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Abstract: We study a type of third-order linear differential equations with variable and unbounded
coefficients, which are defined in an infinite interval. We also consider a non-linear generalization
with coefficients that depends on an unknown function. We establish sufficient conditions for the
correctness of this linear equation and the maximal regularity estimate for their solution. Using
these results, we prove the solvability of a nonlinear differential equation and estimate the norms of
its terms.
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1. Introduction

We consider the following differential equations:

Ly = −(r(x)y′)′′ + p(x)y′ + q(x)y = f (x) (1)

and
− (r(x)y′)′′ + p(x, y)y′ + q(x, y)y = F(x), (2)

where x ∈ R = (−∞, +∞) , r(x) , p and q are given smooth functions, and f (x), F(x) ∈ L2(R).
Equations (1) and (2) are singular differential equations, i.e., these equations are given

in an infinite interval and in general the coefficients r, p, and q are unbounded functions.
The assumption that the coefficients in (1) and (2) are not bounded is due to the essence of
the matter. If in (1) q = 0 , then at least one of the coefficients r and p must increase near
infinity. Otherwise, (1) may not have a solution in L2(R).

Third-order differential equations appear in many practical problems, for example,
finding the deflection of a three-layer beam, describing small charge fluctuations taking
into account the braking force of radiation, automatic control by spacecraft controls, a
steam turbine, etc. (see [1,2] and the references cited therein). In [1–5], the authors in partic-
ular have obtained asymptotic estimates for solutions of third-order linear and nonlinear
differential equations defined in the interval [0, +∞). In these studies, it was assumed that
either the coefficients of a linear equation are bounded functions or the nonlinear terms of
the equation are controlled by its linear part. In this paper, we consider the case that the
functions r, p, and q can grow strongly near infinity.

We denote by C(3)
0 (R) the set of all three times continuously differentiable and com-

pactly supported functions.
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Definition 1. A function y ∈ L2(R) is called a solution to Equation (1) if there is a sequence
{yn}∞

n=1 from C(3)
0 (R) such that ‖yn − y‖2 → 0 , ‖Lyn − f ‖2 → 0 ( n→ ∞), where ‖·‖2 is the

norm of L2(R).

We will study the following questions: the solvability of Equation (1), the uniqueness
of the solution, and the following estimate for the solution∥∥(r(x)y′)′′

∥∥
2 +

∥∥p(x)y′
∥∥

2 + ‖[1 + |q(x)|]y‖2 ≤ C‖ f ‖2, (3)

where C is a positive constant independent of y. If (3) holds, the solution to Equation (1) is
called L2-maximally regular (see [6,7]), the linear operator L is called separable in L2(R)
(see [8,9]), and inequality (3) is called a coercive estimate.

Inequality (3) is very important in the theory of differential equations. For example,
this inequality carries exact information about the smoothness of solution (1) and gives
a complete description of the differential operator L corresponding to Equation (1). If
inequality (3) holds, then we can use the methods of function spaces to study properties of
the solution to Equation (1). For example, using inequality (3), one can find approximate
properties of a solution to Equation (1) (see [10–12]). In this paper, we find sufficient
conditions for inequality (3) and use them to study solvability of the singular nonlinear
differential Equation (2) (see also [13]).

On the real axis R when p = 0 and r = 1, the correctness and regularity properties
for Equation (1) were considered in [14]. The maximal regularity of solutions of (1) was
proved in the case that q is the positive continuous function such that

sup
|x−z|≤1

|q(x)− q(z)|
|x− z|αqθ(z)

≤ M < ∞, (4)

where 0 < θ < 1 + α
3 and α ∈ (0, 1]. This result was essentially used to prove the solvability

of nonlinear Equation (2) with p = 0 and r = 1. In [15], the maximal regularity estimate
was obtained for (1) in the case that p = 0, q is a positive function satisfying (4), and r is
a sign-definite smooth function. In the case that r = 1, p 6= 0 and grows rapidly, and q
can change sign and does not satisfy condition (4), the maximal regularity estimate for the
solution y of (1) was established (see [16]). In [17], authors using the results of [16] showed
the solvability of quasilinear Equation (2) in the case r = 1 .

