freedom, the QPFT has marked its importance in treatment of problems demanding several controllable
arameters arising in diverse branches of science and engineering, including harmonic analysis, sampling, image processing, and so
n [18–24].

Recently Prasad and Sharma [25] introduced the quadratic-phase Fourier wavelet transform (QPFWT), which is generalization of
lassical continuous wavelet transform (CWT) [26–32], continuous fractional wavelet transform [33–35], as well as generalization of
inear canonical wavelet transform [35,36]. QPFWT intertwine the advantages of the quadratic-phase Fourier and wavelet transforms
nto a novel integral transform which assimilates their individual properties. However, the transform neither relies on the complete
ernel of the QPFT nor exhibits any existing convolution structure in the QPFT. So Shah and Lone [19] introduced quadratic-phase
avelet in different approach which is completely reliant upon convolution associated with QPFT.

As one of the generalization of the classical WPT, the fractional wave packet transform (Fr-WPT) and linear canonical wave
acket transform (LC-WPT) have been introduced to improve the performance in concentration [37–39]. They have attained a
uch more attention of the signal processing community and optics. But to the best of our knowledge theory about quadratic-phase
ave packet transform (QP-WPT) have never been proposed up to date, therefore it is worthwhile to study the theory of QP-WPT
ased on the WPT and QPFT, which can be productive for signal processing theory and applications. Therefore, the cynosure of this
aper is to rigorously study the QP-WPT.

The highlights of the paper are pointed out below:

• To introduce a novel integral transform coined as the quadratic-phase wave packet transform.
• To establish relationship between quadratic-phase wave packet transform with FT and windowed Fourier transform (WFT).
• To study several notable inequalities and important properties of newly defined QP-WPT, such as boundedness, reconstruction

formula, Moyal’s formula, reproducing kernel.
• To formulate several classes of uncertainty inequalities, such as Leib-type, the logarithmic uncertainty inequalities and the

Heisenberg-type uncertainty inequalities associated with the QP-WPT.

The paper is organized as follows. In Section 2, we provide some preliminary results required in subsequent sections. In Section 3,
e provide the definition of QP-WPT. Then, we investigated several basic properties of the QP-WPT which are important for signal

epresentation in signal processing. In Section 4, we develop a series of uncertainty inequalities such as Leib’s uncertainty principle,
he logarithmic uncertainty inequality and the Heisenberg-type inequality associated with the QP-WPT. Finally, a conclusion is
xtracted in Section 5.

. Preliminaries

In this section we recall some basic concepts and notations, which will be useful in our study on QP-WPT.

.1. Fourier transform (FT)

We use the following definition of FT [1] on 𝐿1(R) space

 [𝑓 ](𝜉) = 1
√

2𝜋 ∫R
𝑓 (𝑡)𝑒−𝑖𝑡𝜉𝑑𝑡, ∀𝜉 ∈ R. (2.1)

2.2. Continuous wavelet transform (CWT)

Wavelet transform presents an attractive alternative to the STFT by using a time–frequency window that changes with frequency,
which can effectively provide resolution of varying granularity. The CWT of a signal 𝑓 (𝑡) ∈ 𝐿2(R) is defined as [28,29]

𝐶𝑊 𝑇𝑓 (𝛽, 𝛼) =
1
√

𝛼 ∫R
𝑓 (𝑡)𝜓∗

(

𝑡 − 𝛽
𝛼

)

𝑑𝑡, (2.2)

here ∗ denotes the complex conjugate and 𝑡 is time, 𝛽 is the translation parameter, 𝛼 is the scaling parameter and 𝜓(𝑡) is the
2

2

ransforming function, called mother wavelet. Here 𝛼 > 0 and 𝜓 is normalized such that the ‖𝜓‖ = 1 in 𝐿 (R) space.
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2.3. Windowed fourier transform

The WFT of 𝑓 (𝑡) ∈ 𝐿2(R) with respect to the windowed function 𝜙 ∈ 𝐿2(R) is defined as [40]

𝜙[𝑓 ](𝑤, 𝛽) = ∫R
𝑓 (𝑡)𝜙∗(𝑡 − 𝛽)𝑒−𝑖𝜉𝑡𝑑𝑡 (2.3)

and the inverse of the function 𝑓 (𝑡) ∈ 𝐿2(R) is defined by [24]

𝑓 (𝑡) = 𝑏
2𝜋⟨𝜙, 𝜓⟩ ∫R ∫R

𝜙[𝑓 ](𝜉, 𝛽)𝑒𝑖𝜉𝑡𝜓(𝑡 − 𝛽)𝑑𝜉𝑑𝛽, (2.4)

where, 𝜓 ∈ 𝐿2(R).

2.4. Wave packet transform (WPT)

The WPT combines elements of STFT and CWT, and it can be viewed as [7,8]

𝑊𝑃𝑇𝑓 (𝜉, 𝛽, 𝛼) =
1

√

2𝜋𝛼 ∫R
𝑓 (𝑡)𝜓𝛼 (𝑡 − 𝛽)𝑒−𝑖𝜉𝑡𝑑𝑡 (2.5)

where 𝜓𝛼 (𝑡 − 𝛽) = 𝜓
(

𝑡−𝛽
𝛼

)

.
The WPT is the FT of a signal windowed with a wavelet that is dilated by 𝛼 and translated by 𝛽.

emma 2.1 ([38]). Let 𝜓 ∈ 𝐿𝑝(R), 𝑝 ∈ [1,∞). Then, ‖𝜓𝛼(𝑡 − 𝛽)‖𝐿𝑝(R) = 𝛼(1∕𝑝−1∕2)‖𝜓‖𝐿𝑝(R).

