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1. Introduction
1.1. Fourier inequalities in Lebesgque spaces

For the multi-dimensional Fourier transform ]?, the following Hardy-Littlewood theo-
rem is a counterpart of the Hausdorff-Young inequality

1 1
||ﬂp/§“f||pa 1<p<27 ;)4’1?:17
and reads as follows (see [23, Th. 2.2] and [32, Th.2]):
1/p
~ P

Janl a2 |fo a) <im,. 1<p<z 1)

d
where t = (t1,...,tq) € R% In particular, (1) sharpens the well-known inequality (see,

e.g., [5, (5.19)] and [7, p.17])

p

1/
~ p
Q/m“%”humdt SIfl,.  1<p<, @
d

where |t| denotes the Euclidean norm of ¢. Throughout the paper, by C and C), we denote
positive constants, which may depend on nonessential parameters and on the dimension.
As usual, FF < G stands for F < CG. If F <G S F, we write F < G.

As it is well known, the case p > 2 requires special attention. By Qn define a cube
centered at the origin with the edge length N. For f € L,(R?) we define

<%ﬁ@:/#wa%%x 3)
QN

As it is well known, if f € L,(R9), 1 < p < 2, the limit Nlim (§nf) exists in L, and
— 400
is called the Fourier transform of f. There are many examples in the literature showing

that the Fourier transform of f € L,(R%), 2 < p < oo, is not well-defined in the usual
sense; see, e.g., [42, Ch. XVI, §3]. Moreover, one can construct a Carleman-type function
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[4, Ch. TV, §16] so that even in the case when the Fourier transform exists, neither
inequality (1) nor Hausdorfl-Young inequality hold; see Appendix A.

In order to derive the corresponding analogues of inequality (1) in the case p > 2,
we define the Hardy-Cesaro and Hardy-Bellman operators. First, let E consist of all
n-tuples containing only 0 and 1. Set ‘H. := Hc 4. .. Hey 2He, 1, Where e € E and

%ff(:l’,‘l,...,l‘i,...,J}d)dl‘i, if EiZO
(Heoif) (8) = 4 o

One of the main goals of the paper is to show that certain natural averages of the
Fourier transforms, namely Hardy—Cesaro and Hardy—Bellman operators, are not only
well-defined for L,-functions with any 1 < p < oo but the inequalities corresponding to
estimates (1) and (2) hold true. We formulate our main result as a Pitt-type inequality
with power weights. Let us recall the known Pitt inequality ([23, Th. 2.2]; see also [5,11]).

For 1 <r<g<ooand f €U c,coLs,

1r
(R/ (1] lea)? | F(6)])” e (R/ CARNERVIENN I )

provided that

1 1 1
0<a= g B o (5)
and, additionally,
B <0, (6)
which is equivalent to % — % < a. For optimality of these conditions see [23, Th. 2.2],

[6, Sect. 4], [13, Sects. 2,3].
Now we point out three well-known special cases. Fora =8=0,q=1",1<r <2,

17]

which is the Hausdorfl-Young inequality; for « = 0, 5 =1—-2/r, 1 <r = q < 2, we
obtain (1), and for 8 =0, a =1 —2/r, 2 < r = ¢ < 00, we establish the dual to (1),
that is,

o S L (7)

1/r

17 < / (leal. . Jea) 2 1f @) x| . (8)
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The latter inequality was also proved in the recent paper [34] provided that f € L.

Let * = (j1,J2,-,Ja) be a permutation of (1,2,...,d). By L, & we denote the

Lorentz space defined by the iterative non-increasing rearrangement f*ii-*a =
((f*1)™2...)"* taken coordinate-wise; see Section 2 for the precise definition and prop-
erties. In the next theorem, we extend inequality (4) not assuming the condition 5 < 0

Theorem 1. Let 1 < r < g < oo and condition (5) hold. Let x = (j1,72,...,74) be a
permutation of (1,2, ...,d). If a measurable function f is such that

1/r

(‘R/ (al - Joa) | f7sa (@) ) da | < oo, (9)

then, for any € € E, t € R?, the limit

T.f(t):== lim (HFn[)()

