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Abstract
We studied one class of second-order elliptic equations with intermediate coefficient
and proved that the semi-periodic problem on a strip is unique solvable in Hilbert
space. We assume that the intermediate coefficient of the equation is continuously
differentiable and grows rapidly near infinity, for example, it grows faster than
(|x| + 1) ln(|x| + 3). However, we do not impose bounds on its derivatives. We believe
that the lower-order coefficient is continuous, can be unlimited and change sign.
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1 Introduction and formulation of the result
Linear second-order elliptic equations and systems defined in unbounded domains have
received considerable progress thanks to important applications in stochastic analysis,
biology, and financial mathematics (see [1–6] and the references therein). Solvability and
properties of solutions of this system are significantly influenced by growth and properties
of coefficients near infinity. Therefore, they are quite different from those elliptic equations
and systems defined in a bounded domain. For the following equation

–�u + F · ∇u + Vu = f (x), x ∈ Rn, (1)

the solvability, regularity, and other related issues were discussed in [7–12] in the case
when the intermediate coefficient (drift) F at the infinity grows, but not faster than
|x|ln(1 + |x|), and its growth is not always controlled by the potential V (for example,
in [7] the authors considered the case that the intermediate coefficient has a linear
growth, [9] and [11] considered the case that the intermediate coefficient has a growth
as |x|ln(1 + |x|)). At the same time, there are correctly solvable elliptic equations with in-
termediate coefficients, the growths of this intermediate coefficients are different orders.
For example, the following second-order elliptic equation:

Tω = ωzz –
Bz

B
ωz – |B|2ω = F , (2)
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where z = x + iy ∈ E (E is the complex plane)) ωzz = 1/4�ω, ωz = 1/2(ωx + iωy) and Bz =
1/2(Bx – iBy). If the coefficient B is continuously differentiable and satisfies the following
conditions:

|Re B| ≥ 1, sup
z,θ∈E:|z–θ |≤1

Re B(z)
Re B(θ )

< +∞, (3)

then (2) is uniquely solvable for each F in L2(E). In fact, (2) is reduced to the following
system:

ωz – Bω = 2Bp, (4)

where

pz + Bp = –
1

2B
F . (5)

If (3) holds, then first-order systems (4) and (5) are correctly solvable (see [13, 14]), and
for their solutions ω and p, respectively, the following estimates hold:

‖ωx‖2,E + ‖ωy‖2,E + ‖Bω‖2,E ≤ C2

∥
∥
∥
∥

1
B

F
∥
∥
∥
∥

2,E
,

‖px‖2,E + ‖py‖2,E + ‖Bp‖2,E ≤ C1

∥
∥
∥
∥

1
2B

F
∥
∥
∥
∥

2,E
,

where ‖ · ‖2,E is the norm in L2(E).
In general, this naturally leads to the following question: does there exist a more or less

general class of correct elliptic equations of the form (1) such that the intermediate coef-
ficient F has a higher growth than |x|ln(1 + |x|) and not controlled by the potential V ?

In this paper, we discuss this question for equation (1) in an infinite strip � = {(x, y) :
–∞ < x < ∞, –π < y < π}. We consider the following problem:

Lu = –uxx – uyy + a(x)ux + b(x)u = f (x, y), (6)

u(x, –π ) = u(x,π ), uy(x, –π ) = uy(x,π ), (7)

where a(x) is continuously differentiable, b(x) is continuous, and f ∈ L2(�). We assume
that the growth of the intermediate coefficient a at infinity does not depend on the behav-
ior of the lower term b. Our goal is to find sufficient conditions for the correct solvability
of problem (6), (7). We found conditions for the coefficients of equation (6), these condi-
tions are also applicable to the case that the coefficients are growing at infinity and quickly
fluctuate (see Examples 1.1 and 1.2).

The forms of equation (6), where the coefficients depend only on x, and of periodic con-
ditions (7) are motivated by application of the Fourier method. First, we consider prob-
lem (6), (7) with b = 0 and reduce it to a one-dimensional differential equation in L2(R)
(see equation (15) below). We show that the latter is correctly solvable under our con-
ditions. We use the well-known perturbation theorem for a linear operator to prove the
well-posedness of problem (6), (7) in the case of b 	= 0.
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For equation (1) with F = 0, the solvability conditions and regularity estimates were es-
tablished in a number of works (see [15–17]). In [18], the regularity estimate was applied to
the study of nonlinear Schrödinger equation. In the case n = 1, the correctness of equation
(1) with a rapidly growing drift was shown in [19] (see also [20–22]).

