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In a perforated domain, we consider the two-dimensional system of Navier—Stokes equa-
tions with rapidly oscillating terms in the equations and boundary conditions. We prove
that the trajectory attractors of this system converge in some weak topology to trajec-
tory attractors of the homogenized Navier—Stokes equations with an additional potential.
Bibliography: 11 titles. Illustrations: 1 figure.

In this paper, we study the asymptotic behavior of attractors of initial-boundary-value problems
for two-dimensional systems of Navier—Stokes equations in perforated domains (cf. Figure below)
in the case where a potential appears in the limit equation. We study the weak convergence

and limit behavior of attractors as the small parameter converges to zero. We mention recent
works [1]-[3] devoted to homogenization of attractors. We prove that the trajectory attractors
2. of the two-dimensional system of Navier—Stokes equations in a perforated domain weakly

converge as € — 0 to the trajectory attractor 2 of the homogenized system of equations in the
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corresponding function space. The small parameter € characterizes the cavity diameter, as well
as the distance between cavities in the perforated medium.

In Section 1, we formulate the main notions and the theorem on trajectory attractors of
autonomous evolution equations. In Section 2, we describe the geometric structure of a perfo-
rated domain, formulate the problem under consideration, and introduce some function spaces.
Section 3 is devoted to homogenization of attractors of an autonomous two-dimensional system
of Navier—Stokes equations with rapidly oscillating terms in a perforated domain.

Figure. Two-dimensional perforated domain.

1 Trajectory Attractors of Evolution Equations

We describe a general scheme of constructing trajectory attractors of autonomous evolution
equations. This scheme will be used in Section 2 to study trajectory attractors of a two-
dimensional system of Navier—Stokes equations in a perforated domain with rapidly oscillating
terms in equations and boundary conditions and the corresponding homogenized equation.

We consider the abstract autonomous evolution equation

ou
—=A t>0, 1.1
L= Adu), (11)
where A(-) : By — Ejy is a given nonlinear operator, F; and FEj are Banach spaces such that
FEq, C Ey. For example,

A(u) = vAu — (u, Vu) + g(+).

We will study a solution u(s) to Equation (1.1) globally, as a function of variable s € R,.. Here,
s = t denotes the time-variable. The set of solutions to Equation (1.1) is called the trajectory
space of Equation (1.1) and is denoted by .#+. We describe the trajectory space £ in detail.

First of all, we consider the solution u(s) to Equation (1.1) defined on a fixed time-segment
[t1,t2] in R. We study solutions to Equation (1.1) in the Banach space %, 4, which depends on
t1 and ta. The space %, 4, consists of functions f(s), s € [t1,t2], such that f(s) € E for almost
all s € [t1,t2], where E is a Banach space. It is assumed that £y C E C Ej.

For example, for .%;, 1, we can take the space C([t1,t2]; E), the space Ly(t1,t2; E), p € [1, 00],
or the intersection of such spaces. We assume that II;, ,.%+, 7, € %, 1, and

HHtLtszﬂtl,tQ < C(t17t277-17TQ)HfHﬂTl,Q Vf € yﬁﬂ'zv (1.2)
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where [t1,t2] C [11,72], II;, 4, is the restriction operator on [t1,t2], and C(t1,t2, 71, 72) is inde-

pendent of f. Usually, one consider the homogeneous case of the space where
C(t,t2, 11, m2) = Clta — t1, 72 — 71).
Let S(h), h € R, denote the translation operator

S(h)f(s) = f(h+s).

It is obvious that if the variable s of f(-) belongs to [t1, 2], then the variable s of S(h)f(:)
belongs to [t; — h,ta — h| for h € R. We assume that the mapping S(h) is an isomorphism from
Ft1,t2 to Ft1,h7t2,h and

ISz, —niyr = W7t VI € Pt (1.3)

This assumption is natural, for example, for the homogeneous space.