N —+o00

does exist. Moreover, for any € € E,

(R/ |t1 - |tal) B|T f(t )‘ (R/ |331| wa))® | frr e (x )|) dr

If, additionally,

1/r

| 1/r
[ (ol e is@)) dz | <o, 1)

d

then

1/r
(R/ (Gtal- ey 1500 )' (m/ (el o) 151) dz ) . (12

In particular, if a =0, B=1-2/r, 1 <r =q < o0, then

1/r
/ (Utal a2 1Tef O dt ) < IS (13)

d

Note that the right hand side of (10) is || f]
A counterpart of Theorem 1 — now the condition 0 < « is not assumed but the

Lz, with 1/p=a+1/r.

T

condition 8 < 0 is fulfilled — is given in the next theorem.
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Theorem 2. Let 1 <r < g < > and

1 1 1 1 1
S t<a=——-—-f<—. 14
r q @ rq p< i (14)
Suppose that
[ (ol Jeahe @) do < . (15)
R4

Then for any € € E the sequence (H-Fn f)n converges to T.f in the weighted Lebesgue
norm, t.e.,
1/q

lim /((|t1|...|td|)ﬁ|T6f(t)fHESNf(tN)th =0.

n—oo
d

Moreover,

1/r

(R/ (1. ) (2.0 )’ (R/ (sl fe)® 1)) | (16

In particular, if =0, a =1—2/r and 1 <r = q < 0o, then the sequence (H-Fnf)N
converges to T, f in the L, norm and

1/r
1711, < / (leal. . Jea)2 |f @) dz| . (17)

d

Remark 1. (i) If « < 1/7" as in (5) and (14), then Hoélder’s inequality and (9) (respec-
tively, (15)) imply that f € L¢ for all 1 < s < r. Thus H.Fn f is well defined.

(ii) Note that the boundedness of Hardy’s operator in L,, (see (23) below) and Hausdorff-
Young inequality (7) imply that

T.f=H.f iffel,1<p<2orfeS, (18)

where S denotes the Schwartz class S(R?). So T. is an extension of the operator f 7—[5]?.
Under the conditions (5), 8 < 0, and (18), we always see that inequality (12) is weaker
than (4). This follows from Hardy’s inequality for averages (see, e.g., [25])

q

[e’e] t [e’e] [e’e]

1
/|t|ﬁq H/ s)ds | dt+ / 1t]%7 /%ds dt < / It|59(t)7 dt,
—0 0 —o00

Il
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Whereg>0and—%<ﬁ<1—%,q>1.

(iii) On the other hand, for 8 > 0, inequality (12) is an extension of (4). Moreover, (13)
extends (1) for the case p > 2 while inequality (17) extends (8) for the case 1 < p < 2
and for wider function spaces. Inequality (17) has been obtained in the one-dimensional
case in [12].

(iv) We note that if 1 < < 2 and (15) holds, then f € L°. Assuming 8 =0, « = 1—-2/r
and ¢ = 7 in (12), we obtain (17) for 2 < r < co. On the other hand, letting o = 0,
B=1-2/r,r=gqin (16), we obtain (13) for 1 < r < 2.

The proofs of Theorems 1 and 2 are based on the next result, which is an extension of
the celebrated Hardy—Littlewood—Paley inequality [36, Ch. V] and it is interesting in its
own right. Recall that the Hardy-Littlewood—Paley estimate for classical Lorentz spaces
states that

I

<
e Sl 1<p<2 0<g<oo
Let N, 4 denote the net space; see Section 2 for the precise definition.

Theorem 3. Let * = (j1,j2, ..., ja) be a permutation of (1,2,....,d). If 1 <p < 00,0 < ¢ <
oo, and f € L ., then Fnf € Ny 4 and there holds

p,q’

5w sy, <11

Ly
uniformly in N € N.

