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1. Introduction

The notion of coalgebra is dual to the notion of algebra. The theory of (co)associative 
coalgebras has been developed for a long time within the framework of the theory of 
Hopf algebras [18]. The study of coalgebras, bialgebras, and Hopf algebras received a new 
impetus when the term “quantum group”, along with revolutionary new examples, was 
launched by V. Drinfeld in 1986 [3]. Lie bialgebras, which are simultaneously Lie algebras 
and Lie coalgebras, were introduced as one of the most important notions of quantum 
group theory [4]. The study of Lie coalgebras, investigated earlier by W. Michaelis [11], 
was intensified. It is well known that the dual of an associative coalgebra is an associative 
algebra and the dual of a Lie coalgebra is a Lie algebra. In 1994 J. Anquella, T. Cortes, 
and F. Montaner [1] called a coalgebra C an M-coalgebra if the dual algebra C∗ belongs 
to the variety of algebras M. This allows to define alternative, Jordan, Malcev, left-
symmetric, Novikov coalgebras, and so on.

The Fundamental Theorem on Coalgebras asserts that every finitely generated asso-
ciative coalgebra over a field is finite-dimensional. An analogue of this result is true for 
alternative and Jordan coalgebras [1], for structurable coalgebras [20], for Jordan copairs 
[24], for right alternative Malcev admissible coalgebras and binary (-1,1)-coalgebras [15].

Lie coalgebras are not locally finite and the first example of an infinite dimensional 
finitely generated Lie coalgebra was given in [11]. In 1995 A. Slinko [17] found some 
necessary and sufficient conditions for Lie coalgebras to be locally finite. A connec-
tion between Jordan and Lie (super)coalgebras, which is an analog of the well known 
Kantor-Koecher-Tits construction for usual (super)algebras, was found in [21,22]. M.E. 
Goncharov and V.N. Zhelyabin [6,7] showed that every Malcev coalgebra embeds into 
a Lie coalgebra with triality. Unlike Jordan coalgebras, Jordan super-coalgebras are not 
locally finite [22].

In 2000 D. Kozybaev [9] constructed an example of a non-locally finite right-symmetric 
coalgebra and an example of a non-locally finite right-alternative coalgebra. I. Shestakov 
reported [16] that the example of a right-alternative coalgebra given in [9] is incorrect. 
This report attracted the attention of the authors to these old examples. First of all 
we noticed that the left-symmetric analogue of the non-locally finite right-symmetric 
coalgebra from [9] is a Novikov coalgebra. Moreover, we noticed that the commutator 
coalgebra of this coalgebra is exactly the non-locally finite Lie coalgebra given by W. 
Michaelis [11]. In order to understand the nature of these examples we started to study 
codifferential coalgebras.

To any associative and commutative differential algebra A one relates the following 
three algebras:

(1) a Novikov algebra obtained from A by the Gelfand-Dorfman construction;
(2) a Lie algebra obtained as the commutator algebra of the Novikov algebra men-

tioned in (1); and
(3) a Jordan superalgebra obtained from A by the Kantor construction.
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The notion of coderivation allows us to define the notion of a (co)differential coalgebra. 
We constructed a very easy example C of a non-locally finite associative and commutative 
differential coalgebra. Using this example we constructed three examples of non-locally 
finite coalgebras. We define an analogue of the Gelfand-Dorfman construction for coalge-
bras and using this we give an example of a non-locally finite Novikov coalgebra obtained 
from C, and the dual algebra of this coalgebra satisfies the identity (xy)z = 0. This ex-
ample coincides with Kozybaev’s example mentioned above. Moreover, the commutator 
coalgebra of this Novikov coalgebra is exactly the non-locally finite Lie coalgebra given 
by Michaelis [11]. This Lie coalgebra is metabelian. Using C and an analogue of the 
Kantor construction for super coalgebras, we give an example of a non-locally finite 
Jordan super-coalgebra. The dual of this super-coalgebra satisfies the super identities 
xy = yx, xz = zx, and (zz1)(z2z3) = 0 for even variables x, y and for odd variables 
z, z1, z2, z3.

We repeated the same route starting from the simple differential algebra (F [x], ∂ = d
dx )

over a field F of characteristic zero. The graded dual of this algebra is a simple infinite 
dimensional differential coalgebra. Recall that a coalgebra is called simple if it does 
not have any proper subcoalgebras. Applying the Gelfand-Dorfman construction to this 
coalgebra, we get an example of a simple infinite dimensional Novikov coalgebra. This 
coalgebra is the graded dual of the Novikov-Witt algebra L1 [10]. The commutator Lie 
coalgebra of this coalgebra is also simple and coincides with the graded dual of the Witt 
algebra W1. And finally, using the Kantor construction, we constructed an example of a 
simple infinite dimensional Jordan super-coalgebra.

We also noticed that the example of a non-locally finite right-alternative coalgebra 
from [9] can be fixed only by interchanging the indexes 3n − 2 and 3n − 1 on lines 3 and 
4 of the formula (12). The fixed example is given in Section 6. A much more complicated 
example of a non-locally finite right-alternative coalgebra was recently given in [16].

The paper is organized as follows. In Section 2 we give some necessary terminol-
ogy of coalgebras, notations, and general statements. In Section 3 we give examples of 
non-locally finite differential, Novikov, and Lie coalgebras. Simple infinite dimensional 
differential, Novikov, and Lie coalgebras are given in Section 4. Section 5 is devoted to 
Jordan super-coalgebras and Section 6 is devoted to right-alternative coalgebras.