We assume that if f(s) € %y, +,, then A(f(s)) € %, +,, where the Banach space 2, 4, is
0f(t)
ot
values in Ey; % € D'((t1,t2); Ep). We assume that %, 1, € D'((t1,t2); Ep) for all (t1,t2) C R.
A function u(s) € F, 4, is called a solution to Equation (1.1) in the space .%, 4, (on the interval

(t1,t2)) if %(S) = A(u(s)) in the sense of distributions in D’((t1,t2); Ep).

We also introduce the space

wider than %, 1., F, 15 C D41 1,- The derivative

is a generalized function taking the

g_lfc = {f(s)a s € RJr | Htl,th(S) € ‘g‘tlth v [tl’tQ] C RJF}' (1'4)

For example, %, 1, = C([t1, t2]; E) implies .Z1°¢ = C(Ry; E) and Fy, 1, = Ly(t1, t2; E) implies
FPC = L°(Ry; E).

A function u(s) € Z1°¢ is called a solution to Equation (1.1) in .Z°° if 1Ly, s,u(s) € Fy, 4,
and the function Iy, +,u(s) is a solution to Equation (1.1) for any time-segment [t1,t2] C Ry.

Let #* be a set of solutions to Equation (1.1) om the space .Z\°¢, but # does not
necessarily coincides with the set of all solutions to Equation (1.1) in ﬂ_lfc. Elements of ¢ "
are called trajectories, and ¢ T is said to be the trajectory space of Equation (1.1).

We assume that the trajectory space .# is translation invariant in the following sense: if
u(s) € A F, then u(h + s) € AT for any h > 0. This condition is natural for solutions to
autonomous equations in homogeneous spaces.

We consider the translation operators S(h) in F1°°, ie., S(h)f(s) = f(s+h) for b > 0.
It is clear that {S(h),h > 0} is a semigroup in Z1°°: S(h1)S(h2) = S(h1 + hs) for hi,hy > 0
and S(0) = I is the identity mapping. We replace the variable A with the time-variable t. The
semigroup {S(t),t > 0} is called the translation semigroup. By assumption, the translation
semigroup maps the trajectory space .#+ onto itself:

Sty et Ccot vtxo. (1.5)

In what follows, we study the attraction property of the translation semigroup {S(¢)} acting
on the trajectory space #+ C 3@“. We introduce a topology in ﬂ]lroc. Let pt, t,(,-) be a group
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defined on the space %, 1, for all segments [¢1,t2] C R. As in (1.2) and (1.3), we assume that

ptl,tg(Htl,th) Hh,tzg) < D(tlut277—la7—2)p7'1,7’2(fa g) vf7g € <95‘1'1,7‘27 [tl)tQ] g [7—157-2]7

pt1—h7t2—h(5(h)fas(h)g) = Pty,to (f7g) Vfag € yﬁ,tzv [tlth] C R? h e R.

(For a homogeneous space D(t1,ta,71,72) = D(ta — ta, 70 — 71).)

We denote by Oy, +, the corresponding metric space on .%#;, 1,. For example, p;, , can be
the metric generated by the norm || - ”gztb ., in the Banach space %, 1,. In applications, it can
happen that the metric py, +, generates a weaker topology in Oy, ;, than the strong convergence
topology in the Banach space %, ,.

We denote by @fc the space ﬁfc equipped with the local convergence topology in ©;, ¢, for
any [t1,t2] C Ry. More exactly, by definition, a sequence of functions { fx(s)} C f}fc converges
to a function f(s) € F1°° in O as k — oo if py, 4o (W, 40 fs Ity 1, f) — 0 as k — oo for any
[t1,t2] C R4. Tt is easy to prove that the topology in @lfc is metrizable by using the Frechet

metric
—m Pom(f1, f2)
L+ pom(f1, f2)

p(fifo) =) 2

meN

(1.6)
If all metric spaces ©, 4, are complete, then the metric space G)lfc is also complete.

We note that the translation semigroup {S(¢)} is continuous in the topology of the space
@ljr)c. This fact directly follows from the definition of the topological space @ljr)c.