In [14,15], the authors considered equations without an intermediate term, but their
methods are not applicable to our case. In this paper, the coefficients of Equations (1)
and (2) are assumed to be smooth, but there are not any restrictions on their derivatives.
Our conditions are formulated in terms of the coefficients themselves.

Equations (1) and (2) with an unbounded coefficient r have many applications. For
example, they apply to the interaction of elastic bodies, the phenomena of the input flow
in hydrodynamics, and the propagation of electrical impulses in a living organism (the
Hodgkin–Huxley and Nagumo models), etc. [1,2].

For a study of the maximal regularity of differential equations of other types, see [10–12].
The paper is organized as follows. In Section 2, we prove the auxiliary statement

(Lemma 3) on the continuously invertibility of the linear operator generated by the two
highest terms of Equation (1). Section 3 discusses the well-posedness property of linear
Equation (1) depending on the relationships between its coefficients. In Section 4, we
give the conditions for the maximal regularity estimate (3) for the solution. In Section 5,
essentially using inequality (3), we find conditions for the existence of a solution y to
nonlinear Equation (2) and prove the following relation:∥∥(r(x)y′)′′

∥∥
2 +

∥∥p(x, y)y′
∥∥

2 + ‖[1 + q(x, y)]y‖2 < ∞.
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In Sections 2–4 we will assume that r(x) is twice continuously differentiable, p(x) is
continuously differentiable, and q(x) is a continuous function; C , C1, C2, etc., everywhere
denote positive constants, which may be different in different places.

2. On One Two-Term Linear Operator

Let l0y = −(r(x)y′)′′ + p(x)y′ be the linear operator with D(l0) = C(3)
0 (R) . Since the

functions r(x) and p(x) are smooth, l0 is closable in norm in L2(R). We denote its closure
by l . Let g and h 6= 0 be continuous functions. We introduce the following notation:

αg, h(x) =

 x∫
0

g2(t)dt

1/2 +∞∫
x

h−2(t)dt

1/2

, x > 0,

βg, h(τ) =

 0∫
τ

g2(t)dt

1/2 τ∫
−∞

h−2(t)dt

1/2

, τ < 0,

γg,h = max

(
sup
{x>0}

αg, h(x), sup
{τ<0}

βg, h(τ)

)
.

The following result proved in [13].

Lemma 1. Let the functions g and h satisfy the condition γg, h < ∞ . Then for y ∈ C(1)
0 (R) the

following inequality holds: +∞∫
−∞

|g(x)y(x)|2dx

1/2

≤ C

 +∞∫
−∞

∣∣h(x)y′(x)
∣∣2dx

1/2

. (5)

Moreover, if C is the smallest positive constant in (5), then γg, h ≤ C ≤ 2γg, h.

The next result is known. For easy reference, we give its proof.

Lemma 2. Let X be a Banach space, Y be a normed linear space, and A : X → Y be closed linear
operator such that

‖y‖X ≤ C‖Ay‖Y, (6)

for each y ∈ D(A), where C1 is a positive constant independent of y. Then the set R(A) is closed.

Proof of Lemma 2. Let {wn}∞
n=1 ⊆ R(A) and ‖wn − w‖Y → 0 (n→ ∞). Since wn ∈ R(A),

there exits zn ∈ D(A) such that wn = Azn (n = 1, 2, . . .). By (6),

‖zn − zm‖X ≤ C1‖Azn − Azm‖Y → 0(n, m→ ∞),

{zn}∞
n=1 is the Cauchy sequence, it converges to some element z ∈ X; A is closed, therefore

z ∈ D(A) and w = Az. Thus w ∈ R(A).