2. Coalgebras and coderivations

Let F be an arbitrary field. For any vector space V over F denote by

V ∗ = HomF (V, F )

its dual vector space, i.e., the vector space of all linear forms on V .
Denote by

V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸

n
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the n-th tensor power of the vector space V over F .
The map

ρ : (V ∗)⊗n → (V ⊗n)∗

defined by

ρ(f1 ⊗ . . .⊗ fn)(
∑

i1...in

ei1 ⊗ . . .⊗ ein) =
∑

i1...in

f1(ei1) . . . fn(ein)

is injective. For this reason we can assume that

(V ∗)⊗n ⊆ (V ⊗n)∗.

If φ : V → U is a linear map of vector spaces then the transpose φ∗ : U∗ → V ∗ of φ
is defined by

φ∗(u∗)(v) = u∗(φ(v)), v ∈ V, u∗ ∈ U∗.

A vector space C over F with a linear map

Δ : C → C ⊗F C

is called a coalgebra. The map Δ is called its comultiplication. We often call the pair (C, Δ)
a coalgebra in order to emphasize the comultiplication in question. For any a ∈ C, using 
the Sweedler notation (see [18]), we write

Δ(a) =
∑
a

a(1) ⊗ a(2).

If C is a coalgebra, then

(fg)(a) = ρ(f ⊗ g)(Δ(a)) =
∑
a

f(a(1))g(a(2)), f, g ∈ C∗, a ∈ C,

defines a product on C∗ and this product turns C∗ into an algebra. Denote this product 
by

mΔ : C∗ ⊗ C∗ → C∗.

The algebra C∗ or (C∗, mΔ) is called the dual algebra of the coalgebra (C, Δ).
A coalgebra (C, Δ) is called coassociative if

(Δ ⊗ id − id ⊗ Δ)Δ = 0,
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i.e., for any a ∈ C we have
∑
a

(Δ(a(1)) ⊗ a(2) − a(1) ⊗ Δ(a(2)) = 0.

It is well known that a coalgebra (C, Δ) is coassociative if and only if its dual algebra 
C∗ is associative. Moreover, a coalgebra (C, Δ) is a Lie coalgebra if and only if its dual 
C∗ is a Lie algebra [11]. Following these results, the definition of coalgebras from any 
variety of algebras was given in [1]:

Let M be an arbitrary variety of algebras. A coalgebra (C, Δ) is called an M-coalgebra
if its dual algebra C∗ belongs to M.

Let V be a vector space and let τ : V ⊗ V �→ V ⊗ V be the ordinary flip, i.e., a linear 
map with τ(x ⊗ y) = y ⊗ x for all x, y ∈ V .

A coalgebra (C, Δ) is called cocommutative if

Δ = τΔ,

i.e.,
∑
a

a(1) ⊗ a(2) =
∑
a

a(2) ⊗ a(1)

for any a ∈ C.
Let (C, Δ) be an arbitrary coalgebra. A subspace B of C is called subcoalgebra of the 

coalgebra (C, Δ) if Δ(B) ⊆ B ⊗B.
A subcoalgebra B of a coalgebra (C, Δ) is called proper if B �= {0}, C. A coalgebra 

(C, Δ) without proper subcoalgebras is called simple [14].
It is well known [1] that C admits a C∗-bimodule structure. The left and right actions 

of C∗ on C are defined by

α · a =
∑

(a)

a(1)α(a(2)), a · α =
∑

(a)

α(a(1))a(2), α ∈ C∗, a ∈ C.

Moreover, a vector subspace B of a coalgebra C is a subcoalgebra if and only if B is 
a C∗-subbimodule of C. Therefore the intersection of any set of subcoalgebras of C is 
again a subcoalgebra.

Let S be a subset of a coalgebra C. The smallest subcoalgebra Coalg(S) of C that 
contains S is called the subcoalgebra generated by S. In other words, Coalg(S) is the 
C∗-subbimodule of C generated by S. If S is a finite set then Coalg(S) is called finitely 
generated.

A coalgebra (C, Δ) is called locally finite if every finitely generated subcoalgebra of C
is finite dimensional.

A linear map d : C �→ C is called a coderivation of the coalgebra (C, Δ) if

Δd = (d⊗ id + id⊗ d)Δ,
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i.e.,

Δ(d(a)) =
∑
a

d(a(1)) ⊗ a(2) + a(1) ⊗ d(a(2)), a ∈ C.

A triple (C, Δ, d) is called a codifferential coalgebra if (C, Δ) is a coalgebra and d is its 
coderivation. A subspace B of a codifferential coalgebra C is called a subcoalgebra if B is 
a subcoalgebra of (C, Δ) and d(B) ⊆ B, i.e., B is a codifferentially closed subcoalgebra.

Lemma 1. Let d be a coderivation of the coalgebra (C, Δ). Then its transpose d∗ is a 
derivation of the dual algebra C∗, i.e.,

d∗(fg) = d∗(f)g + fd∗(g), f, g ∈ C∗.

Proof. Let f, g ∈ C∗, a ∈ C. Then

(d∗(fg))(a) = (fg)(d(a)) = ρ(f ⊗ g)Δ(d(a)) =
∑
a

f(d(a(1)))g(a(2)) + f(a(1))g(d(a(2)))

=
∑
a

(d∗(f))(a(1))g(a(2)) + f(a(1))(d∗(g))(a(2)) = (d∗(f)g + fd∗(g))(a),

which proves the statement of the lemma. �
From now on, in many places we use the “co” suffix only once, instead of using 

it repeatedly. For example, we will write “an associative and commutative differential 
coalgebra” instead of “a coassociative and cocommutative codifferential coalgebra”.

Corollary 1. If (C, Δ, d) is an associative and commutative differential coalgebra then 
(C∗, mΔ, d∗) is an associative and commutative differential algebra.