1.2. Fourier inequalities in Hardy spaces

The generalization of (2) to Hardy spaces is known (see Taibleson and Weiss [37] and
Garcia-Cuerva and Rubio de Francia [18, Corollary 7.23] and also Bownik and Wang

[9]):

1/p
e\l ae | <5 0<p<i1 (19)
~ Hy(R4) > px L
d

The case p =1 is called Hardy’s inequality.

Our second goal is to generalize (1) to Hardy spaces. Here we consider the so called
product Hardy spaces H, = Hp(R x --- x R), that is different from H,(R"). See, e.g.,
[41].
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Theorem 4. If 0 <p <1 and f € Hy, then

1/p

Jant-tapr2 |Fof ae) < UslL, - (20)

d

Since f is a locally integrable function if f € H, with 0 < p < 1, the integral in
Theorem 4 is well defined. Note that H, is equivalent to L, if 1 < p < oco. We also
extend the inequality of Theorem 1 to Hardy spaces. Let

t1 taq
1
Hf::HOf:tln'td /f(xl,...,xd)dxl...dxd
0 0

be the Hardy—Cesaro operator.
Theorem 5. If 0 <p < 1 and f € Hy,(NU,¢ <o Lqg: then

1/p

Janl by [uio]" de | <151, (21)

d

‘ p

Remark 2. (i) For p = 1, Theorem 5 holds for all f € H;.
(ii) Comparing the left-hand sides in (20) and (21), we first recall the classical reverse
Hardy inequality (see [22, Theorem 347]): for any non-negative g,

/(It1| e [ta))PT2gP () dt S /(|t1| s fta)PTE (Hg(e)P dt,  0<p<1. (22)
R4 Rd

Moreover, the direct Hardy inequality, which is the reverse inequality to (22), holds for
p =1 (see [22, Theorem 330]) but does not hold in general for 0 < p < 1. To show this,
consider

() = Ap, bp <ax <bp,+dy,
&= 0, otherwise.

Then
o bn+dnp
I = /tp—2 lg(t)? dt = aP, / P2 dt
0 bn

and
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0o o0 bntdn p
I —/tH Hg(t)|P dt > / 2 dt / (2)dz | at = nn
9 = g > g(z)dz o d
0 bn+dy 0

Letting now b, + d,, < b, /o0, g—" /oo, and
brt-dn -
af = / P2 dt

by

)

b " and I <1but I, < ( )1 P 7 oo. In particular, g can be defined

by g(x) = 2n(5 - )n P for 2" <ax <2"+mn and zero otherwise.
Thus, in the case f is nonnegative, (21) yields (20) for 0 < p < 1, while for p = 1 they

we arrive at a? <

are equivalent. Without this condition on the Fourier transform, the left-hand sides of
(20) and (21) are not comparable.

(iii) Tt is easy to see that inequality (22) is no longer true without the condition g > 0.
For example, let

0, O<z <l
g(x) =1 an, 2n—1<uz<2n;
—ap, 2n<z <2n+1.

Then
Il=/tp‘2 lg(®)[ dt = Zap”p ’
0
but
I = /tp*2 [Hg(t)|" dt < Zaﬁrf2
0 n
Taking now a, = n=P)/P for n < N and a, = 0 otherwise, we have I < 1 and
I <InN.

Theorem 4 is known in the one-dimensional case, cf. (19) while Theorem 5 is new even
in the one-dimensional case. We note that the proof of Theorem 4 was sketched in [24].
However, since we believe it contains some gaps, we present it in Section 6. The dual
results to Theorems 4 and 5 are also proved, see Corollary 1 in Section 6.
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1.8. Hardy’s inequalities for averages

Let us recall the classical Hardy’s inequalities. First,
[He fllp S NfIL, . 1 <p<oo (23)

If all e; =0 or all ¢; = 1, then even more is true. We just introduced the Hardy—Cesaro
operator H f and now we define the Hardy—Bellman operator by

o0 oo

d d
Bf ::Hlf:/.../f(sign(tl)zl,...,sign(td)xd)ﬂ...ﬂ.
I Td
[t1] [tal
Then
[Hfllp S 1fll, (I<p<oo) and |[Bf[l, <Ifll, (1<p<oo). (24)

The inequalities in (23) and (24) can be proved by iteration using the corresponding
one-dimensional results.