We define the Banach space

FL=1{f(s) € ZX° | I fll 7 < oo} (1.7)
equipped with the norm
£z = sup [o,1 f (R~ + 8)[|.2 - (1.8)
h=0

For example, if Z1°¢ = C(Ry; E), then #° = C*(R4; F) is equipped with the norm Hf”gi =
sup || f(h)| g and, if F1°¢ = L;,OC(RjL; E), then Zb = LZ(RJr; E) is equipped with the norm
h=0

h+1 1/p
1= <sup / IIf(S)II%dS> -
h>0 .

We note that fi C @L?C. The Banach space ﬁf’r is necessary to introduce bounded sets in
the trajectory space .# . To construct a trajectory attractor in J# T, we use the weaker lo-
cal convergence topology in @lfc instead of the uniform convergences in the topology of the
space ﬂi.

We assume that %+ C .2, ie., any trajectory u(s) € # T of Equation (1.1) has finite
norm (1.8). We define an attracting set and a trajectory attractor of the translation semigroup
{S(t)} acting on AT,

Definition 1.1. A set & C @lfr’c is called an attracting set of the translation semigroup
{S(t)} acting on # ¥ in the topology of ©'¢ if for any bounded set 2 C ¢+ in F! the set &
attracts S(t)% in the topology of ©'9¢ as t — +o0, i.e., for any e-neighborhood O.(Z?) in ©°
there exists ¢t; > 0 such that S(¢t)# C O.(Z) for any t > t;.

I/
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The attraction property of & can be formulated in the equivalent form: for any bounded
set ZC ¢ in b and any M >0

diSt@()’M (HoyMS(t)e%, HO,MQZ) — 0, t— +o0,

where

dist 4 (X,Y) := sup dist_y(z,Y) = sup inf p_4(z,y)
zeX zEX YEY

denotes the Hausdorff semi-distance between sets X and Y in the metric space ..

Definition 1.2 (cf. [4]). A set 2 C " is called a trajectory attractor of the translation

loc

semigroup {S(¢)} on £ in the topology of ©¥¢ if the following conditions are satisfied:

(i) 2 is bounded in .#% and compact in ©',

(ii) A is strictly invariant under the translation semigroup: S(¢)2 = 2l for all ¢t > 0,
(iii) 24 is an attracting set of the translation semigroup {S(¢)} for .#* in the topology of ©'°¢,
i.e., for any M >0

diSt@()’M (H07M5(t),9§, HQ,MQl) —0, t— 4o0.

Remark 1.1. Using the terminology of [5], we can say that a trajectory attractor 2 is global
(FL, 0 -attractor of the translation semigroup {S(¢)} acting on T, i.e., 2 attracts S(t) #
in the topology of @lﬁc as t — 400, where 4 is any bounded (in ﬂf’r) set in J# T

distefc(S(t) B,A) =0, t— +oo.

We formulate the main result concerning the existence and structure of a trajectory attractor
of Equation (1.1).

Theorem 1.1 (cf. [4]-[6]). Let the trajectory space ™+ corresponding to Equation (1.1)
be closed in F° and satisfy the condition (1.5). Let the translation semigroup {S(t)} have
an attracting set P CH# T that is bounded in 33_?_ and compact in @fc. Then the translation
semigroup {S(t),t > 0} acting on & has a trajectory attractor A C L. The set A is bounded
in ﬁf’r and compact in @LEC.

We describe the structure of trajectory attractors 2 of Equation (1.1) in terms of complete
trajectories of this equation. We consider Equation (1.1) on the whole time-axis

ou
i A(u), teR. (1.9)

Now, we extend the notion of the trajectory space #+ of Equation (1.9) introduced on R to
the case of the whole axis R. If a function f(s), s € R, is given on the whole time-axis, then the
translations S(h) f(s) = f(s+h) are also defined for negative h. A function u(s), s € R, is called
a complete trajectory of Equation (1.9) if Il u(s + h) € A+ for any h € R. Here, I1 = Iy «
denotes the operator of restriction onto the half-axis R.