Let A be an algebra over F with the multiplication

m : A⊗A → A,

i.e., m(a ⊗ b) = ab for all a, b ∈ A. Let

m∗ : A∗ �→ (A⊗A)∗

be the transpose of m.
Unfortunately, the image m∗(A∗) of m∗ does not always belong to A∗ ⊗A∗ ≡ ρ(A∗ ⊗

A∗) ⊆ (A ⊗ A)∗. If A is finite dimensional then A∗ ⊗ A∗ ≡ ρ(A∗ ⊗ A∗) = (A ⊗ A)∗ and 
the dual space A∗ is a coalgebra with the comultiplication Δ = ρ−1m∗.

If A is infinite dimensional then the structure of the dual coalgebra (A◦, Δ◦) is a 
little complicated (see [1,12]). A subspace V of A∗ is called a good subspace if m∗(V ) ⊆
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ρ(V ⊗ V ). If V is a good subspace then ΔV = ρ−1m∗ is a comultiplication on V . Let 
A◦ be the sum of all good subspaces of A∗. Then A◦ is the largest good subspace of A∗

and the pair (A◦, Δ◦) is a coalgebra with the comultiplication Δ◦ = ΔA◦ . The coalgebra 
(A◦, Δ◦) is called the finite dual of A. It is known that if A is an associative algebra then

A◦ = {α ∈ A∗| kerα contains a finite codimensional ideal of A}.

Let

A =
⊕

i∈Z
Ai, AiAj ⊆ Ai+j ,

be a Z-graded algebra such that there exists an integer m with Ai = 0 for all i < m and 
Ai is finite dimensional for all i ≥ m. In this case

(A⊗A)k =
⊕

k=i+j

Ai ⊗Aj

is finite dimensional for all k and

(A⊗A)∗k =
⊕

k=i+j

ρ(A∗
i ⊗A∗

j ).

The coproduct Δ = ρ−1m∗ turns the graded space

⊕

i∈Z
A∗

i

into a coalgebra. This coalgebra is called the graded dual of the graded algebra A.
The following lemma is useful for studying subcoalgebras.

Lemma 2. Let V be a vector space and let W be a subspace of V . Let a =
∑n

i=1 ai ⊗ bi
and let the vectors a1, . . . , an be linearly independent. Assume that a ∈ W ⊗ W . Then 
b1, b2, . . . , bn ∈ W .

Proof. Let α1, . . . , αn be a system of linear forms dual to a1, . . . , an, i.e., αi(aj) = δij
for all i, j, where δ is the Kronecker delta function.

Set φ = α1 ⊗ id : V ⊗ V �→ V . Then

φ(
∑

ei ⊗ fi) =
∑
i

α1(ei)fi.

Obviously, φ(W ⊗W ) ⊆ W and φ(a) =
∑

i α1(ai)bi = b1. Since a ∈ W ⊗W it follows 
that φ(a) ∈ W . Consequently, b1 ∈ W . Similarly, we get b2, . . . , bn ∈ W . �



242 D. Kozybaev et al. / Linear Algebra and its Applications 643 (2022) 235–257
3. Examples of non locally finite differential, Novikov, and Lie coalgebras

An algebra A is called a Novikov algebra if it satisfies the following identities:

x(yz) − (xy)z = y(xz) − (yx)z, (1)

(xy)z = (xz)y. (2)

Recall that an algebra satisfying the identity (1) is called left-symmetric. Left-
symmetric algebras are Lie-admissible, i.e., if A is a left-symmetric algebra then A with 
respect to the commutator [x, y] := xy − yx is a Lie algebra. This algebra is called the 
commutator algebra of A and is denoted by A(−).

The identity (1) can be written as

(x, y, z) = (y, x, z), (3)

where (x, y, z) := (xy)z − x(yz) is the associator of elements x, y, z.

The Gelfand-Dorfman construction [5]. Let A be an associative and commutative 
algebra with a derivation d. Define a new multiplication (◦) on A by

x ◦ y = xd(y),

where x, y ∈ A. Then (A, ◦) is a Novikov algebra.
Moreover, the vector space A with respect to the bracket

[x, y] = xd(y) − yd(x)

is a Lie algebra. Obviously, (A, [·, ·]) is the commutator algebra of the Novikov algebra 
(A, ◦).

Thus, any associative and commutative differential algebra A generates the Novikov 
algebra (A, ◦) and the Lie algebra (A, [·, ·]). Over a field of characteristic zero every 
Novikov algebra can be embedded into a Novikov algebra (A, ◦) for a suitable associative 
commutative differential algebra A [2]. The class of Lie algebras embeddable into Lie 
algebras of the type (A, [·, ·]) is not described yet.

Proposition 1. A pair (C, Δ) is a Novikov coalgebra if and only if the following (co)iden-
tities hold:

(Δ ⊗ id − id ⊗ Δ)Δ = (τ ⊗ id)(Δ ⊗ id − id ⊗ Δ)Δ, (4)

(Δ ⊗ id)Δ = (id ⊗ τ)(Δ ⊗ id)Δ. (5)
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Proof. Let (C, Δ) be a coalgebra and let α, β, γ ∈ C∗ and c ∈ C. Then

(α, β, γ)(c) = (α⊗ β ⊗ γ)((Δ ⊗ id − id ⊗ Δ)Δ(c))

and

(β, α, γ)(c) = (α⊗ β ⊗ γ)((τ ⊗ id)(Δ ⊗ id − id ⊗ Δ)Δ(c)).

Consequently,

[(α, β, γ) − (β, α, γ)](c)

= (α⊗ β ⊗ γ)[(Δ ⊗ id − id ⊗ Δ)Δ − (τ ⊗ id)(Δ ⊗ id − id ⊗ Δ)Δ](c)).

This implies that the identity (3) in C∗ is equivalent to the identity (4) in C.
Similarly, the identity (2) in C∗ is equivalent to the identity (5) in C. �
The Gelfand-Dorfman construction for coalgebras. Let (C, Δ, d) be an associative and 

commutative differential coalgebra. Define on the space C a new comultiplication ΔN

by

ΔN = (id ⊗ d)Δ.