Lemma 3. If the conditions

p(x) ≥ C2r(x) ≥ δ > 0 (7)

and

γ1,
√

pr < ∞ (8)

are fulfilled, then the operator l is continuously invertible. Moreover, for each y ∈ D(l) the following
estimate holds:
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∥∥∥(ry′
)′∥∥∥

2
+
∥∥√pry′

∥∥
2 + ‖y‖2 ≤ C3‖ly‖2. (9)

Proof of Lemma 3. Let y ∈ C(3)
0 (R). We consider the scalar product (l0y, ry′) in L2(R).

Integrating by parts, we obtain that

(
l0y, ry′

)
=
∥∥∥(ry′

)′∥∥∥2

2
+
∥∥√pry′

∥∥2
2. (10)

By Hölder’s inequality,

(
l0y, ry′

)
≤ 1

2

∥∥∥∥√ r
p

l0y
∥∥∥∥2

2
+

1
2

∥∥√pry′
∥∥2

2. (11)

From (10) and (11) we get that

∥∥∥(ry′
)′∥∥∥2

2
+

1
2

∥∥√pry′
∥∥2

2 ≤
1
2

∥∥∥∥√ r
p

l0y
∥∥∥∥2

2
. (12)

If we choose that g(x) = 1 and h(x) =
√

pr in (5), then by condition (8),

‖y‖2 ≤ 2γ1,
√

pr
∥∥√pry′

∥∥
2.

Taking into account (12), we obtain that

∥∥∥(ry′
)′∥∥∥2

2
+

1
2

∥∥√pry′
∥∥2

2 + ‖y‖
2
2 ≤

(
1
2
+ 4γ2

1,
√

pr

)∥∥∥∥√ r
p

l0y
∥∥∥∥2

2
.

Thus, for y ∈ C(3)
0 (R) we have the estimate (9). Because l is a closed operator, the

inequality (9) holds for each y ∈ D(l).
According to (9), there is an inverse l−1 to the operator l, and by Lemma 2, the range

R(l) of l is closed. To prove the lemma, it suffices to show that the equality R(l) = L2(R)
holds. We denote y′ = z and Az = −(rz)′′ + pz . Note that by inequality (9) and
condition (8), D(A) ⊆ L2(R), A is a closed operator, and R(A) = R(l) is a closed set.
If R(A) 6= L2(R), then there is a nonzero element z(x) ∈ L2(R) such that z⊥R(A). Accord-
ing to the Banach theory of linear operators with a closed range ([18], Chapter 7), z is a
generalized solution of the equation

− rz′′ + pz = 0. (13)

By condition (7), the solution to Equation (13) from L2(R) is only z = 0 . This is a
contradiction, hence R(l) = L2(R).

3. Solvability Conditions for the Linear Equation

Theorem 1. If (7) and
γ1+|q|,√pr < ∞ (14)

are satisfied, then for each f (x) ∈ L2(R) there exists a unique solution y ∈ L2(R) of Equation (1)
and the following inequality holds:∥∥∥(ry′

)′∥∥∥
2
+

1
2

∥∥√pry′
∥∥

2 + ‖(1 + |q|)y‖2 ≤ C‖ f ‖2. (15)

Proof of Theorem 1. Let x = bt , where b > 0 and t ∈ R is a new variable. Set

y(bt) = ỹ(t), r(bt) = r̃(t), p(bt) = p̃(t), q(bt) = q̃(t), b3 f (bt) = f̃ (t).
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Substituting this into the Equation (1), we obtain

−
(

r̃(t)ỹ
′)′′

+ b2 p̃(t)ỹ′ + b3q̃(t)ỹ = f̃ (t). (16)

We consider the operator

l0bỹ = −
(

r̃(t)ỹ
′)′′

+ b2 p̃(t)ỹ′ (D(l0b) = C(3)
0 (R))

and denote its closure in L2(R) by lb. Because the functions r̃(t) and b2 p̃(t) satisfy the
conditions of Lemma 3, the operator lb is continuously invertible and∥∥∥(r̃ỹ′

)′∥∥∥
2
+
∥∥∥b
√

p̃r̃ỹ′
∥∥∥

2
+ ‖ỹ‖2 ≤ C1‖lbỹ‖2, ỹ ∈ D(lb). (17)

It is easy to check that

2γq̃,
√

p̃r̃ =
1
b2 2γb3 q̃, b

√
p̃r̃.