Let �m = {(x, y) : –∞ < x < +∞, –m < y < m} for m > 0. We denote by C0(R) the set of
continuous functions v(x) (x ∈ R) with compact support, i.e., there is a constant nv > 0
such that for any x ∈ (–∞, nv) ∪ (nv, +∞), v(x) = 0. Set

C0,m(�m) =

⎧

⎨

⎩
u(x, y) ∈ C(�m) :

u(·, y) ∈ C0(R) for each y ∈ [–m, m] and u(x, ·) is

a periodic function with period 2m for each x ∈ R

⎫

⎬

⎭
.

Let

C(2)
0,m(�m) =

⎧

⎨

⎩
u(x, y) ∈ C0,m(�m) :

differentials of u of first and second orders

belong to C0,m(�m)

⎫

⎬

⎭
.

Definition 1.1 The function u ∈ L2(�) is called a solution of problem (6), (7) if there exists
a sequence {un}∞n=–∞ ⊆ C(2)

0,π (�) such that ‖un – u‖2,� → 0, ‖Lun – f ‖2,� → 0 as n → ∞.

We introduce the notations

αg,h(t) = ‖g‖L2(0,t)
∥
∥h–1∥∥

L2(t,+∞) (t > 0),

βg,h(τ ) = ‖g‖L2(τ ,0)
∥
∥h–1∥∥

L2(–∞,τ ) (τ < 0),

γg,h = max
(

sup
t>0

αg,h(t), sup
τ<0

βg,h(τ )
)

,

where g and h 	= 0 are given continuous functions.
The following statement is a special case of Lemma 2.1 [23].

Lemma 1.1 If g and h 	= 0 are continuous functions with γg,h < ∞, then

∫

R

∣
∣g(x)v(x)

∣
∣
2 dx ≤ C

∫

R

∣
∣h(x)v′(x)

∣
∣
2 dx, ∀v ∈ C(1)

0 (R).

Moreover, if C is the smallest constant for which this inequality holds, then

4
[

min
(

sup
t>0

αg,h(t), sup
τ<0

αg,h(τ )
)]2 ≤ C ≤ 4(γg,h)2.

Theorem 1.1 Let a(x) be a continuously differentiable function, b(x) be a continuous func-
tion, and the following conditions be fulfilled:

(a) |a(x)| ≥ 1, γ1,
√|a| < ∞;

(b) γb,
√|a| < ∞.

Then, for each f ∈ L2(�), there exists a unique solution u of problem (6), (7) and the
following estimate holds:

∥
∥
√|a|ux

∥
∥

2,� +
∥
∥
(|b| + 1

)

u
∥
∥

2,� ≤ C3‖f ‖2,�. (8)



Ospanov Boundary Value Problems         (2023) 2023:42 Page 4 of 11

We will prove Theorem 1.1 in Sect. 3. Further, we will prove all our statements for the
case a(x) ≥ 1. The case a(x) ≤ –1 is reduced from this case by replacement of independent
variable.

Example 1.1 In �, we consider

–uxx – uyy +
(

x2 + 3
)αux + x3cos e9xu = f1(x, y) (9)

with boundary conditions (7). It is easy to show that if α ≥ 4, then the conditions of The-
orem 1.1 are satisfied. Thus, for any f1 ∈ L2(�), problem (9), (7) has a unique solution u
and

∥
∥
(

x2 + 3
) α

2 ux
∥
∥

2,� +
∥
∥
(|x|3∣∣cos e9x∣∣ + 1

)

u
∥
∥

2,� ≤ C4‖f1‖2,�.

Example 1.2 Let

–uxx – uyy –
[

1 + 20e
√

1+x2 (3 + 2 sin 4x)
]

ux + x2n cos2 5xu = f2(x, y), (10)

where (x, y) ∈ �, n ∈ N , and f2 ∈ L2(�). Then the conditions of Theorem 1.1 hold. So,
problem (10), (7) has a unique solution u and

∥
∥
[

1 + 20e
√

1+x2 (3 + 2 sin 4x)
]1/2ux

∥
∥

2,� +
∥
∥
(

x2n cos2 5x + 1
)

u
∥
∥

2,� ≤ C5‖f2‖2,�.