Remark 3. If ]? € L, for some 1 < r < 2 (say f € §), then the following estimates
sharpen (23) for 1 <p < 2:

1/p

et 5 | [l |Fe at ) <181

d

Here the first inequality follows from (17) and the second one from (1). In particular, if
[f@] S [Hef (@), wi#0 (25)
ek

or, more generally, if for some 1 < p < 2

2 2 1/p

(lal. . fza) ™ / / FOF ) <SS Pf@], m£0, (26)

ecE

then

1/p
1900 = | el Jeahr=2 | Fio)|”

d

Note that the integral of the p-power of the left hand side of (26) is || f||b. For example,
when f > 0 is non-increasing and even in each direction, then both (25) and (26)
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hold. Equivalences of this type are usually called Hardy—Littlewood theorems or Boas-
type results and they have been previously obtained for monotone or general monotone
functions; see [20].

Our third aim in this paper is to investigate Hardy’s inequalities (24) for limiting
cases. First, it is clear that

1#Hflsao S ClHSlloe < Clifllso -

We also note that the operator H is bounded in BMO, i.e.,

%S lpro < Clifllpyo.  FeBMO) | L (27)

1<g<

See [19,26] for one-dimensional functions. In the multivariate case, this follows from (28)
below by duality, cf. Corollary 3.

However, the expected fact that the operator H is bounded in H, for p < 1 is not
true. For p = 1 it is enough to consider the function

5. ifo<e <1,
a(z) =4 —1, ifl<a<2,
0, if z ¢ [0,2],

which is an atom (see Section 5) and note that [p Ha(x)dr =In2 # 0. Hence Ha ¢ Hy
(see [19]). From this, H is not bounded in H,, p < 1, since otherwise, by (24) and
interpolation, we would obtain boundedness in H;.

Even though # is not bounded in H,, we derive the following weaker result, which
can be considered as a generalization of inequality (24).

Theorem 6. If0 <p <1 and f € Hy(\U,4<2 Lq, then

171, S 161, -

For the operator B the situation is symmetric. It is easy to see that B is trivially
bounded from H; to L; since

1BfIl, < CIfll < Cl Sl -

In fact, it turns out that the operator B is bounded in H,, i.e.,

By, SIflu,,  O<p<ifeH,() U L (28)

1<q<2

(see [16,19,28,29] for one-dimensional functions and [17,40] for the multivariate case) but
it is not bounded from BMO to BMO [19]. We obtain the following weaker estimate
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1Bflpo <Cliflles  fe€Loof) U La

1<g<0

see Corollary 2 below.
1.4. Structure of the paper

The paper is organized as follows. In Section 2 we introduce the Lorentz and net
spaces. Section 3 contains the extension of the Hardy—Littlewood—Paley inequality to
the range 1 < p < oo with the help of the net spaces. Here we prove Theorem 7 for the
anisotropic Lorentz spaces, which implies Theorem 3. Section 4 is devoted to the proofs
of Theorems 1 and 2. In Sections 5 and 6 we discuss the needed properties of the product
Hardy spaces and prove Theorems 4—6, correspondingly.

2. Lorentz and net spaces

The L, space is equipped with the quasi-norm

1/p

1fllp = (R/If(fr)lpdfﬂ ;o 0<p<oo,

with the usual modification for p = co. Here we integrate with respect to the Lebesgue

measure. For n quasi-normed spaces Xi,...,X; of one-dimensional functions, let us
denote by (X1,...,Xy) the space consisting of n-dimensional measurable functions for
which

||f||(x1,...,Xd) = H I fllx, "'HXd < o0,

where the X; norm is taken with respect the j-th variable.