By Lemma 1 and (14) we have∥∥∥b3q̃ỹ
∥∥∥

2
≤ 2b2γq̃,

√
p̃r̃

∥∥∥b
√

p̃r̃ỹ′
∥∥∥

2
.

If we choose
b ≤ 1

2
√

C1γq̃,
√

p̃r̃

,

then by virtue of (17), ∥∥∥b3q̃ỹ
∥∥∥

2
≤ 1

2
‖lbỹ‖2. (18)

Here C1 is a constant from (17). Therefore, there exists a unique solution ỹ to Equation (16)
([19], Chapter 4, Theorem 1.16). From (17) and (18) we deduce that∥∥∥(r̃ỹ′

)′∥∥∥
2
+
∥∥∥b
√

p̃r̃ỹ′
∥∥∥

2
+
∥∥∥(1 + b3|q̃|)ỹ

∥∥∥
2
≤ C2‖lbỹ‖2, ỹ ∈ D(lb). (19)

By (18), we get that

‖lbỹ‖2 ≤
∥∥∥(lb + b3q̃E

)
ỹ
∥∥∥

2
+
∥∥∥b3q̃ỹ

∥∥∥
2
≤
∥∥∥(lb + b3q̃E

)
ỹ
∥∥∥

2
+

1
2
‖lbỹ‖2

and
‖lbỹ‖2 ≤ 2

∥∥∥(lb + b3q̃E
)

ỹ
∥∥∥

2
. (20)

The estimates (19) and (20) imply that∥∥∥(r̃ỹ′
)′∥∥∥

2
+
∥∥∥b
√

p̃r̃ỹ′
∥∥∥

2
+
∥∥∥(1 + b3|q̃|

)
ỹ
∥∥∥

2
≤ C3

∥∥ f̃
∥∥

2, ỹ ∈ D(lb).

Returning to the variable x, we obtain estimate (15) for the solution y of Equation (1).

4. Conditions for the L2—Maximal Regularity of Solution

We need the following corollary of Theorem 1.

Corollary 1. Let the functions r(x) , p(x) , and q(x) satisfy the conditions

0 < δ ≤ C4r(x) ≤ p(x) ≤ C5r(x) (21)
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and
γ1+|q|, p < ∞. (22)

Then for each f (x) ∈ L2(R), the Equation (1) has a unique solution y, and it is L2 —
maximally regular.

Proof of Corollary 1. Under assumption (21), conditions (22) and (14) are equivalent. There-
fore, if conditions (21) and (22) are satisfied, then by (1) and (15), we obtain the inequality∥∥∥(ry′

)′′∥∥∥
2
≤ C6‖ f ‖2.

According to (15), the solution y satisfies inequality (3).

Lemma 4. Suppose that for r(x) and p(x) conditions of Lemma 3 are satisfied, and one of the
following conditions (a) and (b) is performed:

(a) p(x) ≤ C1r(x),
(b)

C−1 ≤ p(x)
p(η)

≤ C (C > 1), ∀x, η ∈ R : |x− η| ≤ 1. (23)

Then, for y ∈ D(l) the following inequality holds:∥∥∥(ry′
)′′∥∥∥

2
+
∥∥py′

∥∥
2 + ‖y‖2 ≤ C2‖ly‖2. (24)

Proof of Lemma 4. If (a) holds, then the conditions of Corollary 1 are satisfied, so the
desired result holds. Now assume (b) holds. We denote v = ry′ , p1(x) = p(x)

r(x) , then ly
changes to

Tv = −v′′ + p1(x)v, D(T) ⊆ L2(R)

where T is the Sturm-Liouville operator. Using the results of [9] under condition (23), we
obtain that for v ∈ D(T) the following estimate holds:∥∥v′′

∥∥
2 + ‖p1v‖2 ≤ C3‖Tv‖2.