2 The case b = 0
In �m = {(x, y) : x ∈ (–∞, +∞), –m < y < m} (m > 0), we consider the following problem:

–uxx – uyy + λa(x)ux = g(x, y), (11)

u(x, –m) = u(x, m), uy(x, –m) = uy(x, m), (12)

where g ∈ L2(�m), λ ≥ 1.
Let lλu = –uxx – uyy + λa(x)ux for u ∈ C(2)

0,m(�m). It is easy to show that lλ is a closable
operator in the norm of L2(�m). We still denote by lλ its closure.

Definition 2.1 The function u ∈ L2(�m) is called a solution of problem (11), (12) if u ∈
D(lλ) and lλu = g .

Lemma 2.1 Let a(x) ≥ 1 be continuously differentiable and satisfy the condition γ1,
√

a < ∞.
If there exists the solution u(x, y) to problem (11), (12), then u is unique and

‖√λaux‖2,�m + ‖u‖2,�m ≤ (2γ1,
√

a + 1)‖g‖2,�m (13)

holds.

Proof Let u(x, y) ∈ C(2)
0,m(�m). Integrating by parts and using the boundary conditions, we

obtain that

(lλu, ux) =
∫

�m

λa(x)u2
x(x, y) dx dy.
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By the Hölder inequality, we get

‖√λaux‖2,�m ≤ ‖lλu‖2,�m .

It is easy to check that γ1,
√

λa ≤ γ1,
√

a for λ ≥ 1. By Lemma 1.1,

∫ ∞

–∞

∣
∣u(x, y)

∣
∣
2 dx ≤ [2γ1,

√
a]2

∫ ∞

–∞
λa(x)

∣
∣ux(x, y)

∣
∣
2 dx, y ∈ (–m, m),

therefore we obtain that

‖√λaux‖2,�m + ‖u‖2,�m ≤ (1 + 2γ1,
√

a)‖lλu‖2,�m .

If u is a solution of problem (11), (12), then there exists a sequence {un}∞n=–∞ in C(2)
0,m(�m)

such that ‖un – u‖2,�m → 0, ‖lλun – g‖2,�m → 0 as n → ∞. Then we have

lim
n→∞‖un‖2,�m = ‖u‖2,�m , lim

n→∞‖lλun‖2,�m = ‖g‖2,�m . (14)

Since

∥
∥
√

λa(un)x
∥
∥

2,�m
+ ‖un‖2,�m ≤ (2γ1,

√
a + 1)‖lλun‖2,�m ,

taking limit as n → ∞ and using (14) and the closedness of the operator of generalized
differentiation, we obtain (13). It is clear that (13) implies the uniqueness of the solu-
tion. �

Remark 2.1 We note that if the condition γ1,
√|a| < ∞ in Lemma 2.1 is not satisfied, then

Lemma 1.1 implies that estimate (13), generally speaking, does not hold.

Remark 2.2 Lemma 2.1 is also true if a(x) ≥ δ > 0, δ < 1. In fact, it suffices to prove (13)
for u(x, y) ∈ C(2)

0,m(�m). If we denote x = st, y = sτ (0 < s ≤ δ), ũ(t, τ ) = u(st, sτ ), ã(t) = a(st),
g̃(t, τ ) = g(st, sτ ), then instead of (11) and (12) we have

l̃s,λũ := –s–2ũtt – s–2ũττ + λs–1ã(t)ũt = g̃,

ũ
(

t, –s–1m
)

= ũ
(

t, s–1m
)

, ũτ

(

t, –s–1m
)

= ũτ

(

t, s–1m
)

,

where s–1ã ≥ 1. As in the proof of Lemma 2.1, we get

∥
∥
√

λs–1ãũt
∥
∥

2,�s–1m
≤ ∥

∥
√

λs–1ãl̃s,λũ
∥
∥

2,�s–1m
, ũ ∈ C(2)

0,s–1m(�s–1m).

Since λs–1ã ≥ 1, ‖√λs–1ãũt‖2,�s–1m
= s–3/2‖√λaux‖2,�m , we have that s–3/2‖√λaux‖2,�m ≤

‖lλu‖2,�m . For λ ≥ 1, γ1,
√

λa ≤ γ1,
√

a. Using Lemma 1.1, we obtain (13).

Next, we prove the existence of a solution to problem (11), (12). Let the right-hand side
g of equation (11) be represented as follows:

g =
∞

∑

σ=–∞
gσ (x)e–i σπ

m y.
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It is known that gσ ∈ L2(R), R = (–∞,∞). We denote σm = σπ
m and consider the following

equation:

–v′′ + λa(x)v′ + σ 2
mv = gσ (x). (15)

Let C(2)
0 (R) be the set of twice continuously differentiable functions with compact support.