We introduced the spaces ﬁ_lfc, ﬂi, and @lj_’c. Now, we can introduce the space .F#1°¢,
and ©'°° as follows:

ﬁloc = {f(5)73 eR ‘ Ht1,t2f(8) € fgzt1,t2 v [tth] C R}7

TP ={f(s) € F°°| | fll #v < +o0},
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where

1|z == sup |[Lo,1 f(h + 8)]|.5,- (1.10)
heR

The topological space ©'°¢ coincides (as a set) with .Z1°°. By definition, fi(s) — f(s) in ©°°
as k — 00 if Iy, 4, fu(8) — Tlyy 4, f () in Oy, 4, as k — oo for any [t1,ts] C R. It is clear that ©'°¢
is a metric space, as well as @lfr’c.

Definition 1.3. The kernel % in the space .Z° of Equation (1.9) is the union of all complete
trajectories u(s), s € R, of Equation (1.9) that are bounded in .#° in the norm (1.10):

[To1u(h + 8)||7, < Cu VheR.
Theorem 1.2 (cf. [6, 4]). Let the assumptions of Theorem 1.1 hold. Then
A=T11,.7.
The set ¥ is compact in ©°° and bounded in F°.

To prove that some ball in 9’3 is compact in ©'°¢, we use the following lemma. Let Ey and
FE; be Banach spaces such that Fy C Ey. We consider the Banach spaces

Wpl,PO(O?M;ElaEO) = {w(b’%s €0, M | ¢() € Lpl (07M§E1)7 @Z/() € Lpo(OaM3 EO)};
WOOyPO(()?M;ElaEO) = {1/}(8)7 s € 07M | 1/}() € LOO(O7 M; E1)7 w/() € LPO(OvM;EO)}a

where p; > 1 and pg > 1, with the norms

1/po

M 1/p1 M
5y = ( / uw<s>’ads> +( / ||w'<s>\i%ds) 7
0 0

M 1/po
[l Wee py := esssup{||¥(s)lle, | s € [0, M]} + ( /!l¢'(5)|%)od5> ‘
0

Lemma 1.1 (cf. [7]). Let E1 € E C Ey. Then the following embeddings are compact:

thpo(OaTS E17E0) € Lp1(07T§ E)7 (1.11)
Woopo (0, T Ev, Eo) € C([0,T7; E). (1.12)

Definition 1.4. We say that trajectory attractors 2. converge to a trajectory attractor 2
in the topological space GLEC as € — 0 if for any neighborhood &'(2l) in @lfr’c there is 1 > 0 such

that 2. C O(2) for any ¢ < e1, i.e., for any M > 0

diste,,, (Io,nr2Ae, 1o 2 A) — 0, & — 0.
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2 Notation and Statement of the Problem

Let © be a bounded domain in R? with piecewise smooth boundary 99Q. Let Gy be a domain
in Y = (—1/2,1/2)? such that G is a compact set diffeomorphic to a ball.

We assume that § > 0 and M is a set. We introduce the notation 6M = {z : §~tx € M}.
For j € Z? we define
Pl =¢j, YI=Pl +eY, Gi=Pl+eGy.
Further, we introduce the domain Q. = {z € Q: p(x,00) > 2} and the set of admissible

indices T, = {j € Z" : GLN Q. # @}. We note that |Y.| 2 de~2, where d > 0 is a constant. We
consider the domain Q. = Q\ G, where

— J
-y
JET:

We set Q. = Q. x (0,400) and @ = 2 x (0,+00). We introduce the function spaces: H :=
[L2(Q)]?, He := [L2(0:)]2, V = [HE(Q)]?, and V. := [H(Q;00)]? is the set of vector-valued
functions in [H!(€2.)]? with zero trace on 9. The norms in these spaces are defined by

ol = /Zw ) de, ||v|r§:=/2|v ) de,
=1

€

ol = /Z\w eds, o, = /Z\w e

E

We study the asymptotic behavior of trajectory attractors of the following initial-boundary-
value problem for autonomous two-dimensional system of Navier—Stokes equations:

_VAUE+(u€7V)uE:go<$7§)7 erEa

(V,us) =0, =z €,
(2.1)

3u5
- +B<€> =0, z€09G,, te(0,+x),

us. =0, x € 9N,
ue =U(x), =€, t=0.