The non-increasing rearrangement of a one-dimensional measurable function f is given
by

fr(t) ==t {p: {If] > p}| <t}

For a multi-dimensional measurable function and for fixed variables y1,...,%—1, Yit1,- - -,
Ya, by 5 (Y1, - Yiz1, s Yitl, - - -, Yd), we denote the non-increasing rearrangement with
respect to the i-th variable (¢ = 1,...,n). Let x = (j1,72,...,J4) be a permutation of
(1,2,...,d). Applying the non-increasing rearrangement in all variables consecutively, we

obtain

f* _ f*j17-~~7*jd — ((f*jl)*jz . .)*jd .
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Various function spaces defined with the help of iterative rearrangements were con-
sidered in many papers, see e.g. [1-3,8,31].

Let p = (p1,...,p4) and 9 = (q1,...,¢q) with 0 < p; < oo and 0 < ¢; < o0,
j=1,2...n. Let x = (41, j2, ..., ja) be a permutation of (1,2, ...,d). In this case we will
write 0 < p < 0o and 0 < q < oo. The Lorentz space L;,q(]R{d) consists of all measurable
functions f for which

1
7 T/ 1 ot & dt b
L= 7LD R a (Lt ] <o
Wik, = | O/( Bt at) |

1

qqu

where in the case ¢; = co the integral ( I gt is understood as sup;, - |g(ti)|-
In higher dimensions, this definition is dlfferent (See [38,31]) from the usual definition
of Lorentz spaces, while, in the one-dimensional case, Ly , is the same as the classical

Lorentz spaces L, ,. Note also that the space L} , with p = q does not coincide with

P.q
the mixed Lebesgue space (Ly,, ..., Lp,). However, if p; = ¢; = p, i = 1,2,...,n, then

L. =1L,
p.q P
We now define the net spaces [33] (see also [30,31]). Let us denote by M the collection
of all rectangles I = I; X ... x I; of positive measure with sides parallel to the axes. For
a measurable function f defined on R?, we define the average function by

f(ty,....tq) :=  sup /f
(i ) IEM\I se [l [1a] |Id|

A measurable function belongs to the net space Ny (M) if

i i BT ot dt
= | [ [ (T ) ) ) <o
1 d

0 0

for 0 < p,q < o0. Moreover, Np, 4 is a normed linear space.
For p; =p, ¢ =q, i =1,2,...,n, we also use the notation

1 adt dty
Ifllw,. = / / D 0nta) G

and, similarly,

-

Q[

T L adty  dig
t1...tg)e fror"da(ty, ..., ¢t —_— .. —
/ /((1 a)rf a(ty, 7d)> 5 »
0 0
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The next result follows easily from the monotonicity of f(ti,...,t;) and the following
Hardy’s inequality: Yoo, 289 (300, am)? < Y e, 28%a} with aj, > 0 and a, ¢ > 0.

m=k

Lemma 1. Let 0 < p < 00, 0 < ¢ < 00, then

q
1150 = F@M, . 28)
keZd
[e’e] [e’s) q %
k1+...k —
(T (21 FS Y f(2’"1,...,2md)> |
keZd ma=kq mi=Fk

3. Hardy—Littlewood—Paley inequality for 1 < p < oo

We start with the following extension of the Hardy—Littlewood—Paley inequality. For
the case p; =p, ¢s =¢q, 1 =1,2,...,n, we recover Theorem 3.

Theorem 7. Let x* = (j1,J2, ..., ja) be a permutation of (1,2,...,d). If 1 < p < 00, 0 <
q<ooand f €Ly, then §nf € Ny g and there holds, uniformly in N € N,

B Sy, = (29)
In particular, for 1 < p < oo,
o] 00 1/p
/.../(tl...td)p_2 FnFt ot dt ] <Ifl,. (30)
0 0

In order to prove this result, we obtain the following interpolation theorem, which, in
turn, is based on Theorems 1 and 2 in [31].