Since a is a smooth function, the differential operator l(σ )
0,λv = –v′′ + λa(x)v′ + σ 2

mv is defined
on C(2)

0 (R). Clearly, this operator is closable in L2(R). We denote its closure by l(σ )
λ .

Definition 2.2 The function v ∈ L2(R) is called a solution of equation (15) if v ∈ D(l(σ )
λ )

and l(σ )
λ v = gσ .

The following statement is true.

Lemma 2.2 If vσ is a solution of equation (15) for each σ ∈ Z, then v =
∑∞

σ=–∞ vσ (x)e–iσmy

is a solution of problem (11), (12).

Proof Let G(k) =
∑k

σ=–k gσ (x)e–iσmy. It is obvious that ‖G(k) – g‖2,�m → 0 (k → ∞). If g is
replaced by G(k) in (11), then v(k) =

∑k
σ=–k vσ (x)e–iσmy is a solution of problem (11), (12).

To verify this, we multiply (15) by e–iσmy and sum up the obtained equality from σ = –k to
σ = k. Then we get equation (11) with respect to the unknown function v(k). It is clear that
v(k) satisfies condition (12). By Definition 2.2, there exists a sequence {wsσ }∞s=1 in C(2)

0 (R)
such that ‖wsσ – vσ‖2,R → 0, ‖l(σ )

0,λwsσ – gσ ‖2,R → 0 as s → +∞, where ‖ · ‖2,R is the norm
in L2(R). Then

∥
∥
∥
∥
∥

k
∑

σ=–k

wsσ (x)e–iσmy – v(k)

∥
∥
∥
∥
∥

2

2,�m

=
k

∑

σ=–k

‖wsσ – vσ ‖2
2,R → 0

and

∥
∥
∥
∥
∥

lλ

( k
∑

σ=–k

wsσ (x)e–iσmy

)

– G(k)

∥
∥
∥
∥
∥

2

2,�m

=
k

∑

σ=–k

∥
∥l(σ )

0,λwsσ – gσ

∥
∥

2
2,R → 0

as s → +∞. Therefore, the function v(k) =
∑k

σ=–k vσ (x)e–iσmy is a solution to problem (11),
(12), where g = G(k).

Further,

∥
∥
∥
∥
∥

lλ

( k
∑

σ=–k

wsσ (x)e–iσmy

)

– g

∥
∥
∥
∥
∥

2,�m

≤
∥
∥
∥
∥
∥

lλ

( k
∑

σ=–k

wsσ (x)e–iσmy

)

– G(k)

∥
∥
∥
∥
∥

2,�m

+
∥
∥G(k) – g

∥
∥

2,�m
→ 0 (s → +∞, k → +∞). (16)
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By Lemma 2.1,

∥
∥
∥
∥
∥

k
∑

σ=–k

wsσ (x)e–iσmy

∥
∥
∥
∥
∥

2,�m

≤ C6

∥
∥
∥
∥
∥

lλ

( k
∑

σ=–k

wsσ (x)e–iσmy

)∥
∥
∥
∥
∥

2,�m

, s = 1, 2, . . . .

Therefore, functions
∑k

σ=–k wsσ (x)e–iσmy (s ∈ N , k = 0, 1, 2, . . .) form a Cauchy sequence,
which converges to v ∈ L2(�m):

∥
∥
∥
∥
∥

k
∑

σ=–k

wsσ (x)e–iσmy – v

∥
∥
∥
∥
∥

2,�m

→ 0 (17)

as s → +∞ and k → +∞. By (16) and (17), v =
∑∞

σ=–∞ vσ (x)e–iσmy is a solution to problem
(11), (12). �

Lemma 2.2 shows that the existence of a solution of (15) for any gσ ∈ L2(R) (σ ∈ Z)
implies the solvability of problem (11), (12). We prove the following auxiliary statement.

Lemma 2.3 Let a(x) ≥ 1 be continuously differentiable and γ1,
√

a < ∞. Then

∥
∥
√

λav′∥∥
2,R + ‖v‖2,R ≤ C7

∥
∥l(σ )

λ v
∥
∥

2,R, ∀v ∈ D
(

l(σ )
λ

)

, (18)

where C7 = 2γ1,
√

a + 1.

Proof Let v(x) ∈ C(2)
0 (R). Since v is finite,

(

l(σ )
0,λv, v′) =

∫ ∞

–∞
λa(x)

(

v′)2 dx.