Hence, taking into account (7) and (8), we obtain (24) for y ∈ D(l).

Theorem 2. Let r(x) and p(x) satisfy the conditions of Lemma 3, and q(x) satisfy (14). Then
Equation (1) has a unique solution y ∈ L2(R), and for y the following L2-maximal regularity
inequality holds ∥∥∥(ry′

)′′∥∥∥
2
+
∥∥py′

∥∥
2 + ‖(1 + |q|)y‖2 ≤ C4‖ f ‖2. (25)

Proof of Theorem 2. Condition (22) implies (14). By Theorem 1, Equation (1) is uniquely
solvable in sense of Definition 1. Using the method in the proof of Theorem 1, by inequality
(24) and Lemma 1, we obtain estimate (25).

Remark 1. In Theorem 2 and Corollary 1, some sufficient conditions for the L2—maximal regu-
larity of the solution y to Equation (1) are obtained. It should be noted that in Corollary 1 such a
result was obtained without condition (23) on the oscillation of function p(x). This condition is instead
by (21).

5. The Solvability of the Nonlinear Equation

Now we give one application of Theorem 2 to the coercive solvability of the following
third-order nonlinear differential equation:

By = −(r(x)y′)′′ + p(x, y)y′ + q(x, y)y = F(x), (26)
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where x ∈ R , r(x) is twice continuously differentiable, p(x, y) is continuously differen-
tiable, q(x, y) is a continuous function, and F(x) ∈ L2(R) . The main feature of Equation (26)
is that coefficients p and q can be unbounded.

Definition 2. A function y is called a solution to Equation (26) if there exists a sequence {yn(x)}∞
n=1

of three times continuously differentiable functions such that for any continuous and compactly
supported function ϕ(x) the relations ‖ϕ(yn − y)‖2 → 0 , ‖ϕ(Byn − F)‖2 → 0 (n → ∞)
hold.

Let us introduce the following notation:

αg, h(τ) = sup
x>0
‖g(·, τ)‖L2(0, x)

∥∥∥h−1(·, τ)
∥∥∥

L2( x, ∞)
,

βg, h(τ) = sup
t<0
‖g(·, τ)‖L2(t, 0)

∥∥∥h−1(·, τ)
∥∥∥

L2(−∞, t)
,

γg,h = max

(
sup
τ∈R

αg, h(τ), sup
τ∈R

βg, h(τ)

)
.

Theorem 3. Let

p(x, y) ≥ Cr(x) ≥ δ > 0, γ1+|q|,√pr < ∞, (27)

and one of the following conditions (a) and (b) is performed: (a) for z ∈ R there exist the independent
of z constant C1 > 0 such that

p(x, z) ≤ C1r(x), (28)

(b) for any positive number T

sup
|x−η|≤1

sup
|τ1−τ2|≤T

p(x, τ1)

p(η, τ2)
< ∞. (29)

Then, for each F(x) ∈ L2(R), Equation (26) has a solution y ∈ L2(R), and for y the following
relation holds: ∥∥∥(r(x)y′

)′′∥∥∥
2
+
∥∥p(x, y)y′

∥∥
2 + ‖(1 + |q(x, y)|)y‖2 < ∞. (30)

Proof of Theorem 3. Let C(R) be a space of continuous and bounded functions with norm
‖z‖C(R) = sup

x∈R
|z(x)|. Let ε and A be some positive numbers. Take v from

SA =
{

z ∈ C(R) : ‖z‖C(R) ≤ A
}

.