.5. Quadratic-phase fourier transform (QPFT)

In this subsection we introduce the QPFT, which is a neoteric addition to the classical integral transforms and we also gave its
nversion formula and some other classical results which are already present in literature.

efinition 2.1. Given a parameter 𝜇 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒), the QPFT of any signal 𝑓 is defined by [25]

𝜇[𝑓 ](𝜉) = ∫ 𝑓 (𝑡)𝐾𝜇(𝑡, 𝜉)𝑑𝑡, (2.6)

here 𝐾𝜇(𝑡, 𝜉) is the quadratic-phase Fourier kernel, given by

𝐾𝜇(𝑡, 𝜉) =
√

𝑏
2𝜋𝑖

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉+𝑑𝑡+𝑒𝜉) (2.7)

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ R, 𝑏 ≠ 0.

heorem 2.1. The inversion formula of the QPFT is given by [25]

𝑓 (𝑡) = ∫ 𝜇[𝑓 ](𝜉)𝐾𝜇(𝑡, 𝜉)𝑑𝜉. (2.8)

Using the inversion theorem, we can get the Parseval’s relation given by [25]

⟨𝑓, 𝑔⟩ = ⟨𝜇[𝑓 ],𝜇[𝑔]⟩ (2.9)

and Plancherel identity is given by

∫ |𝜇[𝑓 ](𝜉)|2𝑑𝜉 = ∫ |𝑓 (𝑡)|2𝑑𝑡. (2.10)

Theorem 2.2 ([19,20]). Let 𝑓, 𝑔 ∈ 𝐿2(R) and 𝛼, 𝛽, 𝜏 ∈ R, then

• 𝜇[𝛼𝑓 + 𝛽𝑔](𝜉) = 𝛼Q𝜇[𝑓 ](𝑤) + 𝛽Q𝜇[𝑔](𝑤).
• 𝜇[𝑓 (𝑡 − 𝜏)](𝜉) = 𝑒𝑥𝑝{−𝑖(𝑎𝜏2 + 𝑏𝜏𝜉 + 𝑑𝜏)}𝜇[𝑒−2𝑖𝑎𝜏𝑡𝑓 (𝑡)](𝜉).
• 𝜇[𝑓 (−𝑡)](𝜉) = 𝜇′ [𝑓 (𝑡)](−𝜉), 𝜇′ = (𝑎, 𝑏, 𝑐,−𝑑,−𝑒).
• 𝜇[𝑒𝑖𝛼𝑡𝑓 (𝑡)](𝜉) = 𝑒𝑥𝑝{𝑖(𝛼2 + 2𝛼𝑏𝜉 + 𝛼𝑒𝑏) 1𝑏 }𝜇[𝑓 ]

(

𝑤 + 𝑎
𝑏

)

.

• 𝜇[𝑓 (𝑡)](𝑤) = −𝜇[𝑓 (𝑡)](𝑤).

Theorem 2.3 (Convolution [25]). If 𝑓, 𝑔 ∈ 𝐿2(𝐑), then

𝜇[𝑓 ∗𝜇 𝑔](𝜉) =
√

2𝜋𝑖 𝑒−𝑖(𝑐𝜉
2+𝑒𝜉)𝜇[𝑓 ](𝜉)𝜇[𝑒−𝑖𝑎(⋅)

2−𝑖𝑑(⋅)𝑔](𝜉), (2.11)
3

𝑏
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where

(𝑓 ∗𝜇 𝑔)(𝑡) = ∫𝐑
𝑓 (𝑥)𝑔(𝑡 − 𝑥)𝑒−𝑖𝑎(𝑡

2−𝑧2)−𝑖𝑑(𝑡−𝑧)𝑑𝑧. (2.12)

2.6. Quadratic-phase wavelet transform (QPWT)

The generalization of the classical CWT, continuous fractional wavelet transform, as well as generalization of linear canonical
wavelet transform, is the quadratic-phase wavelet transform (QPWT).

For a signal 𝑓 (𝑡) ∈ 𝐿2(R), the continuous quadratic-phase wavelet transform of 𝑓 with respect to an analyzing wavelet 𝜓 ∈ 𝐿2(R)
and the parameter set 𝜇 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) is defined by [25]

𝐶𝑄𝑃𝑊 𝑇𝑓 (𝛽, 𝛼) =
√

𝑏
2𝜋𝑖 ∫R

𝑓 (𝑡)𝜓𝜇𝛽,𝛼(𝑡)𝑑𝑡, (2.13)

here the family 𝜓𝜇𝛽,𝛼(𝑡) is called quadratic-phase wavelet (QPW) and is given by

𝜓𝜇𝛽,𝛼(𝑡) =
1
√

𝛼
𝜓
(

𝑡 − 𝛽
𝛼

)

𝑒−𝑖𝑎(𝑡
2−𝛽2)−𝑖𝑑(𝑡−𝛽). (2.14)

emma 2.2 ([25]). If 𝜓 ∈ 𝐿2(R), Then 𝜓𝜇𝛽,𝛼 ∈ 𝐿2(R) with ‖𝜓𝜇𝛽,𝛼‖
2 = ‖𝜓‖2.

Now we are ready to introduce a novel integral transform the QP-WPT.

. Quadratic-phase wavelet packet transform (QP-WPT)

In this section, we propose a definition of QP-WPT based on the idea of WPT by adding extra dimension to kernel and wavelet.
e replace the wave packet transform kernel by the QPFT kernel and the wavelet by the quadratic-phase wavelet (QPW).

efinition 3.1 (QP-WPT). The QP-WPT transform of a function 𝑓 ∈ Ł2(R) with respect to wavelet function 𝜓 is defined as

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝜓𝜇𝛽,𝛼(𝑡)𝐾𝜇(𝑡, 𝜉)𝑑𝑡

=
√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)𝑓 (𝑡)𝜓𝜇𝛽,𝛼(𝑡)𝑑𝑡, (3.1)

where 𝜓𝜇𝛽,𝛼(𝑡) = 𝜓𝛼 (𝑡 − 𝛽) 𝑒−𝑖𝑎(𝑡
2−𝛽2)−𝑖𝑑(𝑡−𝛽) and 𝜓𝛼(𝑡) =

1
𝛼𝜓

(

𝑡
𝛼

)

.

