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In a perforated domain, we consider the two-dimensional system of Navier–Stokes equa-

tions with rapidly oscillating terms in the equations and boundary conditions. We prove

that the trajectory attractors of this system converge in some weak topology to trajec-

tory attractors of the homogenized Navier–Stokes equations with an additional potential.

Bibliography: 11 titles. Illustrations: 1 figure.

In this paper, we study the asymptotic behavior of attractors of initial-boundary-value problems

for two-dimensional systems of Navier–Stokes equations in perforated domains (cf. Figure below)

in the case where a potential appears in the limit equation. We study the weak convergence

and limit behavior of attractors as the small parameter converges to zero. We mention recent

works [1]–[3] devoted to homogenization of attractors. We prove that the trajectory attractors

Aε of the two-dimensional system of Navier–Stokes equations in a perforated domain weakly

converge as ε → 0 to the trajectory attractor A of the homogenized system of equations in the
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corresponding function space. The small parameter ε characterizes the cavity diameter, as well

as the distance between cavities in the perforated medium.

In Section 1, we formulate the main notions and the theorem on trajectory attractors of

autonomous evolution equations. In Section 2, we describe the geometric structure of a perfo-

rated domain, formulate the problem under consideration, and introduce some function spaces.

Section 3 is devoted to homogenization of attractors of an autonomous two-dimensional system

of Navier–Stokes equations with rapidly oscillating terms in a perforated domain.

Figure. Two-dimensional perforated domain.

1 Trajectory Attractors of Evolution Equations

We describe a general scheme of constructing trajectory attractors of autonomous evolution

equations. This scheme will be used in Section 2 to study trajectory attractors of a two-

dimensional system of Navier–Stokes equations in a perforated domain with rapidly oscillating

terms in equations and boundary conditions and the corresponding homogenized equation.

We consider the abstract autonomous evolution equation

∂u

∂t
= A(u), t � 0, (1.1)

where A(·) : E1 → E0 is a given nonlinear operator, E1 and E0 are Banach spaces such that

E1 ⊆ E0. For example,

A(u) = νΔu− (u,∇u) + g(·).
We will study a solution u(s) to Equation (1.1) globally, as a function of variable s ∈ R+. Here,

s ≡ t denotes the time-variable. The set of solutions to Equation (1.1) is called the trajectory

space of Equation (1.1) and is denoted by K +. We describe the trajectory space K + in detail.

First of all, we consider the solution u(s) to Equation (1.1) defined on a fixed time-segment

[t1, t2] in R. We study solutions to Equation (1.1) in the Banach space Ft1,t2 which depends on

t1 and t2. The space Ft1,t2 consists of functions f(s), s ∈ [t1, t2], such that f(s) ∈ E for almost

all s ∈ [t1, t2], where E is a Banach space. It is assumed that E1 ⊆ E ⊆ E0.

For example, for Ft1,t2 we can take the space C([t1, t2];E), the space Lp(t1, t2;E), p ∈ [1,∞],

or the intersection of such spaces. We assume that Πt1,t2Fτ1,τ2 ⊆ Ft1,t2 and

‖Πt1,t2f‖Ft1,t2
� C(t1, t2, τ1, τ2)‖f‖Fτ1,τ2

∀f ∈ Fτ1,τ2 , (1.2)
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where [t1, t2] ⊆ [τ1, τ2], Πt1,t2 is the restriction operator on [t1, t2], and C(t1, t2, τ1, τ2) is inde-

pendent of f . Usually, one consider the homogeneous case of the space where

C(t1, t2, τ1, τ2) = C(t2 − t1, τ2 − τ1).

Let S(h), h ∈ R, denote the translation operator

S(h)f(s) = f(h+ s).

It is obvious that if the variable s of f(·) belongs to [t1, t2], then the variable s of S(h)f(·)
belongs to [t1 − h, t2 − h] for h ∈ R. We assume that the mapping S(h) is an isomorphism from

Ft1,t2 to Ft1−h,t2−h and

‖S(h)f‖Ft1−h,t2−h
= ‖f‖F t1,t2 ∀f ∈ Ft1,t2 . (1.3)

This assumption is natural, for example, for the homogeneous space.

We assume that if f(s) ∈ Ft1,t2 , then A(f(s)) ∈ Dt1,t2 , where the Banach space Dt1,t2 is

wider than Ft1,t2 , Ft1,t2 ⊆ Dt1,t2 . The derivative
∂f(t)

∂t
is a generalized function taking the

values in E0;
∂f

∂t
∈ D′((t1, t2);E0). We assume that Dt1,t2 ⊆ D′((t1, t2);E0) for all (t1, t2) ⊂ R.

A function u(s) ∈ Ft1,t2 is called a solution to Equation (1.1) in the space Ft1,t2 (on the interval

(t1, t2)) if
∂u

∂t
(s) = A(u(s)) in the sense of distributions in D′((t1, t2);E0).