This means

ΔN (a) =
∑
a

a(1) ⊗ d(a(2))

for any a ∈ C. Set also

ΔL = Δ(−)
N = (1 − τ)ΔN ,

i.e.,

ΔL(a) =
∑
a

(a(1) ⊗ d(a(2)) − d(a(2)) ⊗ a(1))

for any a ∈ C.

Proposition 2. (1) The coalgebra (C, ΔN ) is a Novikov coalgebra and the product in its 
dual algebra is defined by

α ◦ β = αd∗(β), α, β ∈ C∗.

(2) The coalgebra (C, ΔL) is a Lie coalgebra and the bracket in its dual algebra is defined 
by
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[α, β] = αd∗(β) − d∗(α)β, α, β ∈ C∗.

Proof. By Corollary 1, the dual (C∗, mΔ, d∗) of the differential coalgebra (C, Δ, d) is a 
differential algebra. We have

(fg)(a) = ρ(f ⊗ g)(Δ(a)),

where f, g ∈ C∗, a ∈ C. By the Gelfand-Dorfman construction, the algebra (C∗, ◦) is a 
Novikov algebra, where f ◦ g = fd∗(g) for all f, g ∈ C∗.

On the other hand,

(f ◦ g)(a) = (fd∗(g))(a) =
∑
a

f(a(1))d∗(g)(a(2)) =
∑
a

f(a(1))g(d(a(2)))

= ρ(f ⊗ g)(ΔN (a)),

i.e.,

f ◦ g = fd∗(g) = ρ(f ⊗ g)ΔN .

Hence (C∗, ◦) is the dual algebra of the coalgebra (C, ΔN ). Since (C∗, ◦) is a Novikov 
algebra it follows that (C, ΔN ) is a Novikov coalgebra.

The second statement of the lemma can be checked similarly. �
Example 1. Let C be a vector space with a linear basis

e, f1, f2, . . . , fn, . . . .

Define a comultiplication Δ : C → C ⊗ C on C by

Δ(e) = e⊗ e, Δ(fi) = fi ⊗ e + e⊗ fi, i ≥ 1.

Define also a linear map d : C → C by

d(e) = 0, d(fi) = fi+1, i ≥ 1.

Lemma 3. The triple (C, Δ, d) is an associative and commutative differential coalgebra.

Proof. Obviously (C, Δ) is cocommutative. Direct calculations give that

(Δ ⊗ id − id ⊗ Δ)Δ(e) = e⊗ e⊗ e− e⊗ e⊗ e = 0,

(Δ ⊗ id − id ⊗ Δ)Δ(fi) = fi ⊗ e⊗ e + e⊗ fi ⊗ e

+e⊗ e⊗ fi − fi ⊗ e⊗ e− e⊗ fi ⊗ e− e⊗ e⊗ fi = 0,
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i.e., (C, Δ) is coassociative.
We also have

Δ(d(e)) = 0 = d(e) ⊗ e + e⊗ d(e),

Δ(d(fi)) = Δ(fi+1) = fi+1 ⊗ e + e⊗ fi+1 =

(d(fi) ⊗ e + d(e) ⊗ fi+1) + (fi+1 ⊗ d(e) + e⊗ d(fi)), i ≥ 1.

This means that d is a coderivation of the coalgebra (C, Δ). �
By Lemma 3, (C, Δ, d) is an associative and commutative differential coalgebra. Con-

sequently, (C∗, mΔ, d∗) is an associative and commutative differential algebra. Following 
the tradition in the theory of ordinary differential algebras, we denote the derivative of 
x ∈ C∗ by x′, i.e., x′ = d∗(x).

Proposition 3. The differential coalgebra (C, Δ, d) is not locally finite and the differential 
algebra (C∗, mΔ, d∗) satisfies the differential identity

x′y′ = 0.

Proof. Obviously the codifferential subcoalgebra B of C generated by f1 contains fi for 
all i. Since

Δ(f1) = f1 ⊗ e + e⊗ f1 ∈ B ⊗B

it follows that e ∈ B by Lemma 2. Therefore B = C is infinite dimensional.
Let α, β ∈ C∗ and c ∈ C. Then

(d∗(α)d∗(β))(c) =
∑
c

α(d(c(1)))β(d(c(2))).

Consequently

(d∗(α)d∗(β))(e) = α(d(e))β(d(e)) = 0

and

(d∗(α)d∗(β))(fi) = α(d(fi))β(d(e)) + α(d(e))β(d(fi)) = 0

since d(e) = 0.
This means that C∗ satisfies the differential identity x′y′ = 0. �

Example 2. Consider the comultiplication ΔN = (id ⊗ d)Δ on C. By Proposition 2, 
(C, ΔN ) is a Novikov coalgebra. We have
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ΔN (e) = (id ⊗ d)Δ(e) = e⊗ d(e) = 0

and

ΔN (fi) = (id ⊗ d)Δ(fi) = e⊗ d(fi) = e⊗ fi+1

for all i ≥ 1.

Theorem 1. The Novikov coalgebra (C, ΔN) is not locally finite and the Novikov algebra 
C∗ satisfies the identity

(x ◦ y) ◦ z = 0.