Here, u. = u.(x,t) = (ul,u?), g = g(z,y) = (¢*, 9?) € H, n is the outward normal vector to the

g7 e
boundary, and v > 0. Further,
bi(s) 0
B(s) = ,
(s) < 0 b2(s)>
where b*(s) € C(R?) are 1-periodic in each variable on R? and
/ b*(s) do = 0;
0Go
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here, o is the length element of the curve 0Gg, k = 1,2. For a vector-valued function g(x,y) we
assume that g(z,z/e) € H for any £ > 0 and has the mean g(x) in the space H as ¢ — 0+, i.e.,

g(az, g) —g(x) weakly in H, & — 0+,

/g(m, §>cp(x)d:v — /g(x)cp(az)d:c, € — 0+, (2.2)
Q Q

or

for any function ¢ € H.
By the absolute continuity of the Lebesgue integral, from (2.2) we find

/( da:—>/ 2yde YoeH, €0+, (2.3)
Qe

It is known (cf., for example, [6, 8]) that for U € H there exists a weak solution u(s) to
the problem (2.1) in the space LIOC C(Ry; V)N Lé%c*w(RJr; H.) such that u(0) = U. Moreover,
Ou,

T € LIOC ¢ (R4;H.). We consider weak solutions to the problem (2.1), i.e

Oug
ot

ue(w,5) € LES,(Ry5 Vo) NLAE, (R H) 0 {v: % € Ly (RysHL) }

that satisfy the problem (2.1) in the sense of distributions, i.e.,

S dedi+v [ VeV dode+ [ (e, Ve dod

Qe OF Q-

+Z// (L) - dodt = /ge<x>-wdxdt Ve CRRH).,  (24)

JEY . 0 8G§ 0.

Here, 41 - y2 denotes the inner product vectors yp, 72 € RV.

To describe the trajectory space . of the problem (2.1), we follow the general scheme of
Section 1 and, on every segment [t1,?2] € R, introduce the Banach space

ytl,tg LloC (tl,tQ,V ) ﬁL})%C*w(tl,tQ;Hg) n {U (tl,tQ,H )} (2.5)
equipped with the norm
0
007205 = o tages o) + Wl eom + | 5 [ e (2.6)

It is obvious that the condition (1.2) holds for the norm (2.6) and the translation semigroup
{S(h)} satisfies (1.3).

Setting Py, 1, = La(t1,t2; V), we find that %, 1, € Dy, 4,. If u(s) € Fy, 1,, then A(u(s)) €
Dy, +,- Further, we can consider a weak solution to the problem (2.1) as a solution to the system
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of equations in accordance with the general scheme of Section 1. Introducing the space (1.4),
we find

Fh0 = LR V) MU (R H) 0 (o]0 € LRy 1) ),
o‘\loc loc loc v loc
FLo0 = LEY(Ry; Vo) N LRy HL) N {u\a € L (R+;H€)}.

We denote by #.t the set of all weak solutions to the problem (2.1). We recall that for
any function U € H there exists at least one trajectory u(-) € .t such that «(0) = U(z).
Consequently, the trajectory space J#." of the problem (2.1) is not empty.

It is clear that T C .Z1°° and the trajectory space J#.* is translation invariant, i.e., if
u(s) € AT, then and u(h + s) € " for any h > 0. Consequently,

S(h)t C T YR >0.

Further, using the Ly(t1, t2; V)-norms, we introduce the metrics py, 4, (-, ) in the spaces %, +,
as follows:

/2
po,m(u,v) ( /Hu —v(s)]] ds) Vou(-),v(-) € Foum.

These metrics generate the topology of @loc in the space ﬁ‘]lfc (respectively @?Sr in ﬁglofr) We
recall that a sequence {vy} C Z1°° converges to a function v € FI°° in O as k — oo if
v (-) = v()llLa0,arm) — 0 (B — o0) for any M > 0. The topology of O° is metrizable
(cf. (1.6)) and the corresponding metric space is complete. We consider the topology in the
trajectory space J#." of the problem (2.1). The translation semigroup {S(¢)} acting on T is
continuous in the topology of the space @L‘F’C.