We also introduce the space

F loc
+ = {f(s), s ∈ R+ | Πt1,t2f(s) ∈ Ft1,t2 ∀ [t1, t2] ⊂ R+}. (1.4)

For example, Ft1,t2 = C([t1, t2];E) implies F loc
+ = C(R+;E) and Ft1,t2 = Lp(t1, t2;E) implies

F loc
+ = Lloc

p (R+;E).

A function u(s) ∈ F loc
+ is called a solution to Equation (1.1) in F loc

+ if Πt1,t2u(s) ∈ Ft1,t2

and the function Πt1,t2u(s) is a solution to Equation (1.1) for any time-segment [t1, t2] ⊂ R+.

Let K + be a set of solutions to Equation (1.1) om the space F loc
+ , but K + does not

necessarily coincides with the set of all solutions to Equation (1.1) in F loc
+ . Elements of K +

are called trajectories, and K + is said to be the trajectory space of Equation (1.1).

We assume that the trajectory space K + is translation invariant in the following sense: if

u(s) ∈ K +, then u(h + s) ∈ K + for any h � 0. This condition is natural for solutions to

autonomous equations in homogeneous spaces.

We consider the translation operators S(h) in F loc
+ , i.e., S(h)f(s) = f(s + h) for h � 0.

It is clear that {S(h), h � 0} is a semigroup in F loc
+ : S(h1)S(h2) = S(h1 + h2) for h1, h2 � 0

and S(0) = I is the identity mapping. We replace the variable h with the time-variable t. The

semigroup {S(t), t � 0} is called the translation semigroup. By assumption, the translation

semigroup maps the trajectory space K + onto itself:

S(t)K + ⊆ K + ∀t � 0. (1.5)

In what follows, we study the attraction property of the translation semigroup {S(t)} acting

on the trajectory space K + ⊂ F loc
+ . We introduce a topology in F loc

+ . Let ρt1,t2(·, ·) be a group
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defined on the space Ft1,t2 for all segments [t1, t2] ⊂ R. As in (1.2) and (1.3), we assume that

ρt1,t2(Πt1,t2f,Πt1,t2g) � D(t1, t2, τ1, τ2)ρτ1,τ2(f, g) ∀f, g ∈ Fτ1,τ2 , [t1, t2] ⊆ [τ1, τ2],

ρt1−h,t2−h(S(h)f, S(h)g) = ρt1,t2(f, g) ∀f, g ∈ Ft1,t2 , [t1, t2] ⊂ R, h ∈ R.

(For a homogeneous space D(t1, t2, τ1, τ2) = D(t2 − t2, τ2 − τ1).)

We denote by Θt1,t2 the corresponding metric space on Ft1,t2 . For example, ρt1,t2 can be

the metric generated by the norm ‖ · ‖Ft1,t2
in the Banach space Ft1,t2 . In applications, it can

happen that the metric ρt1,t2 generates a weaker topology in Θt1,t2 than the strong convergence

topology in the Banach space Ft1,t2 .

We denote by Θloc
+ the space F loc

+ equipped with the local convergence topology in Θt1,t2 for

any [t1, t2] ⊂ R+. More exactly, by definition, a sequence of functions {fk(s)} ⊂ F loc
+ converges

to a function f(s) ∈ F loc
+ in Θloc

+ as k → ∞ if ρt1,t2(Πt1,t2fk,Πt1,t2f) → 0 as k → ∞ for any

[t1, t2] ⊂ R+. It is easy to prove that the topology in Θloc
+ is metrizable by using the Frechet

metric

ρ+(f1, f2) :=
∑

m∈N
2−m ρ0,m(f1, f2)

1 + ρ0,m(f1, f2)
. (1.6)

If all metric spaces Θt1,t2 are complete, then the metric space Θloc
+ is also complete.

We note that the translation semigroup {S(t)} is continuous in the topology of the space

Θloc
+ . This fact directly follows from the definition of the topological space Θloc

+ .

We define the Banach space

F b
+ := {f(s) ∈ F loc

+ | ‖f‖F b
+
< +∞} (1.7)

equipped with the norm

‖f‖F b
+
:= sup

h�0
‖Π0,1f(h+ s)‖F0,1 . (1.8)

For example, if F loc
+ = C(R+;E), then F b

+ = Cb(R+;E) is equipped with the norm ‖f‖F b
+
=

sup
h�0

‖f(h)‖E and, if F loc
+ = Lloc

p (R+;E), then F b
+ = Lb

p(R+;E) is equipped with the norm

‖f‖F b
+
=

(
sup
h�0

h+1∫

h

‖f(s)‖pEds
)1/p

.

We note that F b
+ ⊆ Θloc

+ . The Banach space F b
+ is necessary to introduce bounded sets in

the trajectory space K +. To construct a trajectory attractor in K +, we use the weaker lo-

cal convergence topology in Θloc
+ instead of the uniform convergences in the topology of the

space F b
+.

We assume that K + ⊆ F b
+, i.e., any trajectory u(s) ∈ K + of Equation (1.1) has finite

norm (1.8). We define an attracting set and a trajectory attractor of the translation semigroup

{S(t)} acting on K +.