Proof. Let B be the subcoalgebra of (C, ΔN ) generated by f1. If fi ∈ B then

ΔN (fi) = (id ⊗ d)Δ(fi) = e⊗ fi+1 ∈ B ⊗B

implies that e, fi+1 ∈ B by Lemma 2. Consequently, B = C is infinite dimensional.
Let α, β, γ ∈ C∗. Then

((α ◦ β) ◦ γ)(e) = (α⊗ β ⊗ γ)(ΔN ⊗ id)ΔN (e) = 0,

((α ◦ β) ◦ γ)(fi) = (α⊗ β ⊗ γ)(ΔN ⊗ id)ΔN (fi) = (α⊗ β ⊗ γ)(ΔN (e) ⊗ fi+1) = 0,

since ΔN (e) = 0. Hence the algebra C∗ satisfies the identity (x ◦ y) ◦ z = 0. �
Example 2 is the left-symmetric analogue of the non-locally finite right-symmetric 

coalgebra from [9]. Theorem 1 reinforces the validity of Shestakov’s conjecture [15,16]
on the relation between the locally finite property of coalgebras in a variety of algebras 
and the existence of locally nilpotent radical in this variety of algebras.

Example 3. Now consider the Lie coalgebra (C, ΔL). Recall that ΔL = Δ(−)
N and, con-

sequently,

ΔL(e) = (d⊗ id + id⊗ d)Δ(e) = 0,

ΔL(fi) = (d⊗ id + id⊗ d)Δ(fi) = e⊗ fi+1 − fi+1 ⊗ e

for all i ≥ 1.

Theorem 2. The Lie coalgebra (C, ΔL) is not locally finite and the Lie algebra C∗ satisfies 
the identity

[[x, y], [z, t]] = 0.
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Proof. Let B be the subcoalgebra of (C, ΔL) generated by f1. If fi ∈ B then

ΔL(fi) = e⊗ fi+1 − fi+1 ⊗ e ∈ B ⊗B

implies that e, fi+1 ∈ B by Lemma 2. Consequently, B = C is infinite dimensional.
Let α, β, γ, δ ∈ C∗. Then

([α, β])(e) = (α⊗ β)ΔL(e) = 0

and

([[α, β], [γ, δ]])(fi) = (α⊗ β ⊗ γ ⊗ δ)(ΔL ⊗ ΔL)ΔL(fi)

= (α⊗ β ⊗ γ ⊗ δ)(ΔL(e) ⊗ ΔL(fi+1) − ΔL(fi+1) ⊗ ΔL(e)) = 0

since ΔL(e) = 0. Therefore [[α, β], [γ, δ]] = 0. �
Example 3 is Michaelis’s example of a non-locally finite Lie coalgebra from [11].

4. Infinite dimensional simple coalgebras

Let F be a field of characteristic zero and let F [x] be the algebra of polynomials over 
F in one variable x. Then (F [x], m, ∂), where m is the polynomial multiplication and 
∂ = d

dx , is a simple differential algebra. Consider the natural grading

F [x] = F1 ⊕ Fx⊕ . . .⊕ Fxn ⊕ . . . .

The following example is the graded dual of the differential algebra (F [x], m, ∂).

Example 4. Let

C = Fx0 ⊕ Fx1 ⊕ . . .⊕ Fxn ⊕ . . . ,

where xi ∈ F [x]∗ is defined by xi(xj) = δij for all i, j. It is easy to check that the dual 
comultiplication

Δ = ρ−1m∗ : C → C ⊗ C

is defined by

Δ(xn) =
n∑

i=0
xi ⊗ xn−i

and the coderivation



248 D. Kozybaev et al. / Linear Algebra and its Applications 643 (2022) 235–257
d = ∂∗ : C → C

is defined by

d(xn) = (n + 1)xn+1

for all n ≥ 0.
Consequently, (C, Δ, d) is an associative and commutative differential coalgebra.

Proposition 4. The differential coalgebra (C, Δ, d) is simple.

Proof. Let B be a nonzero subcoalgebra of (C, Δ, d) and let

f = xn +
∑
i<n

αixi ∈ B.

Then

Δ(f) = xn ⊗ x0 +
∑
i<n

xi ⊗ fi ∈ B, fi ∈ C.

By Lemma 2 this implies that x0 ∈ B. Since B is differentially closed it follows that 
xi ∈ B for all i ≥ 0. Consequently, B = C. �

Applying the Gelfand-Dorfman construction to the differential algebra (F [x], m, ∂) we 
get a Novikov algebra (F [x], ◦), where f ◦ g = f∂(g). This Novikov algebra was denoted 
by L1 in [10] and is the first algebra in the list of left-symmetric Witt algebras Ln. Notice 
that the commutator algebra of Ln is the Witt algebra Wn [10]. Since L1 is a Novikov 
algebra, we call L1 the Novikov-Witt algebra. Recall that

L1 = F∂ ⊕ Fx∂ ⊕ . . .⊕ Fxn∂ ⊕ . . .

is the algebra of all derivations of F [x] with respect to the product

xi∂ ◦ xj∂ = jxi+j−1∂, i, j ≥ 0.

The following example is the graded dual of the Novikov-Witt algebra L1.

Example 5. Let (C, Δ, d) be the differential coalgebra from Example 4. Applying the 
Gelfand-Dorfman construction, we get a Novikov coalgebra (C, ΔN), where

ΔN = (id ⊗ d)Δ,

i.e.,
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ΔN (xn) =
n∑

i=0
(n− i + 1)xi ⊗ xn−i+1

Theorem 3. The Novikov coalgebra (C, ΔN) is simple.

Proof. Let B be a nonzero subcoalgebra of C and let

f = xn +
∑
i<n

αixi ∈ B.

Then

ΔN (f) = (n + 1)x0 ⊗ xn+1 +
∑

i<n+1
fi ⊗ xi ∈ B, fi ∈ C.

By Lemma 2 this implies that x0 ∈ B. Suppose that xn ∈ B for some n ≥ 0. Then

ΔN (xn) =
n∑

i=0
(n− i + 1)xi ⊗ xn−i+1 ∈ B

implies that x0, . . . , xn+1 ∈ B by Lemma 2. Consequently, B = C. �
The following example is the graded dual of the Witt algebra W1.