Remark 3.1. By varying the parameter 𝜇 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) Definition 3.1 embodies certain existing time–frequency transforms and
also give birth to some novel time–frequency tools which are yet to be reported in the open literature which are listed below:

• For 𝜇 = (𝑎∕2𝑏,−1∕𝑏, 𝑐∕2𝑏, 0, 0), Definition 3.1 boils down to the novel linear canonical wave packet transform

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝐾𝜇(𝑡, 𝜉)𝜓
(

𝑡 − 𝛽
𝛼

)

𝑒𝑖
𝑎
2𝑏 (𝑡

2−𝛽2)𝑑𝑡.

• For 𝜇 = (cot 𝜃,−csc 𝜃, cot 𝜃, 0, 0), 𝜃 ≠ 𝑛𝜋 Definition 3.1 reduces to the novel fractional wave packet transform

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝐾𝜇(𝑡, 𝜉)𝜓
(

𝑡 − 𝛽
𝛼

)

𝑒𝑖 cot 𝜃(𝑡
2−𝛽2)𝑑𝑡.

• For 𝜇 = (1, 𝑏, 0, 1, 0), 𝑏 ≠ 0, we can obtain the novel Fresnel wave packet transform

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝐾𝜇(𝑡, 𝜉)𝜓
(

𝑡 − 𝛽
𝛼

)

𝑒𝑖(𝑡
2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑑𝑡.

• For 𝜇 = (0,−1, 1, 0, 0), Definition 3.1 reduces to the classical wave packet transform

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝐾𝜇(𝑡, 𝜉)𝜓
(

𝑡 − 𝛽
𝛼

)

𝑑𝑡.

Theorem 3.2. Let 𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) and 𝑄𝜇[𝑓 ] be the QP-WPT and QPFT of a function 𝑓 ∈ 𝐿2(R), respectively and let 𝜓𝜇𝛽,𝛼 be the QPW, then

we have

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) =

√

𝛼 ∫R
𝐾𝜇(𝑤, 𝛽)𝑒−𝑖[𝑐(𝛼𝑤)

2+𝑒(𝛼𝑤)−2𝑐𝑤𝜉]

× [𝑒𝑖𝑎(.)
2+𝑖𝑑(.)𝑓 (𝑡)](𝑤 + 𝜉)𝑄 [𝑒−𝑖𝑎(.)

2−𝑖𝑑(.)𝜓(.)](𝛼𝑤)𝑑𝑤. (3.2)
4

𝜇 𝜇



Optik 261 (2022) 169120M.Y. Bhat et al.

T

w

P

Proof. Let us denote

𝑓𝜉,𝜇 =
√

𝑏
2𝜋𝑖

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)𝑓 (𝑡).

On taking QPFT on both sides of above equation, we have

𝜇[𝑓𝜉,𝜇] = ∫R
𝐾(𝑤, 𝑡)𝑓𝜉,𝜇(𝑡)𝑑𝑡

= ∫R

√

𝑏
2𝜋𝑖

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝑤+𝑐𝑤2+𝑑𝑡+𝑒𝑤)

√

𝑏
2𝜋𝑖

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)𝑓 (𝑡)𝑑𝑡

=
√

𝑏
2𝜋𝑖 ∫R

√

𝑏
2𝜋𝑖

𝑒𝑖[𝑎𝑡
2+𝑏𝑡(𝑤+𝜉)+𝑐(𝑤+𝜉)2+𝑑𝑡+𝑒(𝑤+𝜉)]

×𝑒𝑖(𝑎𝑡
2+𝑑𝑡)𝑓 (𝑡)𝑒−𝑖(2𝑐𝑤𝜉)𝑑𝑡

=
√

𝑏
2𝜋𝑖

𝑒−𝑖2𝑐𝑤𝜉𝜇[𝑒𝑖(𝑎𝑡
2+𝑑𝑡)𝑓 (𝑡)](𝑤 + 𝜉).

From [25], we have

𝑄𝜇[𝜓
𝜇
𝛽,𝛼](𝑤) =

√

𝛼𝑒𝑖(𝑎𝛽
2+𝑏𝛽𝑤+𝑐𝑤2+𝑑𝛽+𝑒𝑤)−𝑖𝑐(𝛼𝑤)2−𝑖𝑒(𝛼𝑤) ×𝑄𝜇[𝑒−𝑖𝑎(.)

2−𝑖𝑑(.)𝜓(.)](𝛼𝑤).

he QP-WPT is represented in terms of inner product of 𝑓𝜉,𝜇 and 𝜓𝜇𝛽,𝛼 and by Parseval theorem of QPFT, we have

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ⟨𝑓𝜉,𝜇 , 𝜓

𝜇
𝛽,𝛼⟩

=
⟨

𝜇[𝑓𝜉,𝜇], 𝑄𝜇[𝜓
𝜇
𝛽,𝛼]

⟩

=
√

𝛼𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝛽
2+𝑏𝛽𝑤+𝑐𝑤2+𝑑𝛽+𝑒𝑤−𝑐(𝛼𝑤)2−𝑒(𝛼𝑤)−2𝑐𝑤𝜉)

×𝜇[𝑒𝑖(𝑎𝑡
2+𝑑𝑡)𝑓 (𝑡)](𝑤 + 𝜉)𝑄𝜇[𝑒−𝑖𝑎(.)

2−𝑖𝑑(.)𝜓(.)](𝛼𝑤)𝑑𝑤.