Definition 1.1. A set P ⊆ Θloc
+ is called an attracting set of the translation semigroup

{S(t)} acting on K + in the topology of Θloc
+ if for any bounded set B ⊆ K + in F b

+ the set P
attracts S(t)B in the topology of Θloc

+ as t → +∞, i.e., for any ε-neighborhood Oε(P) in Θloc
+

there exists t1 � 0 such that S(t)B ⊆ Oε(P) for any t � t1.
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The attraction property of P can be formulated in the equivalent form: for any bounded

set B ⊆ K + in F b
+ and any M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MP) → 0, t → +∞,

where

distM (X,Y ) := sup
x∈X

distM (x, Y ) = sup
x∈X

inf
y∈Y

ρM (x, y)

denotes the Hausdorff semi-distance between sets X and Y in the metric space M .

Definition 1.2 (cf. [4]). A set A ⊆ K + is called a trajectory attractor of the translation

semigroup {S(t)} on K + in the topology of Θloc
+ if the following conditions are satisfied:

(i) A is bounded in F b
+ and compact in Θloc

+ ,

(ii) A is strictly invariant under the translation semigroup: S(t)A = A for all t � 0,

(iii) A is an attracting set of the translation semigroup {S(t)} for K + in the topology of Θloc
+ ,

i.e., for any M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MA) → 0, t → +∞.

Remark 1.1. Using the terminology of [5], we can say that a trajectory attractor A is global

(F b
+,Θ

loc
+ )-attractor of the translation semigroup {S(t)} acting on K +, i.e., A attracts S(t)B

in the topology of Θloc
+ as t → +∞, where B is any bounded (in F b

+) set in K +:

distΘloc
+
(S(t)B,A) → 0, t → +∞.

We formulate the main result concerning the existence and structure of a trajectory attractor

of Equation (1.1).

Theorem 1.1 (cf. [4]–[6]). Let the trajectory space K + corresponding to Equation (1.1)

be closed in F b
+ and satisfy the condition (1.5). Let the translation semigroup {S(t)} have

an attracting set P ⊆K + that is bounded in F b
+ and compact in Θloc

+ . Then the translation

semigroup {S(t), t � 0} acting on K + has a trajectory attractor A ⊆ P. The set A is bounded

in F b
+ and compact in Θloc

+ .

We describe the structure of trajectory attractors A of Equation (1.1) in terms of complete

trajectories of this equation. We consider Equation (1.1) on the whole time-axis

∂u

∂t
= A(u), t ∈ R. (1.9)

Now, we extend the notion of the trajectory space K + of Equation (1.9) introduced on R+ to

the case of the whole axis R. If a function f(s), s ∈ R, is given on the whole time-axis, then the

translations S(h)f(s) = f(s+h) are also defined for negative h. A function u(s), s ∈ R, is called

a complete trajectory of Equation (1.9) if Π+u(s + h) ∈ K + for any h ∈ R. Here, Π+ = Π0,∞
denotes the operator of restriction onto the half-axis R+.

We introduced the spaces F loc
+ ,F b

+, and Θloc
+ . Now, we can introduce the space F loc,F b,

and Θloc as follows:

F loc := {f(s), s ∈ R | Πt1,t2f(s) ∈ Ft1,t2 ∀ [t1, t2] ⊆ R},
F b := {f(s) ∈ F loc | ‖f‖F b < +∞},
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where

‖f‖F b := sup
h∈R

‖Π0,1f(h+ s)‖F0,1 . (1.10)

The topological space Θloc coincides (as a set) with F loc. By definition, fk(s) → f(s) in Θloc

as k → ∞ if Πt1,t2fk(s) → Πt1,t2f(s) in Θt1,t2 as k → ∞ for any [t1, t2] ⊆ R. It is clear that Θloc

is a metric space, as well as Θloc
+ .

Definition 1.3. The kernel K in the space F b of Equation (1.9) is the union of all complete

trajectories u(s), s ∈ R, of Equation (1.9) that are bounded in F b in the norm (1.10):

‖Π0,1u(h+ s)‖F0,1 � Cu ∀h ∈ R.

Theorem 1.2 (cf. [6, 4]). Let the assumptions of Theorem 1.1 hold. Then

A = Π+K .

The set K is compact in Θloc and bounded in F b.

To prove that some ball in F b
+ is compact in Θloc

+ , we use the following lemma. Let E0 and

E1 be Banach spaces such that E1 ⊂ E0. We consider the Banach spaces

Wp1,p0(0,M ;E1, E0) = {ψ(s), s ∈ 0,M | ψ(·) ∈ Lp1(0,M ;E1), ψ
′(·) ∈ Lp0(0,M ;E0)},

W∞,p0(0,M ;E1, E0) = {ψ(s), s ∈ 0,M | ψ(·) ∈ L∞(0,M ;E1), ψ
′(·) ∈ Lp0(0,M ;E0)},

where p1 � 1 and p0 > 1, with the norms

‖ψ‖Wp1,p0
:=

( M∫

0

‖ψ(s)‖p1E1
ds

)1/p1

+

( M∫

0

‖ψ′(s)‖p0E0
ds

)1/p0

,

‖ψ‖W∞,p0
:= ess sup{‖ψ(s)‖E1 | s ∈ [0,M ]}+

( M∫

0

‖ψ′(s)‖p0E0
ds

)1/p0

.