Using the Hölder inequality and the condition a ≥ 1, we get

∥
∥
√

λav′∥∥
2,R ≤ ∥

∥l(σ )
0,λv

∥
∥

2,R. (19)

By Lemma 1.1, we obtain

‖v‖2,R ≤ 2γ1,
√

a
∥
∥
√

λav′∥∥
2,R. (20)

From (20) and (19) it follows that

∥
∥
√

λav′∥∥
2,R + ‖v‖2,R ≤ C7

∥
∥l(σ )

0,λv
∥
∥

2,R, ∀v ∈ C(2)
0 (R).

Let v ∈ D(l(σ )
λ ). Since l(σ )

λ is a closed operator, there exists a sequence {vs}∞s=1 in C(2)
0 (R)

such that

‖vs – v‖2,R → 0,
∥
∥l(σ )

0,λvs – l(σ )
λ v

∥
∥

2,R → 0 as s → ∞. (21)

According to (19) and (20), we have

∥
∥
√

λav′
s
∥
∥

2,R + ‖vs‖2,R ≤ C7
∥
∥l(σ )

0,λvs
∥
∥

2,R. (22)
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We denote by W 1
2,

√
λa(R) the completion of C(1)

0 (R) with respect to the norm ‖θ‖W =
‖√λaθ ′‖2,R + ‖θ‖2,R. (21) and (22) imply that the sequence {vs}∞s=1 is a Cauchy sequence
in W 1

2,
√

λa(R). Hence, there exists v ∈ W 1
2,

√
λa(R) such that ‖vs – v‖W → 0 (s → ∞). Then,

passing to the limit in (22) and using (21), we obtain (18). �

Remark 2.3 Lemma 2.3 remains true if a ≥ δ > 0, where δ < 1. This fact is verified similarly
to Remark 2.2.

It follows from Lemma 2.3 that the solution of equation (15) belongs to the space
W 1

2,
√

λa(R).
Let Q ⊆ R. A complex number μ is called a regular-type point of the linear operator

L : L2(Q) → L2(Q) if there exists a constant ε > 0 such that

∥
∥(L – μE)u

∥
∥

L2(Q) ≥ ε‖u‖L2(Q)

for each u ∈ D(L), where E is the identity operator.
The next result is known (see, for example, [24], Ch. 8).

Lemma 2.4 Let M be a connected subset of the set of complex numbers C, and let μ ∈ M
be a regular type point of a linear operator L. Then the dimensions of the spaces L2(Q) �
(L – μE)D(L) (this is the orthogonal complement of the range of L – μE to L2(Q)) are the
same for all values of μ.

The following is our main result in this section.

Lemma 2.5 Let a(x) ≥ δ > 0 be a continuously differentiable function and satisfy the con-
dition γ1,

√
a < ∞. Then, for any g ∈ L2(�m), there exists a unique solution u to problem (11),

(12) and (13) holds.

Proof By Remarks 2.2 and 2.3, we may assume that a(x) ≥ 1. If u is a solution to problem
(11), (12), then by Lemma 2.1 u is unique and for it inequality (13) holds. By (18), the range
R(l(σ )

λ ) of l(σ )
λ is a closed set since l(σ )

λ is a closed operator. By Lemma 2.2, it suffices to show
that R(l(σ )

λ ) = L2(R). For any μ ∈ C similar to Lemma 2.3, it is easy to prove that

∥
∥
√

λau′∥∥
2,R + ‖u‖2,R ≤ C8

∥
∥
(

l(σ )
λ – μE

)

u
∥
∥

2,R, u ∈ D
(

l(σ )
λ

)

(σ ∈ Z), (23)

where C8 = γ1,
√

a + 1 does not depend on μ. This means that each point μ ∈ C is a regular
type point for the operator l(σ )

λ u = –u′′ + λa(x)u′ + σ 2
mu (σ ∈ Z). In particular, the point

μ = 0 is a regular type point of the operator l(0)
λ = l(σ )

λ – σ 2
mE. Let us prove that

R
(

l(0)
λ

)

= L2(R). (24)

If this does not hold, then there exists a nonzero element v ∈ L2(R) � R(l(0)
λ ) such that

(

l(0)
0,λu, v

)

= 0, ∀u ∈ D
(

l(0)
0,λ

)

.
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Since D(l(0)
0,λ) = C(2)

0 (R) is dense in L2(R), we have that

(

l(0)
0,λ

)∗
v = –

(

v′ + λav
)′ = 0.