Following the general scheme of Section 1, we consider the bounded set in J#.* by using the
Banach space Z% (cf. (1.7)). It is clear that

ov
yj:Lg(R+;V)me(R+;H)m{v\E eLg(R+;H)} (2.7)

and ﬁi is a subspace of the space ﬁfc.

We consider the translation semigroup {S(¢)} on ., S(t) : At — AT, t>0

Let 7 denote the kernel of the problem (2.1) consisting of all weak solutions u(s), s € R,
bounded in the space

Fb = LE(R; V) N Lo ( {|—6LbRH)}
Proposition 2.1. The problem (2.1) has trajectory attractors . in the topological space
©'¢. The set A. is uniformly (with respect to e € (0,1)) bounded in F° and compact in ©'.

Furthermore, . = 11, 2, the kernel . is nonempty and uniformly (with respect to € € (0,1))
bounded in F°. We recall that the spaces ﬁf’r and @Eﬁc depend on €.

The proof of Proposition 2.1 is similar to the proof in [4] given in a particular case..
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3 Homogenization of Attractors

3.1. The main assertion. In this subsection, we study the limit behavior of attractors 2.

of the Navier—Stokes equations (2.1) as ¢ — 0+ and their convergence to a trajectory attractor

of the corresponding homogenized equation. The homogenized (limit) problem has the form

2
8uo _
Z 7 axza [ 'LL(), V)’LLO + VUO - g(x)7 S Qa

(V,up) =0, z€Q,
up =0, x € 01,
up=U(z), €, t=0,

where

an= [ (B ss)ie g = [ oo

0&;
Y\Go Y\Go
k L mi 0
mp =~ [ WF(EME)do, V= :
0 meo
0Go

here, M*(¢) and N;(€) are 1-periodic functions of £ satisfying the problems

AMF =0 inY\ Gy,

oM*

5 = —b*(€)  on Gy,
AN; =0 inY \ Gy,
aNl = —V; Oon 8G0
v

and having zero mean over the periodicity cell.

We consider the weak solution to the problem (3.1), i.e., a function

c oc 8“’5 oc
uo(, 5) € LEG,(R43 V) NLES,, (R H) 0 {v: 52 € LS Ry H) |

satisfying the problem (2.1) in the sense of distributions:

a Aug O
el ) dxdt—l—u/ Z ay 8“0 afl dx dt—i—/(uo,V)uoz/; dxdt

Q Q

+/Vu0-¢dxdt:/§(3:)-w dzdt Vb € C(Ry; H).
Q Q
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Remark 3.1. The coercivity of the limit operator (3.1) is a delicate problem since the con-
stants m/ are always positive. In particular, the well-posedness of the problem (3.1) connected
with the coercivity of the operator is guaranteed by the inequalities

Ao > max{m!', m?}, (3.3)
2 62
where \g is the first eigenvalue of the operator v E Gy ——— in the space H'(Q2). The proof
=1 3.%18561

of this assertion can be found in [9].

Under the condition (3.3), the problem (3.1) has a trajectory attractor 2 in the trajectory

space " of the problem (3.1); moreover, 2 = II,.# where # is the kernel of the problem

(3.1) in Z°.
We formulate the main theorem on homogenization of attractors of the system of Navier—
Stokes equations.

Theorem 3.1. Let \g > max{m',m?}. Then
A — A, in O -0+, (3.4)
He— A, in@°C. 50+, (3.5)

Remark 3.2. We recall that the spaces in Theorem 3.1 depend on . We assume that all
functions under consideration can be extended over the holes with preserving the norms.

3.2. Auxiliaries. We formulate some results of [9] which will be used below.

We consider the auxiliary problem

_VAxiCulgC :gk<x7§>, era‘y
k
s b’“(f)ui =0, z€0G., k=12, (36)
on €

ub =0, zeoq.