Lemma 1.1 (cf. [7]). Let E1 � E ⊂ E0. Then the following embeddings are compact:

Wp1,p0(0, T ;E1, E0) � Lp1(0, T ;E), (1.11)

W∞,p0(0, T ;E1, E0) � C([0, T ];E). (1.12)

Definition 1.4. We say that trajectory attractors Aε converge to a trajectory attractor A

in the topological space Θloc
+ as ε → 0 if for any neighborhood O(A) in Θloc

+ there is ε1 � 0 such

that Aε ⊆ O(A) for any ε < ε1, i.e., for any M > 0

distΘ0,M
(Π0,MAε,Π0,MA) → 0, ε → 0.
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2 Notation and Statement of the Problem

Let Ω be a bounded domain in R
2 with piecewise smooth boundary ∂Ω. Let G0 be a domain

in Y = (−1/2, 1/2)2 such that G0 is a compact set diffeomorphic to a ball.

We assume that δ > 0 and M is a set. We introduce the notation δM = {x : δ−1x ∈ M}.
For j ∈ Z

2 we define

P j
ε = εj, Y j

ε = P j
ε + εY, Gj

ε = P j
ε + εG0.

Further, we introduce the domain Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) >
√
2 ε} and the set of admissible

indices Υε = {j ∈ Z
n : Gj

ε ∩ Ω̃ε 
= ∅}. We note that |Υε| ∼= dε−2, where d > 0 is a constant. We

consider the domain Ωε = Ω \Gε, where

Gε =
⋃

j∈Υε

Gj
ε.

We set Qε = Ωε × (0,+∞) and Q = Ω × (0,+∞). We introduce the function spaces: H :=

[L2(Ω)]
2, Hε := [L2(Ωε)]

2, V := [H1
0 (Ω)]

2, and Vε := [H1(Ωε; ∂Ω)]
2 is the set of vector-valued

functions in [H1(Ωε)]
2 with zero trace on ∂Ω. The norms in these spaces are defined by

‖v‖2 :=
∫

Ω

2∑

i=1

|vi(x)|2dx, ‖v‖2ε :=
∫

Ωε

2∑

i=1

|vi(x)|2dx,

‖v‖21 :=
∫

Ω

2∑

i=1

|∇vi(x)|2dx, ‖v‖21ε :=
∫

Ωε

2∑

i=1

|∇vi(x)|2dx.

We study the asymptotic behavior of trajectory attractors of the following initial-boundary-

value problem for autonomous two-dimensional system of Navier–Stokes equations:

∂uε
∂t

− νΔuε + (uε,∇)uε = g0

(
x,

x

ε

)
, x ∈ Ωε,

(∇, uε) = 0, x ∈ Ωε,

ν
∂uε
∂n

+B
(x
ε

)
uε = 0, x ∈ ∂Gε, t ∈ (0,+∞),

uε = 0, x ∈ ∂Ω,

uε = U(x), x ∈ Ωε, t = 0.

(2.1)

Here, uε = uε(x, t) = (u1ε, u
2
ε), g = g(x, y) = (g1, g2) ∈ H, n is the outward normal vector to the

boundary, and ν > 0. Further,

B(s) =

(
b1(s) 0

0 b2(s)

)
,

where bk(s) ∈ C(R2) are 1-periodic in each variable on R
2 and

∫

∂G0

bk(s) dσ = 0;
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here, σ is the length element of the curve ∂G0, k = 1, 2. For a vector-valued function g(x, y) we

assume that g(x, x/ε) ∈ H for any ε > 0 and has the mean g(x) in the space H as ε → 0+, i.e.,

g
(
x,

x

ε

)
⇀ g(x) weakly in H, ε → 0+,

or ∫

Ω

g
(
x,

x

ε

)
ϕ(x)dx →

∫

Ω

g(x)ϕ(x)dx, ε → 0+, (2.2)

for any function ϕ ∈ H.

By the absolute continuity of the Lebesgue integral, from (2.2) we find

∫

Ωε

g
(
x,

x

ε

)
ϕ(x)dx →

∫

Ω

g(x)ϕ(x)dx ∀ ϕ ∈ H, ε → 0 + . (2.3)

It is known (cf., for example, [6, 8]) that for U ∈ H there exists a weak solution u(s) to

the problem (2.1) in the space Lloc
2,w(R+;Vε) ∩ Lloc∞,∗w(R+;Hε) such that u(0) = U . Moreover,

∂uε
∂t

∈ Lloc
2,w(R+;Hε). We consider weak solutions to the problem (2.1), i.e.,

uε(x, s) ∈ Lloc
2,w(R+;Vε) ∩ Lloc

∞,∗w(R+;Hε) ∩
{
v :

∂uε
∂t

∈ Lloc
2,w(R+;Hε)

}

that satisfy the problem (2.1) in the sense of distributions, i.e.,

∫

Qε

∂uε
∂t

· ψ dxdt+ ν

∫

Qε

∇uε · ∇ψ dxdt+

∫

Qε

(uε,∇)uεψ dxdt

+
∑

j∈Υε

+∞∫

0

∫

∂Gj
ε

B
(x
ε

)
uε · ψ dσdt =

∫

Qε

gε(x) · ψ dxdt ∀ ψ ∈ C∞
0 (R+;Hε). (2.4)

Here, y1 · y2 denotes the inner product vectors y1, y2 ∈ R
N .