Now using (2.7), we get the desired proof. □

Further, the definition of the QP-WPT in (3.1) can be rewritten as

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) =

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽) × 𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= ∫R
𝑓 (𝑡)𝜓𝜇𝜉,𝛽,𝛼,𝑑𝑡, (3.3)

here

𝜓𝜇𝜉,𝛽,𝛼,(𝑡) =

(

√

𝑏
2𝜋𝑖

)

𝑒−𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)−𝑖𝑎(𝑡2−𝛽2)−𝑖𝑑(𝑡−𝛽)𝜓𝛼(𝑡 − 𝛽). (3.4)

roposition 3.1 (Relation with WFT).

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) =

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)

∫R

√

𝑏
2𝜋𝑖

𝑒𝑖(2𝑎𝑡
2+𝑏𝑡𝜉+2𝑑𝑡)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)

∫R

√

𝑏
2𝜋𝑖

𝑒𝑖(2𝑎𝑡
2+2𝑑𝑡)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑒𝑖𝑏𝑡𝜉𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)𝜓𝜇 [ℎ](𝑏𝜉, 𝛽), (3.5)

where ℎ(𝑡) =
√

𝑏
2𝜋𝑖 𝑒

𝑖(2𝑎𝑡2+2𝑑𝑡)𝑓 (𝑡).

3.1. Basic properties of the QP-WPT

In this subsection we prove some notable inequalities associated with the QP-WPT. Moreover, we also investigate some basic
properties of the QP-WPT which are important for signal representation in signal processing.

Lemma 3.1. Let 𝜓𝛼 ∈ Ł𝑝(R) and 𝑓 ∈ 𝐿𝑞(R) and 𝑝, 𝑞 ∈ [1,∞) with 1
𝑝 +

1
𝑞 , then

|𝑊 𝜇(𝜉, 𝛽, 𝛼)| ≤ 𝛼(1∕𝑝−1∕2)
√

𝑏
‖𝜓‖ 𝑝 ‖𝑓‖ 𝑞 . (3.6)
5

𝑓 2𝜋 𝐿 (R) 𝐿 (R)
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Proof. From (3.3), we have

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)| =

|

|

|

|

|

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

|

|

|

|

|

=
√

𝑏
2𝜋

|

|

|

|

∫R
𝑒𝑖(𝑎𝑡

2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡
|

|

|

|

≤
√

𝑏
2𝜋

|

|

|

|

∫R
𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

|

|

|

|

.

By Lemma 2.1 and Holder’s inequality, above yields

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)| ≤ 𝛼(1∕𝑝−1∕2)

√

𝑏
2𝜋

‖𝜓‖𝐿𝑝(R)‖𝑓‖𝐿𝑞 (R),

which completes the proof. □

Theorem 3.3 (Boundedness). For 𝜓, 𝑓 ∈ Ł2(R), the QP-WPT is bounded on Ł2(R).

Proof. By taking 𝑝 = 𝑞 = 2 in Lemma 3.1, we have:

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)| ≤

√

𝑏
2𝜋

‖𝜓‖𝐿2(R)‖𝑓‖𝐿2(R),

hich shows that the QP-WPT is bounded on 𝐿2(R). □

heorem 3.4. Let 𝜓 ∈ 𝐿𝑝(R) and 𝑓 ∈ 𝐿1(R) ∩ 𝐿1(R). Then we have

‖𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)‖𝐿𝑝(R) ≤ 𝛼(1∕𝑝−1∕2)

√

𝑏
2𝜋

‖𝜓‖𝐿𝑝(R)‖𝑓‖𝐿1(R). (3.7)

roof. By applying the Minkowski’s inequality to (3.3), we obtain

‖𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)‖𝐿𝑝(R) =

(

∫R

|

|

|

|

|

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

|

|

|

|

|

𝑝

𝑑𝛽

)1∕𝑝

≤
√

𝑏
2𝜋 ∫R

(

∫R
|

|

|

𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)
|

|

|

𝑝
𝑑𝛽

)1∕𝑝
𝑑𝑡.

etting 𝑡 − 𝛽 = 𝑦, we have

‖𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)‖𝐿𝑝(R) =

√

𝑏
2𝜋 ∫R

(

∫R
|

|

|

𝑓 (𝑡)𝜓𝛼(𝑦)
|

|

|

𝑝
𝑑𝑦

)1∕𝑝
𝑑𝑡

≤
√

𝑏
2𝜋 ∫R

(

∫R
|

|

|

𝜓𝛼(𝑦)
|

|

|

𝑝
𝑑𝑦

)1∕𝑝
|𝑓 (𝑡)|𝑑𝑡

≤
√

𝑏
2𝜋

‖𝜓𝛼‖𝐿𝑝(R)‖𝑓‖𝐿1(R)

≤ 𝛼(1∕𝑝−1∕2)
√

𝑏
2𝜋

‖𝜓‖𝐿𝑝(R)‖𝑓‖𝐿1(R),

which completes the proof. □

Theorem 3.5 (Reconstruction theorem). Every signal 𝑓 ∈ 𝐿2(R), can be reconstructed from QP-WPT by the formula

𝑓 (𝑡) = ∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝜓

𝜇
𝜉,𝛽,𝛼(𝑡)𝑑𝜉𝑑𝛽. (3.8)

Proof. Let ℎ(𝑡), 𝜓, 𝜙 ∈ 𝐿2(R). Assuming ⟨𝜙, 𝜓⟩ ≠ 0 and 𝜓𝛼 as a windowed function then by the inverse of the WFT (2.4), we have

ℎ(𝑡) = 𝑏
2𝜋⟨𝜙, 𝜓⟩ ∫R ∫R

𝜓𝜇 [ℎ](𝑏𝜉, 𝛽)𝑒−𝑖𝑏𝑡𝜉𝜓𝛼(𝑡 − 𝛽)𝑑𝜉𝑑𝛽.