€

We also require that
/ V¥ (x)do = 0. (3.7)
0Go
We look for a solution in the form of a series
x
uf = uf(z) +euf(z,&) + E2ul (2, &) +..., &= - (3.8)
Substituting the series (3.8) into (3.6) and collecting terms with & of the same order in the

equation and boundary conditions, we find a recurrent sequence of problems such that the first
one has the form

A%k A%uk
—vA k 0 0 — Y
VAU T 0610x1  0&0xs 0, we ¥\ Lo, (3.9)
8ulf 8u’8 i i .
e o, T v*(&ug =0, x € IGy.
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The integral identity for the problem (3.9) is as follows:

ﬁu’f ov 8qu ov / / 8u0 ov au’g ov
d d&s + d
[] Getae; + o s e 9es 06+ 00, 05, 117

Y\Go Y\Go
k(eyo kg
+ / b¥(§)ugdo = 0, (3.10)
0Go
where v € HpeT(Y\GO). From the form of the integral identity we can propose that the functions

uk(x, &) have the following structure:

8u0
Oy

k
oug

ut(z,€) = MF(€)ug(z) + Ni(€) 52> + Na 285, (3.11)
Substituting the last expression into (3.10) and collecting the corresponding terms, we obtain

the following problem for the functions N;(¢) and M*(€):
8Nl ov 8]\71 av //
—d&1dés =
[ Gevags + ey ;i f1d62 =0 (3.12)
Y\Go Y\GO

or, in the classical form:
Age(N+&) =0, z€Y\ Gy,

@ =n;, € 0Gy,
ang
E)M’C v 8Mk v
// 9 06 | 06 a§2>d&d§2+/bj §Judo =0 (3.13)
Y\Go 8Go

or
A&M’f =0, ze€Y\QGoy,
oMk
e +08(¢) =0, € dGy.

The compatibility condition in the problem (3.12) can be easily verified by integrating by parts
and using (3.7) in the problem (3.13). We note that the functions M* (&) and N;(¢) are defined
up to an additive constant and the natural normalization conditions are the following:

[[ e~ [[ mie=o.
Y\Go Y\Go

In what follows, we assume that these conditions are satisfied.

The next power of ¢ yields the problem for u%(z, ¢):

A%k A2uk
A k ) 1 1 Axm k — k Y
S <a§15$1 * 55235172) St soreric (3.14)
8ul§ ouk . .
R el (E)u —0, x€dG.
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Lemma 3.1. The functions M*(&) and Ni(€) are connected by the integral identity

k
8“0 ( aM g Y - / kalda> ~ 0.
\Go

0Go

We also need the integral identity corresponding to the problem (3.14)

£ o 5 5
// (3] 6‘;1 % 652 d§1d§2+// axlagvl %23;)61&@

Y\Go Y\GO
k k k
T / bk () ubvdo — / oM vde des - %— / oM T pdede, - S0
0&1 1 ) T2
8Go Y\Go Y\Go
62u 8N1 6N2 82uk
= 1 déydéy - —2 vd 0
// 5, L)vdidee 022 // T T e e 5
Y\G() Y\GO

8271,]8 k
— 1 déid g =0
// 6§2+ vd&1d§s - 22 +9 ;

Y\Go
- / / o" (x, €)d1 6.

Y\Go

where

The solvability condition for the problem (3.14) leads to the equation for uf(z) which is the
required formal homogenized equations. Applying Lemma 3.1, we can write it in the form

2

0 U uk k k _ -k
v g [ O =5 o), (3.15)
i,l=1 0Go
where
BN
aj —/ 8§l il d§1d§2
Y\Go ’

and §;; is the Kronecker symbol. Thus, the homogenized problem can be written as

- O*uf k. k k
a; - =g s Q>
S k) = e, v e

i,l=1 (316)

uk(z) =0, z€dQ,

where

mF = /bk(g)Mk(g)do, k=1,2.