To describe the trajectory space K +
ε of the problem (2.1), we follow the general scheme of

Section 1 and, on every segment [t1, t2] ∈ R, introduce the Banach space

Ft1,t2 := Lloc
2,w(t1, t2;Vε) ∩ Lloc

∞,∗w(t1, t2;Hε) ∩
{
v :

∂uε
∂t

∈ Lloc
2,w(t1, t2;Hε)

}
(2.5)

equipped with the norm

‖v‖Ft1,t2
:= ‖v‖L2(t1,t2;V) + ‖v‖L∞(t1,t2;H) +

∥∥∥
∂v

∂t

∥∥∥
L2(t1,t2;H)

. (2.6)

It is obvious that the condition (1.2) holds for the norm (2.6) and the translation semigroup

{S(h)} satisfies (1.3).

Setting Dt1,t2 = L2(t1, t2;V), we find that Ft1,t2 ⊆ Dt1,t2 . If u(s) ∈ Ft1,t2 , then A(u(s)) ∈
Dt1,t2 . Further, we can consider a weak solution to the problem (2.1) as a solution to the system
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of equations in accordance with the general scheme of Section 1. Introducing the space (1.4),

we find

F loc
+ = Lloc

2 (R+;V) ∩ Lloc
∞ (R+;H) ∩

{
v
∣∣∂v
∂t

∈ Lloc
2 (R+;H)

}
,

F loc
ε,+ = Lloc

2 (R+;Vε) ∩ Lloc
∞ (R+;Hε) ∩

{
v
∣∣∂v
∂t

∈ Lloc
2 (R+;Hε)

}
.

We denote by K +
ε the set of all weak solutions to the problem (2.1). We recall that for

any function U ∈ H there exists at least one trajectory u(·) ∈ K +
ε such that u(0) = U(x).

Consequently, the trajectory space K +
ε of the problem (2.1) is not empty.

It is clear that K +
ε ⊂ F loc

+ and the trajectory space K +
ε is translation invariant, i.e., if

u(s) ∈ K +
ε , then and u(h+ s) ∈ K +

ε for any h � 0. Consequently,

S(h)K +
ε ⊆ K +

ε ∀h � 0.

Further, using the L2(t1, t2;V)-norms, we introduce the metrics ρt1,t2(·, ·) in the spaces Ft1,t2

as follows:

ρ0,M (u, v) =

( M∫

0

‖u(s)− v(s)‖2ds
)1/2

∀ u(·), v(·) ∈ F0,M .

These metrics generate the topology of Θloc
+ in the space F loc

+ (respectively Θloc
ε,+ in F loc

ε,+). We

recall that a sequence {vk} ⊂ F loc
+ converges to a function v ∈ F loc

+ in Θloc
+ as k → ∞ if

‖vk(·) − v(·)‖L2(0,M ;H) → 0 (k → ∞) for any M > 0. The topology of Θloc
+ is metrizable

(cf. (1.6)) and the corresponding metric space is complete. We consider the topology in the

trajectory space K +
ε of the problem (2.1). The translation semigroup {S(t)} acting on K +

ε is

continuous in the topology of the space Θloc
+ .

Following the general scheme of Section 1, we consider the bounded set in K +
ε by using the

Banach space F b
+ (cf. (1.7)). It is clear that

F b
+ = Lb

2(R+;V) ∩ L∞(R+;H) ∩
{
v
∣∣∂v
∂t

∈ Lb
2(R+;H)

}
(2.7)

and F b
+ is a subspace of the space F loc

+ .

We consider the translation semigroup {S(t)} on K +
ε , S(t) : K +

ε → K +
ε , t � 0.

Let Kε denote the kernel of the problem (2.1) consisting of all weak solutions u(s), s ∈ R,

bounded in the space

F b = Lb
2(R;V) ∩ L∞(R;H) ∩

{
v
∣∣∂v
∂t

∈ Lb
2(R;H)

}

Proposition 2.1. The problem (2.1) has trajectory attractors Aε in the topological space

Θloc
+ . The set Aε is uniformly (with respect to ε ∈ (0, 1)) bounded in F b

+ and compact in Θloc
+ .

Furthermore, Aε = Π+Kε, the kernel Kε is nonempty and uniformly (with respect to ε ∈ (0, 1))

bounded in F b. We recall that the spaces F b
+ and Θloc

+ depend on ε.