Example 6. Let (C, Δ, d) be the Novikov coalgebra from Example 5. Then the commu-
tator coalgebra (C, ΔL) is a Lie coalgebra, where

ΔL = Δ(−)
N = (1 − τ)ΔN ,

i.e.,

ΔL(xn) =
n∑

i=0
(n− i + 1)xi ⊗ xn−i+1 − (i + 1)xi+1 ⊗ xn−i

=
n+1∑
i=0

(n + 1 − 2i)xi ⊗ xn+1−i.

Theorem 4. The Lie coalgebra (C, ΔL) is simple.

Proof. Let B be a nonzero subcoalgebra of C and let

f = xn +
∑
i<n

αixi ∈ B.

Then, as in the proof of Theorem 3, we get x0 ∈ B. If xn ∈ B then applying Lemma 2
to the inclusion ΔL(xn) ∈ B ⊗B, we get xn+1 ∈ B. Consequently, B = C. �
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Notice that an example of an infinite dimensional Lie coalgebra without finite dimen-
sional subcoalgebras was constructed in [12] and [13].

5. Non locally finite Jordan supercoalgebras

Let G be the Grassman algebra with identity. Then G = G0 + G1 is a Z2-graded 
algebra. Let J = J0 + J1 be a Z2-graded algebra. Then G(J) = G0 ⊗ J0 + G1 ⊗ J1 is a 
subalgebra of the algebra G ⊗ J . The subalgebra G(J) is called Grassman envelope of 
the algebra J .

An algebra J is called a Jordan superalgebra, if its Grassman envelope G(J) is a 
Jordan algebra, i.e., G(J) satisfies the following identities:

xy = yx,

(x2y)x = x2(yx).

The Kantor construction [8]. Let A be an associative commutative algebra over F
with a derivation D. Denote by A an isomorphic copy of the vector space A with an 
isomorphism a �→ a. On the direct sum of the vector spaces

J(A,D) = A⊕A

define a product (·) by

a · b = ab, a · b = ab, a · b = ab, a · b = aD(b) −D(a)b,

where a, b ∈ A and ab is the product of elements in A. Then J(A, D) is a Jordan 
superalgebra. The superalgebra J(A, D) is called a superalgebra of the vector type.

The Kantor construction for coalgebras. Let (C, Δ, d) be an associative and commu-
tative differential coalgebra. Let C be an isomorphic copy of the vector space C with an 
isomorphism c �→ c. On the direct sum of vector spaces

J(C, d) = C ⊕ C

define a coproduct ΔJ by

ΔJ(c) =
∑

(c)

c(1) ⊗ c(2) + c(1) ⊗ d(c(2)) − d(c(1)) ⊗ c(2),

ΔJ(c) =
∑

(c)

c(1) ⊗ c(2) + c(1) ⊗ c(2),

where c ∈ C and Δ(c) =
∑

(c) c(1) ⊗ c(2).
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Proposition 5. The coalgebra (J(C, d), ΔJ) is a Jordan supercoalgebra and its dual 
J(C∗, d∗) is a Jordan superalgebra of the vector type.

Proof. By Corollary 1, (C∗, mΔ, d∗) is an associative and commutative differential al-
gebra. We have J(C, d)∗ = C∗ + (C)∗. The isomorphism of C and C induces the 
isomorphism of C∗ and (C)∗. Under this isomorphism, for any α ∈ C∗ there corre-
sponds α ∈ (C)∗ such that α(c) = α(c) for any c ∈ C. Therefore, we can write that 
J(C, d)∗ = C∗ + C∗.

Let α, β ∈ C∗, and c ∈ C. Denote by (·) the multiplication of the algebra 
(J(C, d), ΔJ )∗. Then we have

(α · β)(c) = ρ(α⊗ β)ΔJ (c), (α · β)(c) = ρ(α⊗ β)ΔJ(c),

(α · β)(c) = ρ(α⊗ β)ΔJ(c), (α · β)(c) = ρ(α⊗ β)ΔJ (c).

From this we get

α · β = αβ, α · β = αβ, αβ = αβ, α · β = αd∗(β) − d∗(α)β,

where αβ is the product of elements in the dual algebra (C∗, mΔ, d∗).
Consequently, (J(C, d), ΔJ)∗ = J(C∗, d∗). �

Example 7. Let (C, Δ, d) be the differential coalgebra from Example 1 and let 
(J(C, d), ΔJ ) be the Jordan supercoalgebra obtained from (C, Δ, d) by the Kantor con-
struction for coalgebras. Notice that

ΔJ(e) = e⊗ e, ΔJ (fi) = e⊗ fi + fi ⊗ e + e⊗ fi+1 − fi+1 ⊗ e,

ΔJ(e) = e⊗ e + e⊗ e, ΔJ(fi) = e⊗ fi + fi ⊗ e + e⊗ fi + fi ⊗ e,

for all i ≥ 1.

Theorem 5. The Jordan super-coalgebra (J(C, d), ΔJ) is not locally finite and its dual 
superalgebra satisfies the super identities

xy = yx, xz = zx, (z1z2)(z3z4) = 0

for all even x, y and odd z, z1, z2, z3, z4.

Proof. Let B be the subcoalgebra of J(C, d) generated by f1. If fi ∈ B, then ΔJ(fi) ∈
B ⊗ B implies that e, e, fi ∈ B by Lemma 2. If fi ∈ B, then ΔJ(fi) ∈ B ⊗ B implies 
that fi+1 ∈ B. Consequently, B = J(C, d) is infinite dimensional.