0Go
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Lemma 3.2 (cf. [9]). If u. is a solution to the problem (3.6) and ug is a solution to the
problem (3.16), then

/ws Vi d:cdt+];so/8£ ( )ue W dodt

— V/&Vuo -V dxdt + / Vug - dedt, € — 0. (3.17)
Q Q

Following [10] and taking into account Remark 3.2, we show that
(e, V)ue — (u, V)u strongly in La(Q). (3.18)
For this purpose we use the estimate

[(ues Ve = (u, Vul|yq) < l[(ue = u, VuellLy @) + 1w, V) (ue — )| 1,q)

L 1
2 2
C( /‘“6‘“’2‘VU5\2d:Bds> —i—C’( /\u|2\V(us—u)\2dxds>
@ Q
1
3
<C1< /|Vu5|3dxds) (/]ue—u|6d:vds>
Q Q
l =
6
+C1( /|u|6d:17d8> </|V(u€—u)|3dfcd5> . (3.19)
Q

Q

[

o=

As proved in [4], the trajectory attractors 2. and 2 of Equations (2.1) and (3.1) exist in the
following space with a stronger topology:

5]
HE2D(Q) = Lo (B W3O 1 {v: 20 € Ly (R H) .

We set H{2'(Q) = Ly (Ry; [WA(2)]2). Since H22D(Q) € HMMY(Q) and HE2V(Q)
Ls(Q), we find

/\ua — u|®dzds — 0, /|V(u5 —u)|*drds — 0, € —0. (3.20)
Q Q

Here, we used the uniform boundedness of the integral

/|Vu5|3da:ds <M

Thus, we have proved the convergence (3.18).
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3.3. Proof of Theorem 3.1. It is clear that (3.5) implies (3.4). Therefore, it suffices to
prove (3.5), i.e., for any neighborhood €' (%) in ©'°° there is €1 = £1(&) > 0 such that

He COH) Ve<e. (3.21)

If (3.21) fails, then there exists a neighborhood &'(¢) in ©°¢, a sequence e, — 0+ (k — o0),
and a sequence ug, () = ug, (s) € Jz, such that

ue, ¢ 0'(H) Y keN. (3.22)

By (2.2), the sequence {g(z,z/ey)} is bounded in H. Consequently, using the integral identity
and the Cauchy—Bunyakowsky inequality, we conclude that the sequence of solutions {u., } is
bounded in .. Passing to a subsequence, we can assume that u., — ug in ©°¢ as n — oo. We
assert that ug € # . The functions u., (x, s) satisfy the equation

0
Pllen _ vAue, + (ue,, V)ue, = go (x, E), teR, (3.23)
ot n
the condition 5
p ey B(i)u% =0, ze€dG,,,
on €n

and the energy identity

1 M M
5 [ M@ s v [ e, (6) oo)ds
M —-M

M M
+ Z / / B(g)u2n(az, s) - (s)dods :_A//[ (g(m,i),ugn(s)>¢(s)d8 (3.24)

JEY aGZ:'
for any M > 0 and any function ¢ € C§°(] — M, M][), ¢ > 0. Furthermore,
Ue, (8) = up(s) weakly in Lo(—M, M;V) and *-weakly in Loo(—M, M;H), n — oo;

moreover,
Oue, (s)  Ouo(s)
ot ot

By the known compactness theorem [8], we can assume that

weakly in Lo(—M, M;H), n — oc.

Ue, (8) = up(s) strongly in Lo(—M, M;H), n — oo,
Ue, (z,8) = up(x,s) for almost all (z,s) € D x (=M, M), n — 0.

In particular,
U, (8) — ug(s) strongly in ©'°¢ = LY°(R; H), n — oo.
By (2.2).

g(m, ﬁ) —g(z) in Hy, and weakly in Lo(—M, M;H), n — oo.
En

Now, taking into account Lemma 3.2 and the convergence (3.18), we pass to the limit in (3.23)
and (3.24) as ¢ — 0, based on a standard argument in [8] (cf. also [6, 4, 11]). Consequently,
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ug € K, i.e., ug is a solution to the problem (3.1) satisfying the corresponding identity (3.24)
with the exterior force g(x). At the same time, we have established that

U, (s) = up(s) in O, n — oo,

and, consequently, u., (s) € 0'(ug(s)) C O'(K*) for e, < 1. Thus, we arrive at a contradiction
with (3.22). The theorem is proved.
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