The proof of Proposition 2.1 is similar to the proof in [4] given in a particular case..
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3 Homogenization of Attractors

3.1. The main assertion. In this subsection, we study the limit behavior of attractors Aε

of the Navier–Stokes equations (2.1) as ε → 0+ and their convergence to a trajectory attractor

of the corresponding homogenized equation. The homogenized (limit) problem has the form

∂u0
∂t

− ν

2∑

i,l=1

âil
∂2u0
∂xi∂xl

+ (u0,∇)u0 + V u0 = g(x), x ∈ Ω,

(∇, u0) = 0, x ∈ Ω,

u0 = 0, x ∈ ∂Ω,

u0 = U(x), x ∈ Ω, t = 0,

(3.1)

where

âil =

∫

Y \G0

(∂Nl(ξ)

∂ξi
+ δil

)
dξ, g(x) =

∫

Y \G0

g(x, ξ) dξ,

mk = −
∫

∂G0

bk(ξ)Mk(ξ) dσ, V =

(
m1 0

0 m2

)
;

here, Mk(ξ) and Nl(ξ) are 1-periodic functions of ξ satisfying the problems

⎧
⎪⎨

⎪⎩

ΔMk = 0 in Y \G0,

∂Mk

∂ν
= −bk(ξ) on ∂G0,

⎧
⎪⎨

⎪⎩

ΔNl = 0 in Y \G0,

∂Nl

∂ν
= −νl on ∂G0

and having zero mean over the periodicity cell.

We consider the weak solution to the problem (3.1), i.e., a function

u0(x, s) ∈ Lloc
2,w(R+;V) ∩ Lloc

∞,∗w(R+;H) ∩
{
v :

∂uε
∂t

∈ Lloc
2,w(R+;H)

}

satisfying the problem (2.1) in the sense of distributions:

∫

Q

∂u0
∂t

· ψ dxdt+ ν

∫

Q

2∑

i,l=1

âil
∂u0
∂xi

∂ψ

∂xl
dxdt+

∫

Q

(u0,∇)u0ψ dxdt

+

∫

Q

V u0 · ψ dxdt =

∫

Q

g(x) · ψ dxdt ∀ ψ ∈ C∞
0 (R+;H). (3.2)
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Remark 3.1. The coercivity of the limit operator (3.1) is a delicate problem since the con-

stants mj are always positive. In particular, the well-posedness of the problem (3.1) connected

with the coercivity of the operator is guaranteed by the inequalities

λ0 > max{m1,m2}, (3.3)

where λ0 is the first eigenvalue of the operator ν
2∑

i,l=1

âil
∂2

∂xi∂xl
in the space H1(Ω). The proof

of this assertion can be found in [9].

Under the condition (3.3), the problem (3.1) has a trajectory attractor A in the trajectory

space K
+

of the problem (3.1); moreover, A = Π+K where K is the kernel of the problem

(3.1) in F b.

We formulate the main theorem on homogenization of attractors of the system of Navier–

Stokes equations.

Theorem 3.1. Let λ0 > max{m1,m2}. Then

Aε → A, in Θloc
+ , ε → 0+, (3.4)

Kε → K , in Θloc. ε → 0 + . (3.5)

Remark 3.2. We recall that the spaces in Theorem 3.1 depend on ε. We assume that all

functions under consideration can be extended over the holes with preserving the norms.

3.2. Auxiliaries. We formulate some results of [9] which will be used below.

We consider the auxiliary problem

− νΔxxu
k
ε = gk

(
x,

x

ε

)
, x ∈ Ωε,

ν
∂ukε
∂n

+ bk
(x
ε

)
ukε = 0, x ∈ ∂Gε, k = 1, 2,

ukε = 0, x ∈ ∂Ω.

(3.6)

We also require that ∫

∂G0

bk(x)dσ = 0. (3.7)

We look for a solution in the form of a series

ukε = uk0(x) + εuk1(x, ξ) + ε2uk2(x, ξ) + . . . , ξ =
x

ε
. (3.8)

Substituting the series (3.8) into (3.6) and collecting terms with ε of the same order in the

equation and boundary conditions, we find a recurrent sequence of problems such that the first

one has the form

− νΔξξu
k
1 +

∂2uk0
∂ξ1∂x1

+
∂2uk0
∂ξ2∂x2

= 0, x ∈ Y \G0,

∂uk1
∂nξ

+
∂uk0
∂nx

+ bk(ξ)uk0 = 0, x ∈ ∂G0.