We consider the following linear third-order equation:

L0,v,εy = −(r(x)y′)′′ +
[

p(x, v) + ε
(

1 + x2
)2
]

y′ + q(x, v)y = F(x). (31)

We denote by Lv,ε the closure in L2(R) of the differential operator

L0,v,εy = −(r(x)y′)′′ +
[

p(x, v) + ε
(

1 + x2
)]

y′ + q(x, v)y (D(L0,v,ε) = C3
0(R)).

According to (27), (28), the coefficients of Equation (31) satisfy the relations (7), (8),
p(x, v) ≤ Cr(x), and (22). Let us show that (23) holds. Indeed, for v ∈ SA and x, η ∈ R,
we have

|v(x)− v(η)| ≤ 2A.
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Let τ1 = v(x) and τ2 = v(η). Then by (29),

sup
|x−η|≤1

p(x, v(x)) + ε(1 + x2)2

p(η, v(η)) + ε(1 + η2)2

≤ sup
|x−η|≤1

sup
|τ1−τ2|≤2A

p(x, τ1)

p(η, τ2)
+ 9 ≤ M(A).

Thus, all the conditions of Theorem 2 are satisfied. Therefore, there exists a unique
solution y to Equation (31) and y satisfies the following inequality:∥∥∥(r(x)y′

)′′∥∥∥
2
+

∥∥∥∥[p(x, v) + ε
(

1 + x2
)2
]

y′
∥∥∥∥

2
+ ‖(1 + |q(x, v)|)y‖2 ≤ C2‖F‖2. (32)

Let θ > 0. By C(θ)(R) we denote the Hölder space of bounded functions with norm

‖ϕ‖C(θ)(R) = sup
x∈R

[
|ϕ(x)|+ |ϕ(x + h)− ϕ(x)|

|h|θ

]
.

Using well-known embedding theorems and Lemma 1, for y we prove that

‖εy‖C(θ)(R) + sup
x∈R
|ε(1 + x2)y(x)|+

∥∥∥ε(1 + x2)y
∥∥∥

2
≤ C3

∥∥∥[p(x, v) + ε(1 + x2)2
]
y′
∥∥∥

2
. (33)

By (32) and (36), for a solution y to Equation (31), the following estimate holds:

∥∥∥(r(x)y′
)′′∥∥∥

2
+

∥∥∥∥[p(x, v) + ε
(

1 + x2
)2
]

y′
∥∥∥∥

2
+ ε‖y‖C(θ)(R)

+ ε sup
x∈R
|(1 + x2)y(x)|+

∥∥∥[1 + ε
(

1 + x2
)
+ |q(x, v)|

]
y
∥∥∥

2
≤ C4‖F‖2. (34)

Let us choose the radius A of the ball SA equal to the right-hand side C4‖F‖2 of (34).
Let P(v, ε) be the transformation defined in SA by the formula

P(v, ε) = L−1
v,ε f ,

where L−1
v, ε is the inverse to the closed operator Lv,ε.

According to estimate (34), the operator P(v, ε) transforms the ball SA into itself.
The operator P(v, ε) is compact in C(R). Indeed, by virtue of (34), P(v, ε) transforms

the ball SA to the set

QA =

{
y : ‖y‖W =

∥∥∥(ry′
)′′∥∥∥

2
+

∥∥∥∥[p(x, v) + ε
(

1 + x2
)2
]

y′
∥∥∥∥

2

+
∥∥∥(1 + ε

(
1 + x2

)
+ |q(·, v)|)y

∥∥∥
2
+ ε‖y‖C(θ)(R) + sup

x∈R

∣∣∣ε(1 + x2)y(x)
∣∣∣}.

Let y ∈ QA. By virtue of (34),

sup
|x|≥N

|y(x)| ≤ C5

ε(1 + N2)
. (35)
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By the Hausdorff theorem, taking into account y ∈ C(θ)(R) (θ > 0) and (35), we
obtain that QA is compact in C(R). Therefore, P(v, ε) is a compact operator.