By virtue of (3.5), we have from above equation
√

𝑏
2𝜋𝑖

𝑒𝑖(2𝑎𝑡
2+2𝑑𝑡)𝑓 (𝑡) = 𝑏

2𝜋⟨𝜙, 𝜓⟩ ∫R ∫R
𝑒−𝑖(𝑐𝜉

2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)𝑒−𝑖𝑏𝑡𝜉

×𝜓𝛼(𝑡 − 𝛽)𝑊
𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝑑𝜉𝑑𝛽,

𝑓 (𝑡) =
√

𝑏𝑖 1 𝑒−𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽+2𝑑𝑡+𝑏𝑡𝜉+2𝑎𝑡2)
6

2𝜋 ⟨𝜙, 𝜓⟩ ∫R ∫R
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×𝜓𝛼(𝑡 − 𝛽)𝑊
𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝑑𝜉𝑑𝛽

= 1
⟨𝜙, 𝜓⟩ ∫R ∫R

𝜓𝜇𝜉,𝛽,𝛼(𝑡)𝑊
𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝑑𝜉𝑑𝛽. (3.9)

For perfect reconstruction take ⟨𝜙, 𝜓⟩ = 1, above equation yields

𝑓 (𝑡) = ∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝜓

𝜇
𝜉,𝛽,𝛼(𝑡)𝑑𝜉𝑑𝛽,

which completes the proof. □

Theorem 3.6 (Moyal’s Formula). Let 𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) and 𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼) be the QP-WPT with respect to the wavelets 𝜓 and 𝜙 respectively, then

⟨𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼),𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)⟩𝐿2(R2) = ⟨𝜓, 𝜙⟩𝐿2(R)⟨𝑓, 𝑔⟩𝐿2(R). (3.10)

roof.

⟨𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼),𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)⟩ = ∫R2

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)𝑑𝜉𝑑𝛽

= ∫R2

{

∫R
𝑓 (𝑡)𝜓𝜇𝛽,𝛼(𝑡)𝐾𝜇(𝑡, 𝜉)𝑑𝑡

× ∫R
𝑔(𝑡′)𝜙𝜇𝛽,𝛼(𝑡

′)𝐾𝜇(𝑡′, 𝜉)𝑑𝑡′
}

𝑑𝜉𝑑𝛽

= ∫R2 ∫R
𝑓 (𝑡)𝑔(𝑡′)𝜙𝜇𝛽,𝛼(𝑡

′)𝜓𝜇𝛽,𝛼(𝑡)∫R
𝐾𝜇(𝑡, 𝜉)𝐾𝜇(𝑡′, 𝜉)𝑑𝜉𝑑𝑡𝑑𝑡′𝑑𝛽

= ∫R2 ∫R
𝑓 (𝑡)𝑔(𝑡′)𝜙𝛼(𝑡′ − 𝛽)𝜓𝛼(𝑡 − 𝛽)

𝑏
2𝜋 ∫R

𝑒𝑖𝑏𝜉(𝑡−𝑡
′)𝑑𝜉𝑑𝑡𝑑𝑡′𝑑𝛽

= ∫R2 ∫R
𝑓 (𝑡)𝑔(𝑡′)𝜙𝛼(𝑡′ − 𝛽)𝜓𝛼(𝑡 − 𝛽)𝛿(𝑡 − 𝑡′)𝑑𝑡′𝑑𝑡𝑑𝛽

= ∫R ∫R
𝑓 (𝑡)𝑔(𝑡)𝜙𝛼(𝑡 − 𝛽)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡𝑑𝛽

= ∫R
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡∫R

1
𝛼
𝜙
(

𝑡 − 𝛽
𝛼

)

𝜓
(

𝑡 − 𝛽
𝛼

)

𝑑𝛽

= ⟨𝜓, 𝜙⟩𝐿2(R)⟨𝑓, 𝑔⟩𝐿2(R).

which completes the proof. □

Consequences of Theorem 3.6:

• If 𝜓 = 𝜙, then

⟨𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼),𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)⟩𝐿2(R2) = ‖𝜓‖2

𝐿2(R)⟨𝑓, 𝑔⟩𝐿2(R). (3.11)

• If 𝜓 = 𝜙, and 𝑓 = 𝑔, then

⟨𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼),𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)⟩𝐿2(R2) = ‖𝜓‖2

𝐿2(R)‖𝑓‖
2
𝐿2(R). (3.12)

• If 𝜓 = 𝜙 = 1, and 𝑓 = 𝑔, then

⟨𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼),𝑊

𝜇
𝑔 (𝜉, 𝛽, 𝛼)⟩𝐿2(R2) = ‖𝑓‖2

𝐿2(R). (3.13)

Remark 3.7 (Energy conservation). Eq. (3.13) yields the conservation of energy for the QP-WPT

∫R2

|

|

|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉𝑑𝛽 = ∫R

|𝑓 (𝑡)|2 𝑑𝑡. (3.14)

Theorem 3.8 (Reproducing kernel). Let (𝜉0, 𝛽0, 𝛼) be any point on the plane of (𝜉, 𝛽, 𝛼), the necessary and sufficient condition that the
function 𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼) is the QP-WPT of some function is that 𝑊
𝜇
𝑓 (𝜉, 𝛽, 𝛼) must satisfy the following reproducing kernel formula

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R ∫R

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)K𝜓𝜇 (𝜉, 𝛽, 𝛼 ∶ 𝜉0, 𝛽0, 𝛼)𝑑𝜉𝑑𝛽, (3.15)

where 𝑊 𝜇
𝑓 (𝜉0, 𝛽0, 𝛼) is value of function 𝑊

𝜇
𝑓 (𝜉, 𝛽, 𝛼) at (𝜉0, 𝛽0, 𝛼), and K𝜓𝜇 (𝜉, 𝛽, 𝛼 ∶ 𝜉0, 𝛽0, 𝛼) is called the reproducing kernel given by