(3.9)

256



The integral identity for the problem (3.9) is as follows:

∫∫

Y \G0

(∂uk1
∂ξ1

∂v

∂ξ1
+

∂uk1
∂ξ2

∂v

∂ξ2

)
dξ1dξ2 +

∫∫

Y \G0

(
∂uk0
∂x1

∂v

∂ξ1
+

∂uk0
∂x2

∂v

∂ξ2

)
dξ1dξ2

+

∫

∂G0

bk(ξ)uk0dσ = 0, (3.10)

where v ∈ H1
per(Y \G0). From the form of the integral identity we can propose that the functions

uk1(x, ξ) have the following structure:

uk1(x, ξ) = Mk(ξ)uk0(x) +N1(ξ)
∂uk0
∂x1

+N2(ξ)
∂uk0
∂x2

. (3.11)

Substituting the last expression into (3.10) and collecting the corresponding terms, we obtain

the following problem for the functions Nl(ξ) and Mk(ξ):

∫∫

Y \G0

(∂Nl

∂ξ1

∂v

∂ξ1
+

∂Nl

∂ξ2

∂v

∂ξ2

)
dξ1dξ2 +

∫∫

Y \G0

∂v

∂ξl
dξ1dξ2 = 0 (3.12)

or, in the classical form: ⎧
⎪⎨

⎪⎩

Δξξ(Nl + ξl) = 0, x ∈ Y \G0,

∂Nl

∂nξ
= nl, x ∈ ∂G0,

∫∫

Y \G0

(∂Mk

∂ξ1

∂v

∂ξ1
+

∂Mk

∂ξ2

∂v

∂ξ2

)
dξ1dξ2 +

∫

∂G0

bj(ξ)vdσ = 0 (3.13)

or
ΔξξM

k = 0, x ∈ Y \G0,

∂Mk

∂nξ
+ bk

(
ξ
)
= 0, x ∈ ∂G0.

The compatibility condition in the problem (3.12) can be easily verified by integrating by parts

and using (3.7) in the problem (3.13). We note that the functions Mk(ξ) and Nl(ξ) are defined

up to an additive constant and the natural normalization conditions are the following:
∫∫

Y \G0

Mk(ξ)dξ =

∫∫

Y \G0

Nl(ξ)dξ = 0.

In what follows, we assume that these conditions are satisfied.

The next power of ε yields the problem for uk2(x, ξ):

Δξξu
k
2 + 2

( ∂2uk1
∂ξ1∂x1

+
∂2uk1
∂ξ2∂x2

)
+Δxxu

k
0 = −gk, x ∈ Y \G0,

∂uk2
∂nξ

+
∂uk1
∂nx

+ bk
(x
ε

)
uk1 = 0, x ∈ ∂G0.

(3.14)

257



Lemma 3.1. The functions Mk(ξ) and Nl(ξ) are connected by the integral identity

∂uk0(x)

∂xl

(∫∫

Y \G0

∂Mk

∂ξl
dξ1dξ2 −

∫

∂G0

bkNldσ

)
= 0.

We also need the integral identity corresponding to the problem (3.14)

∫∫

Y \G0

(∂uk2
∂ξ1

∂v

∂ξ1
+

∂uk2
∂ξ2

∂v

∂ξ2

)
dξ1dξ2 +

∫∫

Y \G0

(∂uk1
∂x1

∂v

∂ξ1
+

∂uk1
∂x2

∂v

∂ξ2

)
dξ1dξ2

+

∫

∂G0

bk(ξ)uk1vdσ −
∫∫

Y \G0

∂Mk

∂ξ1
vdξ1dξ2 · ∂u

k
0

∂x1
−

∫∫

Y \G0

∂Mk

∂ξ2
vdξ1dξ2 · ∂u

k
0

∂x2

−
∫∫

Y \G0

(∂N1

∂ξ1
+ 1

)
vdξ1dξ2 · ∂

2uk0
∂x21

−
∫∫

Y \G0

(∂N1

∂ξ2
+

∂N2

∂ξ1

)
vdξ1dξ2 · ∂2uk0

∂x1∂x2

−
∫∫

Y \G0

(∂N2

∂ξ2
+ 1

)
vdξ1dξ2 · ∂

2uk0
∂x22

+ gk = 0,

where

gk(x) =

∫∫

Y \G0

gk(x, ξ)dξ1dξ2.

The solvability condition for the problem (3.14) leads to the equation for uk0(x) which is the

required formal homogenized equations. Applying Lemma 3.1, we can write it in the form

ν
2∑

i,l=1

âil
∂2uk0
∂xi∂xl

− uk0

∫

∂G0

bk(ξ)Mk(ξ)dσ = gk(x), (3.15)

where

âil =

∫∫

Y \G0

(∂Nl

∂ξi
+ δil

)
dξ1dξ2

and δil is the Kronecker symbol. Thus, the homogenized problem can be written as

ν
2∑

i,l=1

âil
∂2uk0(x)

∂xi∂xl
−mkuk0(x) = gk(x), x ∈ Ω,

uk0(x) = 0, x ∈ ∂Ω,

(3.16)

where

mk =

∫

∂G0

bk(ξ)Mk(ξ)dσ, k = 1, 2.
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Lemma 3.2 (cf. [9]). If uε is a solution to the problem (3.6) and u0 is a solution to the

problem (3.16), then

ν

∫

Qε

∇uε · ∇ψ dxdt+
∑

j∈Υε

+∞∫

0

∫

∂Gj
ε

B
(x
ε

)
uε · ψ dσdt

−→ ν

∫

Q

â∇u0 · ∇ψ dxdt+

∫

Q

V u0 · ψ dxdt, ε → 0. (3.17)