The continuity of the coefficients of Equation (2) implies that the operator P(v, ε)
continuously depends on v ∈ SA.

Thus, the operator P(v, ε) is continuous and compact in the space C(R), and map-
ping SA into itself, then, according to the well-known Schauder’s theorem [20], there is
a fixed point yε ∈ SA of the operator P(v, ε). According to our choice, yε is a solution to
the equation

Ly,εy = −(r(x)y′)′′ +
[

p(x, y) + ε
(

1 + x2
)2
]

y′ + q(x, y)y = F(x).

By (34), for yε we obtain the following inequality:

∥∥∥(r(x)y′ε
)′′∥∥∥

2
+

∥∥∥∥[p(x, yε) + ε
(

1 + x2
)2
]

y′ε

∥∥∥∥
2
+

+
∥∥∥[1 + ε(1 + x2) + |q(x, yε)|

]
yε

∥∥∥
2
≤ C5‖F‖2. (36)

We choose the sequence {ε j}∞
j=1 of positive numbers such that lim

j→+∞
ε j = 0. Let yε j ∈

SA is a solution of the following equation:

Lε j y = −(r(x)y′)′′ + [p(x, y) + ε j(1 + x2)2]y′ + [1 + ε j(1 + x2) + q(x, y)]y = F(x). (37)

For yε j , the following estimate holds:

∥∥∥∥(r(x)y′ε j

)′′∥∥∥∥
2
+
∥∥∥[p(x, yε j) + ε j(1 + x2)2

]
y′ε j

∥∥∥
2

+
∥∥∥[1 + ε j(1 + x2) + |q(x, yε j)|

]
yε j

∥∥∥
2
≤ C6‖F‖2. (38)

Let −∞ < a < b < +∞. By (38), yε j ∈ W1
2 (a, b) (j = 1, 2, . . .). Since W1

2 (a, b)
compactly embedded in L2(a, b), there exists y ∈ L2(a, b) such that ‖yε j − y‖L2(a,b) → 0
(j → +∞). Hence by (37) and Definition 2, y is a solution to Equation (26). Relation (30)
follows from inequality (34).

Example 1. Consider the following nonlinear equation:

−
(
(5 + 2 cos 3x)y′

)′′
+

[(
5 + 4x2

)4
+ 7y2

]
y′ −

[
2x3 + sin7

(
3 + y4

)]
y = F(x). (39)

Coefficients of (39) satisfy conditions (27) and (29). Therefore, for each right-hand
side F(x) from L2(R) there exists a solution y of this equation and

∥∥∥((5 + 2 cos 3x)y′
)′′∥∥∥

2
+

∥∥∥∥[(5 + 4x2
)4

+ 7y2
]

y′
∥∥∥∥

2

+
∥∥∥[1 + |2x3 + sin7

(
3 + y4

)
|
]
y
∥∥∥

2
< ∞.
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6. Conclusions

We have studied the third-order singular linear differential Equation (1) with variable
unbounded coefficients and its non-linear generalization (2). They differ from the equations
previously studied in [14,15] by the presence of an intermediate coefficient p, which grows
rapidly and is not controlled by the coefficients r and q. The correctness of Equation (1) and
the L2-maximal regularity of its generalized solution are proved.

Using this result, we have obtained sufficient conditions for the solvability of a third-
order nonlinear Equation (2) with unlimited ”coefficients”, as well as membership in L2 of
each of terms. Our results extend the results in studies [15] (we removed restrictions
of type (4) on the coefficient q) and [16,17] (we cover the case of an unbounded leading
coefficient r). In problems of maximal regularity of the solution, there is usually a condition
to oscillation of coefficients. In Corollary 1, we discovered that the solution of Equation (1)
satisfies the L2—maximal regularity estimate, although there are no conditions on the
oscillation of the functions r, p, and q or their derivatives (see [13,15]).
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