𝜇 𝜇
7

K𝜓𝜇 (𝜉, 𝛽, 𝛼 ∶ 𝜉0, 𝛽0, 𝛼) = ⟨𝜓𝜉,𝛽,𝛼 , 𝜓𝜉0 ,𝛽0 ,𝛼⟩. (3.16)
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Proof. From (3.3) and (3.8), we have

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) = ∫R

𝑓 (𝑡)𝜓𝜇𝜉,𝛽,𝛼(𝑡)𝑑𝑡

= ∫R

{

∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝜓

𝜇
𝜉,𝛽,𝛼(𝑡)𝑑𝜉𝑑𝛽

}

𝜓𝜇𝜉,𝛽,𝛼(𝑡)𝑑𝑡.

etting (𝜉, 𝛽, 𝛼) = (𝜉0, 𝛽0, 𝛼), we have

𝑊 𝜇
𝑓 (𝜉0, 𝛽0, 𝛼) = ∫R

{

∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝜓

𝜇
𝜉,𝛽,𝛼(𝑡)𝑑𝜉𝑑𝛽

}

𝜓𝜇𝜉0 ,𝛽0 ,𝛼(𝑡)𝑑𝑡

= ∫R ∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)𝜓

𝜇
𝜉,𝛽,𝛼(𝑡)𝜓

𝜇
𝜉0 ,𝛽0 ,𝛼

(𝑡)𝑑𝑡𝑑𝜉𝑑𝛽

= ∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

{

∫R
𝜓𝜇𝜉,𝛽,𝛼(𝑡)𝜓

𝜇
𝜉0 ,𝛽0 ,𝛼

(𝑡)𝑑𝑡
}

𝑑𝜉𝑑𝛽

= ∫R ∫R
𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)K𝜓𝜇 (𝜉, 𝛽, 𝛼 ∶ 𝜉0, 𝛽0, 𝛼)𝑑𝜉𝑑𝛽,

which completes the proof. □

4. Uncertainty principle’s for the QP-WPT

Uncertainty principle has applications in two main areas: harmonic analysis and signal analysis. This principle in harmonic
analysis stems from the uncertainty principle in quantum mechanics, which tells that a particle’s velocity and position cannot be
measured with infinite precision. In signal analysis, it tells that if one observes a signal only for a finite time, then the knowledge
about the frequencies consisted by the signal is lost. In this section, we first prove QP-WPT Lieb’s uncertainty principle by considering
the relationship between the WFT and QP-WPT. Then we will obtain a logarithmic uncertainty principle associated with the QP-
WPT by using the relation fundamental between FT and QP-WPT. Finally, we wil establish a generalization of the Heisenberg type
uncertainty principle for the QP-WPT.

Theorem 4.1 (Leib’s uncertainty principle). For 𝜓, 𝑓 ∈ 𝐿2(R) and 2 ≤ 𝑝 <∞, the following inequality holds:

∫R ∫R
|

|

|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

𝑝
𝑑𝜉𝑑𝛽 ≤ 2

𝑝
(𝑀𝜇)𝑝

(

‖𝑓‖2‖𝜓‖2
)𝑝 , (4.1)

here (𝑀𝜇) = (2𝜋)
−1
2
|𝑏|

1
2−

1
𝑝 .

roof. The Lieb’s uncertainty principle for the windowed Fourier transform [40,41] reads

∫R ∫R
|

|

|

𝜓 [𝑓 ](𝜉, 𝛽)
|

|

|

𝑝
𝑑𝜉𝑑𝛽 ≤ 2

𝑝
(

‖𝑓‖2‖𝜓‖2
)𝑝 (4.2)

or all 𝑓, 𝜓 ∈ 𝐿2(R) and 2 ≤ 𝑝 <∞.
For 𝑓 ∈ 𝐿2(R) we have function ℎ(𝑡) =

√

𝑏
2𝜋𝑖 𝑒

𝑖(2𝑎𝑡2+2𝑑𝑡)𝑓 (𝑡) ∈ 𝐿2(R), therefore we can replace 𝑓 in (4.2) by ℎ as:

∫R ∫R
|

|

|

𝜓𝜇𝛼 [ℎ](𝜉, 𝛽)
|

|

|

𝑝
𝑑𝜉𝑑𝛽 ≤ 2

𝑝
(

‖ℎ‖2‖𝜓
𝜇
𝛼 ‖2

)𝑝

= 2
𝑝

⎛

⎜

⎜

⎜

⎝

(

∫R

|

|

|

|

|

√

𝑏
2𝜋𝑖

𝑒𝑖(2𝑎𝑡
2+2𝑑𝑡)𝑓 (𝑡)

|

|

|

|

|

2

𝑑𝑡

)

1
2

‖𝜓𝛼‖2

⎞

⎟

⎟

⎟

⎠

𝑝

. (4.3)

ubstituting 𝜉 = 𝑏𝜉 in (4.3), we have

∫R ∫R
|𝑏| ||

|

𝜓𝜇𝛼 [ℎ](𝑏𝜉, 𝛽)
|

|

|

𝑝
𝑑𝜉𝑑𝛽 ≤ 2

𝑝

( 𝑏
2𝜋

)

𝑝
2
⎛

⎜

⎜

⎝

(

∫R
|𝑓 (𝑡)|2 𝑑𝑡

)
1
2
‖𝜓𝛼‖2

⎞

⎟

⎟

⎠

𝑝

. (4.4)

Using (3.5) in (4.4)

∫R ∫R
|

|

|

𝑒−𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)
|

|

|

𝑝
𝑑𝜉𝑑𝛽 ≤ 2

𝑝|𝑏|

( 𝑏
2𝜋

)