Then

(

v(x) exp
∫ x

θ

λa(t) dt
)′

= c9 exp
∫ x

θ

λa(t) dt, θ ∈ R.

If C9 = 0, then v = C10 exp[–
∫ x
θ

λa(t) dt]. Since a(x) ≥ 1, it follows that v /∈ L2(R). If C9 	= 0,
then without loss of generality, we assume that C9 = –1. So,

(

v(x) exp
∫ x

θ

λa(t) dt
)′

= – exp
∫ x

θ

λa(t) dt ≤ –1

for x ≥ θ . We consider functions w1(x) = v(x) exp
∫ x
θ

λa(t) dt and w2(x) = –x + v(θ ) + θ . We
note that w1(θ ) = w2(θ ) = v(θ ), and by the last inequality, v(x) ≤ w1(x) ≤ w2(x) for x ≥ θ .
However, w2(x) ≤ –1 for x ≥ max{v(θ ) + θ + 1, θ + 1}. Consequently, v /∈ L2(R). This is a
contradiction. Hence, R(l(0)

λ ) = L2(R). Using (23) and Lemma 2.4, we get R(l(σ )
λ ) = L2(R)

holds for any σ . �

3 Proof of the main result

Proof Without loss of generality, we assume that a ≥ 1. Let x = kt, y = kτ . We denote ã(t) =
a(kt), b̃(t) = b(kt), w(t, τ ) = u(kt, kτ ), f̃ (t, τ ) = k2f (kt, kτ ). Then (6) takes the following form:

–wtt – wττ + kλã(t)wt + k2b̃(t)w = f̃ (t, τ ), (25)

where

(t, τ ) ∈ �π/k =
{

(t, τ ) : –∞ < t < ∞, –
π

k
< τ <

π

k

}

.

Conditions (7) pass to the following:

w
(

t, –
π

k

)

= w
(

t,
π

k

)

, wy

(

t, –
π

k

)

= wy

(

t,
π

k

)

. (26)

Let Ak,λ be the closure in L2(�π/k) of the differential operator A0,k,λw = –wtt – wττ +
kλã(t)wt defined on C(2)

0, πk
(�π/k). By Lemmas 2.1 and 2.5, we obtain that the operator Ak,λ

is boundedly invertible in L2(�π/k) and

‖√kλãwt‖2,�π/k ≤ ‖Ak,λw‖2,�π/k
, ∀w ∈ D(Ak,λ). (27)

It is easy to see that γk2b̃,
√

kλã =
√

k
λ
γb,

√
a. By Lemma 1.1, condition (b) of Theorem 1.1 and

(27), we have the inequalities

∥
∥k2b̃w

∥
∥

2,�π/k
≤ 2γk2b̃,

√
kλã‖

√
kλãwt‖2,�π/k ≤ 2

√

k
λ

γb,
√

a‖Ak,λw‖2,�π/k . (28)
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We choose k such that k ≤ λ

16γ 2
b,

√
a

. By (28), we obtain

∥
∥k2b̃w

∥
∥

2,�π/k
≤ 1

2
‖Ak,λw‖2,�π/k

. (29)

Hence, by perturbation theorems (see, for example, [25], Chap. 4, Theorem 1.16), we ob-
tain that the operator Gk,λ = Ak,λ + k2b̃(t)E corresponding to problem (25), (26) is closed
and boundedly invertible in L2(�π/k). Using inequality (29), we have

‖Ak,λw‖2,�π/k ≤ ‖Gk,λw‖2,�π/k +
1
2
‖Ak,λw‖2,�π/k .

Therefore,

‖Ak,λw‖2,�π/k ≤ 2‖Gk,λw‖2,�π/k .

By (27) and (29), we obtain

‖√kλãwt‖2,�π/k +
∥
∥k2b̃w

∥
∥

2,�π/k
≤ 3‖Gk,λw‖2,�π/k . (30)

Let wk(t, τ ) = (G–1
k,λ f̃ )(t, τ ) be a solution to problem (25), (26). Then u(x, y) = wk(kt, kτ ) is

a solution of problem (6), (7). And (30) implies the inequality

‖√aux‖2,� + ‖bu‖2,� ≤ C11‖f ‖2,�. (31)

By condition (a) of Theorem 1.1,

‖u‖2,� ≤ 2γ1,
√

a‖
√

aux‖2,�.

Therefore, for a solution u of problem (6), (7), estimate (8) holds. �
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