Following [10] and taking into account Remark 3.2, we show that

(uε,∇)uε −→ (u,∇)u strongly in L2(Q). (3.18)

For this purpose we use the estimate

‖(uε,∇)uε − (u,∇)u‖L2(Q) � ‖(uε − u,∇)uε‖L2(Q) + ‖(u,∇)(uε − u)‖L2(Q)

� C

( ∫

Q

|uε − u|2|∇uε|2dxds
) 1

2

+ C

( ∫

Q

|u|2|∇(uε − u)|2dxds
) 1

2

� C1

( ∫

Q

|∇uε|3dxds
) 1

3
( ∫

Q

|uε − u|6dxds
) 1

6

+ C1

( ∫

Q

|u|6dxds
) 1

6
( ∫

Q

|∇(uε − u)|3dxds
) 1

3

. (3.19)

As proved in [4], the trajectory attractors Aε and A of Equations (2.1) and (3.1) exist in the

following space with a stronger topology:

H(2,2,1)
w (Q) = L2,w(R+; [W

2
2 (Ω)]

2) ∩
{
v :

∂v

∂t
∈ L2,w(R+;H)

}
.

We set H
(1,1,0)
3,w (Q) = L3,w(R+; [W

1
3 (Ω)]

2). Since H(2,2,1)(Q) � H
(1,1,0)
3 (Q) and H(2,2,1)(Q) �

L6(Q), we find

∫

Q

|uε − u|6dxds → 0,

∫

Q

|∇(uε − u)|3dxds → 0, ε → 0. (3.20)

Here, we used the uniform boundedness of the integral

∫

Q

|∇uε|3dxds � M.

Thus, we have proved the convergence (3.18).
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3.3. Proof of Theorem 3.1. It is clear that (3.5) implies (3.4). Therefore, it suffices to

prove (3.5), i.e., for any neighborhood O(K ) in Θloc there is ε1 = ε1(O) > 0 such that

Kε ⊂ O(K ) ∀ ε < ε1. (3.21)

If (3.21) fails, then there exists a neighborhood O ′(K ) in Θloc, a sequence εk → 0+ (k → ∞),

and a sequence uεk(·) = uεk(s) ∈ Kεk such that

uεk /∈ O ′(K ) ∀ k ∈ N. (3.22)

By (2.2), the sequence {g(x, x/εn)} is bounded in H. Consequently, using the integral identity

and the Cauchy–Bunyakowsky inequality, we conclude that the sequence of solutions {uεn} is

bounded in F b. Passing to a subsequence, we can assume that uεn → u0 in Θloc as n → ∞. We

assert that u0 ∈ K . The functions uεn(x, s) satisfy the equation

∂uεn
∂t

− νΔuεn + (uεn ,∇)uεn = g0

(
x,

x

εn

)
, t ∈ R, (3.23)

the condition

ν
∂uεn
∂n

+B
( x

εn

)
uεn = 0, x ∈ ∂Gεn ,

and the energy identity

− 1

2

M∫

−M

‖uεn(s)‖2Hψ′(s)ds+ ν

M∫

−M

‖uεn(s)‖2Vψ(s)ds

+
∑

j∈Υε

M∫

−M

∫

∂Gj
ε

B(
x

ε
)u2εn(x, s) · ψ(s)dσds =

M∫

−M

(
g
(
x,

x

εn

)
, uεn(s)

)
ψ(s)ds (3.24)

for any M > 0 and any function ψ ∈ C∞
0 (]−M,M [), ψ � 0. Furthermore,

uεn(s) ⇀ u0(s) weakly in L2(−M,M ;V) and ∗-weakly in L∞(−M,M ;H), n → ∞;

moreover,
∂uεn(s)

∂t
⇀

∂u0(s)

∂t
weakly in L2(−M,M ;H), n → ∞.

By the known compactness theorem [8], we can assume that

uεn(s) → u0(s) strongly in L2(−M,M ;H), n → ∞,

uεn(x, s) → u0(x, s) for almost all (x, s) ∈ D × (−M,M), n → ∞.

In particular,

uεn(s) → u0(s) strongly in Θloc
+ = Lloc

2 (R;H), n → ∞.

By (2.2),

g
(
x,

x

εn

)
⇀ g(x) in Hw and weakly in L2(−M,M ;H), n → ∞.

Now, taking into account Lemma 3.2 and the convergence (3.18), we pass to the limit in (3.23)

and (3.24) as ε → 0, based on a standard argument in [8] (cf. also [6, 4, 11]). Consequently,
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u0 ∈ K , i.e., u0 is a solution to the problem (3.1) satisfying the corresponding identity (3.24)

with the exterior force g(x). At the same time, we have established that

uεn(s) → u0(s) in Θloc
+ , n → ∞,

and, consequently, uεn(s) ∈ O ′(u0(s)) ⊂ O ′(K ) for εn � 1. Thus, we arrive at a contradiction

with (3.22). The theorem is proved.
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