𝑝
2
⎛

⎜

⎜

⎝

(

∫R
|𝑓 (𝑡)|2 𝑑𝑡

)
1
2
‖𝜓𝛼‖2

⎞

⎟

⎟

⎠

𝑝

. (4.5)

n further simplifying (4.5) and using Lemma 2.2, we have

|

|𝑊 𝜇(𝜉, 𝛽, 𝛼)||
𝑝
𝑑𝜉𝑑𝛽 ≤ 2 ( 𝑏 )

𝑝
2 (

‖𝑓‖2‖𝜓‖2
)𝑝
8

∫R ∫R |

𝑓
| 𝑝|𝑏| 2𝜋
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T

P

A
(

C

O

O

= 2
𝑝

⎛

⎜

⎜

⎝

1

|𝑏|
1
𝑝

⎞

⎟

⎟

⎠

𝑝
(

|𝑏|
1
2

(2𝜋)
1
2

)𝑝
(

‖𝑓‖2‖𝜓‖2
)𝑝 ,

which completes the proof. □

Lemma 4.1 (Relation between QP-WPT and FT). We have from (3.3)

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) =

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)𝑓 (𝑡)𝜓𝜇𝛽,𝛼𝑑𝑡

=
√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(𝑎𝑡
2+𝑏𝑡𝜉+𝑐𝜉2+𝑑𝑡+𝑒𝜉)+𝑖𝑎(𝑡2−𝛽2)+𝑖𝑑(𝑡−𝛽)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(2𝑎𝑡
2+𝑏𝑡𝜉+2𝑑𝑡)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)

√

𝑏
2𝜋𝑖 ∫R

𝑒𝑖(2𝑎𝑡
2+2𝑑𝑡)𝑒𝑖𝑏𝜉𝑡𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)𝑑𝑡

= 𝑒𝑖(𝑐𝜉
2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)

√

𝑏
𝑖
 [𝑔](𝑏𝜉), (4.6)

here

𝑔(𝑡) = 𝑒𝑖(2𝑎𝑡
2+2𝑑𝑡)𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽). (4.7)

heorem 4.2 (Logarithmic uncertainty principle). Let 𝜓 ∈ 𝐿2(R) and 𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) be the QP-WPT of 𝑓 ∈ (R) [Schwartz space]. Then,

the following logarithmic inequality holds:

‖𝜓‖2 ∫R
ln |𝑡||𝑓 (𝑡)|2𝑑𝑡 + ∫R ∫R

ln |𝜉| ||
|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉𝑑𝛽

≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋 − ln |𝑏|
]

‖𝑓‖2‖𝜓‖2.

roof. For any 𝑓 ∈ (R) (Schwartz space in 𝐿2(R), the logarithmic uncertainty principle for the classical FT reads [20]

∫R
ln |𝑡‖𝑓 (𝑡)|2𝑑𝑡 + ∫R

ln |𝜉‖ [𝑓 ](𝜉)|2𝑑𝜉 ≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

∫R
|𝑓 (𝑡)|2𝑑𝑡. (4.8)

s 𝑓 ∈ (R), then it is evident that function 𝑔 given in (4.7) belongs to the Schwartz space (R). Therefore we can replace 𝑓 in
4.8) by 𝑔 as

∫R
ln |𝑡‖𝑔(𝑡)|2𝑑𝑡 + ∫R

ln |𝜉‖ [𝑔](𝜉)|2𝑑𝜉 ≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

∫R
|𝑔(𝑡)|2𝑑𝑡. (4.9)

hanging 𝜉 by 𝑏𝜉, we obtain from (4.9)

∫R
ln |𝑡‖𝑔(𝑡)|2𝑑𝑡 + 𝑏∫R

ln |𝑏𝜉‖ [𝑔](𝑏𝜉)|2𝑑𝜉 ≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

∫R
|𝑔(𝑡)|2𝑑𝑡. (4.10)

Applying Lemma 4.1 and (4.7) to (4.10), we obtain

∫R
ln |𝑡||𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|

2𝑑𝑡 + 𝑏∫R
(ln |𝑏| + ln |𝜉|)

|

|

|

|

|

√

𝑖
𝑏
𝑒−𝑖(𝑐𝜉

2+𝑒𝜉−𝑎𝛽2−𝑑𝛽)𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

|

|

2

𝑑𝜉

≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

∫R
|𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|

2𝑑𝑡. (4.11)

n further simplifying (4.11), we get

∫R
ln |𝑡||𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|

2𝑑𝑡 + ∫R
ln |𝑏| ||

|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉 + ∫R

ln |𝜉| ||
|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉

≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

∫R
|𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|

2𝑑𝑡. (4.12)

n integrating both sides of (4.12) with respect to 𝛽, we have

∫R ∫R
ln |𝑡||𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|

2𝑑𝑡𝑑𝛽 + ln |𝑏|∫R ∫R
|

|

|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉𝑑𝛽

+∫R ∫R
ln |𝜉| ||

|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉𝑑𝛽

≥
[

𝛤 ′(1∕4)
− ln𝜋

]

|𝑓 (𝑡)𝜓𝛼(𝑡 − 𝛽)|
2𝑑𝑡𝑑𝛽. (4.13)
9

𝛤 (1∕4) ∫R ∫R
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N

N

O

Now using (3.12) in (4.13), we get

‖𝜓‖2 ∫R
ln |𝑡||𝑓 (𝑡)|2𝑑𝑡 + ∫R ∫R

ln |𝜉| ||
|

𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)

|

|

|

2
𝑑𝜉𝑑𝛽

≥
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋
]

‖𝑓‖2‖𝜓‖2 − ln |𝑏|‖𝑓‖2‖𝜓‖2

=
[

𝛤 ′(1∕4)
𝛤 (1∕4)