By Proposition 5, the dual of the supercoalgebra (J(C, d), ΔJ) is the Jordan super-
algebra J(C∗, d∗) obtained from the differential algebra (C∗, mΔ, d∗) by the Kantor 
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construction. The first two identities of J(C∗, d∗), mentioned in the lemma, directly fol-
low from the Kantor construction since C∗ is an associative and commutative algebra. 
Notice that the product of two odd elements z1, z2 from J(C∗, d∗) belongs to the ideal 
d∗(C∗)C∗. By Proposition 3, we have d∗(C∗)2 = 0. Consequently, (z1z2)(z3z4) = 0 for 
all odd elements z1, z2, z3, z4. �

The following example is the graded dual of the simple Jordan superalgebra J(F [x], ∂)
obtained from the simple differential algebra (F [x], ∂) by the Kantor construction.

Example 8. Let (C, Δ, d) be the codifferential coalgebra from Example 4 and let 
(J(C, d), ΔJ ) be the Jordan super-coalgebra obtained from (C, Δ, d) by the Kantor con-
struction for coalgebras. Direct calculations give that

ΔJ (xn) =
n∑

i=0
xi ⊗ xn−i +

n+1∑
i=0

(n + 1 − 2i)xi ⊗ xn−i+1,

ΔJ(xn) =
n∑

i=0
(xi ⊗ xn−i + xi ⊗ xn−i),

for all n ≥ 0.

Theorem 6. The Jordan supercoalgebra (J(C, d), ΔJ) is simple.

Proof. Let B be a nonzero subcoalgebra of (J(C, d), ΔJ). Notice that if x0 ∈ B or x0 ∈ B

then B = J(C, d). In fact, ΔJ(xn) ∈ B ⊗ B implies that x0, . . . , xn, x0, . . . , xn ∈ B and 
ΔJ(xn) ∈ B ⊗B implies that x0, . . . , xn, x0, . . . , xn+1 ∈ B by Lemma 2.

Suppose that

f = xn +
∑
i<n

αixi + c ∈ B,

where c ∈ C. Set

ΔJ(f) =
∑
i

ai ⊗ xi +
∑
i

bi ⊗ xi ∈ B ⊗B.

Notice that

bn+1 = (n + 1)x0 +
∑
j

γjxj .

By Lemma 2, bn+1 ∈ B. If γj = 0 for all j then x0 ∈ B. This gives B = J(C, d) as 
noticed above. Otherwise we get an element of the form

f = xn +
∑

αixi + γx0

i<n



D. Kozybaev et al. / Linear Algebra and its Applications 643 (2022) 235–257 253
that belongs to B. Repeating the same discussions with this f we get x0 ∈ B.
If

f = xn +
∑
i<n

αixi ∈ B,

then ΔJ(f) ∈ B⊗B implies that x0, x0 ∈ B by Lemma 2. Consequently, B = J(C, d). �
Notice that an example of a Jordan super-coalgebra without finite dimensional sub-

coalgebras was constructed in [23]

6. Non locally finite right alternative coalgebra

In this section we give a corrected version of the example of a non locally finite right-
alternative coalgebra from [9]. This example was constructed on the base of the example 
of a finitely generated metabelian right-alternative algebra that is not residually finite 
[19].

An algebra A is called right-alternative if it satisfies the following identities:

(yx)x = yx2, (6)

((xy)z)y = x((yz)y). (7)

The identity (6) is called right-alternativity and can be written in terms of the asso-
ciators as

(y, x, x) = 0. (8)

Over fields of characteristic �= 2 this identity also implies the Moufang identity (7) (see 
[25]).

Proposition 6. Let (A, Δ) be a coalgebra over a field F of characteristic �= 2. The coal-
gebra (A, Δ) is right-alternative if and only if the following identity holds:

(Δ ⊗ id − id ⊗ Δ)Δ + (id ⊗ τ)(Δ ⊗ id − id ⊗ Δ)Δ = 0. (9)

Proof. Let (C, Δ) be a coalgebra and let α, β, γ ∈ C∗ and c ∈ C. Then

(α, β, γ)(c) = (α⊗ β ⊗ γ)((Δ ⊗ id − id ⊗ Δ)Δ(c))

and

(α, γ, β)(c) = (α⊗ β ⊗ γ)((id ⊗ τ)(Δ ⊗ id − id ⊗ Δ)Δ(c)).

Consequently,
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[(α, β, γ) + (α, γ, β)](c)

= (α⊗ β ⊗ γ)[(Δ ⊗ id − id ⊗ Δ)Δ + (id ⊗ τ)(Δ ⊗ id − id ⊗ Δ)Δ](c).

This implies that the identity (9) in C is equivalent to linearized version of the identity 
(8) in C∗. Consequently, (9) is equivalent to (8) over fields of characteristic �= 2. �
Example 9. Let A be a vector space with a linear basis

e1, e2, f1, f2, . . . , fn, . . . .

Define a comultiplication Δ on the vector space A by

Δ(e1) = 0, Δ(e2) = 0,

Δ(f3n−2) = e1 ⊗ f3n, Δ(f3n−1) = e2 ⊗ f3n,

Δ(f3n) = e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1, n ≥ 1.

Theorem 7. The coalgebra (A, Δ) is a right-alternative non locally finite coalgebra. More-
over, the dual algebra A∗ satisfies the identities (xy)(zt) = ((xy)z)t = 0.