− ln𝜋 − ln |𝑏|
]

‖𝑓‖2‖𝜓‖2,

which completes the proof. □

Theorem 4.3. For 𝜓, 𝑓 ∈ 𝐿2(R) and 𝑊 𝜇
𝑓 (𝜉, 𝛼, 𝛽) be the QP-WPT of the signal 𝑓 , then the following inequality holds

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R ∫R

𝜉2|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽 ≥
(

1
2|𝑏|

‖𝑓‖2‖𝜓‖
)2

. (4.14)

Proof.
The classical Heisenberg–Pauli–Weyl inequality in the QPFT domain (see [20] Theorem 3.2) is given by

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R

𝜉2|𝜇[𝑓 ](𝜉)|2𝑑𝜉 ≥
(

1
2|𝑏| ∫R

|𝑓 (𝑡)|2𝑑𝑡
)2

. (4.15)

sing the inverse transform for the QPFT into the left hand side and Plancherel identity for QPFT into the right hand side of the
4.15), we have

∫R
𝑡2|𝑄−1

𝜇 [𝑄𝜇[𝑓 ](𝜉)]|
2(𝑡)𝑑𝑡∫R

𝜉2|𝜇[𝑓 ](𝜉)|2𝑑𝜉 ≥
(

1
2|𝑏| ∫R

|𝑄𝜇[𝑓 ](𝜉)|
2𝑑𝜉

)2
. (4.16)

For 𝑓,𝜇[𝑓 ] ∈ 𝐿2(R), we have 𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼) ∈ 𝐿2(R), so replacing 𝜇[𝑓 ] by 𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼) in (4.16), we have

∫R
𝑡2|𝑄−1

𝜇 [𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)]|

2𝑑𝑡∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉 ≥

(

1
2|𝑏| ∫R

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉
)2

. (4.17)

hich implies
(

∫R
𝑡2|𝑄−1

𝜇 [𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)]|

2𝑑𝑡
)1∕2 (

∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉

)1∕2
≥ 1

2|𝑏| ∫R
|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉. (4.18)

ow integrating (4.19) both sides by 𝛽, we have

∫R

(

∫R
𝑡2|𝑄−1

𝜇 [𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)]|

2𝑑𝑡
)1∕2 (

∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉

)1∕2
𝑑𝛽

≥ 1
2|𝑏| ∫R ∫R

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽. (4.19)

ow applying Cauchy–Schwartz inequality, (4.19) yields
(

∫R ∫R
𝑡2|𝑄−1

𝜇 [𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)]|

2𝑑𝑡𝑑𝛽
)1∕2 (

∫R ∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉𝑑𝛽

)1∕2

≥ 1
2|𝑏| ∫R ∫R

|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽. (4.20)

ow, using (3.12) in (4.20), we obtain
(

∫R ∫R
𝑡2|𝑓 (𝑡)𝜓(𝑡 − 𝛽)|2𝑑𝑡𝑑𝛽

)1∕2 (

∫R ∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉𝑑𝛽

)1∕2

≥ 1
2|𝑏|

‖𝑓‖2‖𝜓‖2. (4.21)

n further simplifying (4.21), we get
(

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡

)1∕2 (

∫R ∫R
𝜉2|𝑊 𝜇

𝑓 (𝜉, 𝛽, 𝛼)|
2𝑑𝜉𝑑𝛽

)1∕2

≥ 1
2|𝑏|

‖𝑓‖2‖𝜓‖. (4.22)

Which implies

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R ∫R

𝜉2|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽 ≥
(

1
2|𝑏|

‖𝑓‖2‖𝜓‖
)2

,

10

which completes the proof. □
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Remark 4.4. By varying the parameter 𝜇 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) the Heisenberg-type inequality (4.14), embodies certain existing Heisenberg-
ype inequalities and also give birth to some novel Heisenberg-type inequalities which are yet to be reported in the open literature
hich are listed below:

• For 𝜇 = (𝑎∕2𝑏,−1∕𝑏, 𝑐∕2𝑏, 0, 0), the Heisenberg-type inequality (4.14) boils down to the novel Heisenberg inequality for linear
canonical wave packet transform (see Theorem 6.2 [38])

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R ∫R

𝜉2|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽 ≥
(

|𝑏|
2
‖𝑓‖2‖𝜓‖

)2
.

• For 𝜇 = (cot 𝜃,−csc 𝜃, cot 𝜃, 0, 0), 𝜃 ≠ 𝑛𝜋, we can obtain the novel Heisenberg inequality for the fractional wave packet transform

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R ∫R

𝜉2|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽 ≥
( sin 𝜃

2
‖𝑓‖2‖𝜓‖

)2
.

• For 𝜇 = (0,−1, 1, 0, 0), we can obtain the novel Heisenberg inequality for the classical wave packet transform

∫R
𝑡2|𝑓 (𝑡)|2𝑑𝑡∫R ∫R

𝜉2|𝑊 𝜇
𝑓 (𝜉, 𝛽, 𝛼)|

2𝑑𝜉𝑑𝛽 ≥
( 1
2
‖𝑓‖2‖𝜓‖

)2
.

5. Conclusion

Based on quadratic-phase Fourier transform (QPFT) and the classical wave packet transform (WPT) theory, we in this paper
propose a novel integral transform coined as quadratic-phase wave packet transform (QP-WPT), which rectifies the limitations of the
WPT and QPFT. Overall, it not only combines the advantages of QPFT and WPT, but also preserves the properties of its conventional
counterpart, and has better mathematical properties. Besides studying some notable inequalities and the fundamental properties
including the Moyal’s formula, inversion formula and a reproducing kernel, we also formulated several classes of uncertainty
inequalities, such as Leib’s uncertainty principle, the logarithmic uncertainty inequality and the Heisenberg inequality.
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