Proof. Let ΔAss = (Δ ⊗ id − id ⊗ Δ)Δ. If f, g, h ∈ A∗, then

(f, g, h)(a) = (f ⊗ g ⊗ h)(Δass(a))

for all a ∈ A. We have (f, g, g)(ei) = 0 since Δ(ei) = 0 for i = 1, 2.
Direct calculations give that

ΔAss(f3n−2) = (Δ ⊗ id − id ⊗ Δ)(e1 ⊗ f3n) = −e1 ⊗ Δ(f3n)

= −e1 ⊗ e2 ⊗ f3n+1 + e1 ⊗ f3n+1 ⊗ e2 + e1 ⊗ e1 ⊗ f3n+2 − e1 ⊗ f3n+2 ⊗ e1,

ΔAss(f3n−1) = −e2 ⊗ Δ(f3n) = −e2 ⊗ e2 ⊗ f3n+1

+e2 ⊗ f3n+1 ⊗ e2 + e2 ⊗ e1 ⊗ f3n+2 − e2 ⊗ f3n+2 ⊗ e1,

and

ΔAss(f3n) = (Δ ⊗ id − id ⊗ Δ)(e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1)

= −Δ(f3n+1) ⊗ e2 + Δ(f3n+2) ⊗ e1 − e2 ⊗ Δ(f3n+1) + e1 ⊗ Δ(f3n+2)

= −e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ f3(n+1) ⊗ e1 − e2 ⊗ e1 ⊗ f3(n+1) + e1 ⊗ e2 ⊗ f3(n+1).

Consequently,

(f, g, g)(f3n−2) = −f(e1)g(e2)g(f3n+1) + f(e1)g(f3n+1)g(e2)

+f(e1)g(e1)g(f3n+2) − f(e1)g(f3n+2)g(e1) = 0,
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(f, g, g)(f3n−1) = −f(e2)g(e2)g(f3n+1) + f(e2)g(f3n+1)g(e2)

+f(e2)g(e1)g(f3n+2) − f(e2)g(f3n+2)g(e1) = 0,

and

(f, g, g)(f3n) = −f(e1)g(f3(n+1))g(e2) + f(e2)g(f3(n+1))g(e1)

−f(e2)g(e1)g(f3(n+1)) + f(e1)g(e2)g(f3(n+1)) = 0.

Consequently, (f, g, g)(a) = 0 for all f, g ∈ A∗ and a ∈ A, i.e., (f, g, g) = 0. This 
means that A∗ satisfies the identity (8).

Set φ = (Δ ⊗ id ⊗ id)(Δ ⊗ id)Δ. Direct calculations give that

φ(e1) = φ(e2) = 0,
φ(f3n−2) = (Δ ⊗ id ⊗ id)(Δ ⊗ id)(e1 ⊗ f3n) = (Δ ⊗ id ⊗ id)(Δ(e1) ⊗ f3n) = 0,
φ(f3n−1) = (Δ ⊗ id ⊗ id)(Δ ⊗ id)(e2 ⊗ f3n) = (Δ ⊗ id ⊗ id)(Δ(e2) ⊗ f3n) = 0,

and

φ(f3n) = (Δ ⊗ id ⊗ id)(−Δ(f3n+1) ⊗ e2 + Δ(f3n+2) ⊗ e1) =

(Δ ⊗ id ⊗ id)(−e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ f3(n+1) ⊗ e1) = 0

for all n ≥ 1.
Consequently, (((fg)h)e)(a) = 0 for all f, g, h, e ∈ A∗ and a ∈ A, i.e., ((fg)h)e = 0. 

This means that A∗ satisfies the identity ((xy)z)t = 0.
Now set ψ = (id ⊗ Δ ⊗ id)(id ⊗ Δ)Δ. Then

ψ(e1) = ψ(e2) = 0,
ψ(f3n−2) = (id ⊗ Δ ⊗ id)(id ⊗ Δ)(e1 ⊗ f3n) = (id ⊗ Δ ⊗ id)(e1 ⊗ Δ(f3n))

= −e1 ⊗ Δ(f3n+1) ⊗ e2 + e1 ⊗ Δ(f3n+2) ⊗ e1

= −e1 ⊗ e1 ⊗ f3(n+1) ⊗ e2 + e1 ⊗ e2 ⊗ f3(n+1) ⊗ e1,

ψ(f3n−1) = (id ⊗ Δ ⊗ id)(id ⊗ Δ)(e2 ⊗ f3n) = (id ⊗ Δ ⊗ id)(e2 ⊗ Δ(f3n))

= −e2 ⊗ Δ(f3n+1) ⊗ e2 + e2 ⊗ Δ(f3n+2) ⊗ e1

= −e2 ⊗ e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ e2 ⊗ f3(n+1) ⊗ e1,

and

ψ(f3n) = (id ⊗ Δ ⊗ id)(id ⊗ Δ)(e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1)

= (id ⊗ Δ ⊗ id)(e2 ⊗ Δ(f3n+1) − e1 ⊗ Δ(f3n+2))

= (id ⊗ Δ ⊗ id)(e2 ⊗ e1 ⊗ f3(n+1) − e1 ⊗ e2 ⊗ f3(n+1))

= e2 ⊗ Δ(e1) ⊗ f3(n+1) − e1 ⊗ Δ(e2) ⊗ f3(n+1) = 0
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for all n ≥ 1.
Therefore,

(f((gh)g))(f3n−2) = −f(e1)g(e1)h(f3(n+1))g(e2) + f(e1)g(e2)h(f3(n+1))g(e1) = 0,

(f((gh)g))(f3n−1) = 0

for all f, g, h ∈ A∗.
This means f((gh)g) = 0 for all f, g, h ∈ A∗. Together with the identity ((xy)z)t = 0, 

this proves that the Moufang identity (7) holds in A∗.
It is easy to check that (Δ ⊗ Δ)Δ(a) = 0 for all a ∈ A. Therefore A∗ satisfies the 

identity (xy)(zt) = 0.
Now we show that (A, Δ) is not locally finite. Let B a subalgebra of (A, Δ) generated 

by f1, f2.
Suppose that fi ∈ B. If i = 3n − 1 or i = 3n − 2, then Δ(fi) ∈ B ⊗ B implies that 

e1, e2, f3n ∈ B by Lemma 2. If i = 3n, then we get e1, e2, f3n+1, f3n+2 ∈ B. This implies 
that B = C is infinite-dimensional. �
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