Lemma 2. Let 0 < pg = (pY,...,pY) < p1 = (pi,...,p}) < o0, 0 < qo = (¢?,....,q9),q1 =
(q%v 7Qé) < o0, qu # qzla t=1,..,n, and(0 <r = (Tla .. Td) 00. Let x = (jlvj?a "'7jd)
be a permutation of (1,2,...,d). Suppose pe = (pi*,...,p5") and q: = (¢i, . q5Y). If T
is a linear operator such that for alle € E,

T (L s Ly ) = Naoo:
then

T:L5, — Nex, (31)

where 0 = (01, ...,04) € (0,1) and
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1 1-6 6 1 1-6 6

P Po P14 do @

Proof. By Lemma 4 (c) in [31], we have that
T: (A07 Al);,r — (B07 Bl)g,r’
where

AO = (Lp;')l»l""’Lp?dvl)’ A1 = (Lp;lvl’ L 1 1),

? TPl

and

BO = A/.(QQw"an)v(ooa""oo)’ Bl = -/V'(q%,.,.,qé),(oo,...,oo)'

Taking into account [31, Theorem 1], we obtain

(Mt 0, 001000 Nigh, b (001 )

L;k),r — (.A()7 Al)z,r .
Combining the above estimates, we arrive at (31). O
Proof of Theorem 7. We estimate the Ny oo-norm of fas follows:

[ fll,, . < sup | e [ S o) de
! €
14

Iy

H ‘[l.|*1/17i /eflﬁimi d¢; dx

i=1 1;

< ?SA‘}Q/ ()]

d
< sup / F@ITT 157 / s ge| | de.
IeM i1
R? 2
Let
pile) = [L|7VP / Y I

I;
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If I; = [a;, b;], then

/eﬂ&'m dg;| = i‘ sin((b; — a;)x;/2)| < 2min <bi — G i)

|| 2 i
I;

and so

4 . b’L — a; 1 _1/pl'
i (i) < 7——=77- ) S
o; (t:) (b — ai)l/m i ( 2 ti) !

Using the Hardy-Littlewood—Pdlya inequality for rearrangements (see, e.g., [5, p. 7])

oo o0
[ s@ewids < [ g0 @ i
—00 0
n-times, we conclude that
') 0o d *id i
—1/p/ —1/P}, t; t;
”ng”Np',oo<2d/td /Pa "'/tjl () t71... t—]d
J1 Jd
0 0 tjd
d d
=2 WSy, s = 2 Wy, s, -

Using this inequality for 1 < pg < p < p1 < oo and Lemma 2, we derive that
IS8 Fllar, o S Il -
Setting p = p; = q;, i = 1,...,n in (29), we immediately obtain inequality (30). O
4. Proofs of Theorems 1 and 2
First we prove the following lemmas.

Lemma 3. For a locally integrable function f and for I = I X ... x Iy € M with |I;| < t;,
we have

1 4 .
i /f(w)dx <Caf(G ).
1

t1- 2
Proof. Let I = I; x ... x Iy = I, x I', where I’ C R™"!. Consider a corresponding
rectangular parallelepiped J; x I’, where J; is defined as follows.

If [I;| > 4, then define J; := I. In other cases, let Iy = [a,b], |[[1| =b—a < % and
Q1 =la,a+ty]. If
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| s <2| [ @,

1><I/ 1><I/

then set Jy := Q4. If

/ flx)dx| > 2 / f(z)dzx|,

IXI/ 1><I’

then set J; := [b,a + t1]. Hence,

| / o =Q1[p f(rc)dx—h / Sade
>\ [ @) -| [ @)z [ s,
%I’ 1 x1I’ 1 x1I’

Taking into account that t > |Ji| > %7 we derive that

/f(:c)dx <2 /f(x)dx.

1 x I’ 1 x I’

In this way, in n steps, we get the parallelepiped J = Jy X ... X J; such that % < | <t
and

Finally, we have

1 d
ry I/f(x)dm <2

t - ti - tg

which shows the lemma. O

Lemma 4. For a locally integrable function f satisfying

D Fem, 2™ < o,

mdl m11
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for any k € Z¢ and € € E, there holds

sup Mo S0 <2t >0 0 YD FEemh L 2meh,
2ki ey <2kt

i=1,,n ma=Fka mi=k1

Proof. For t € R?, the operator H, can be represented as

o0 oo d
He f(t) = /~-~/f(t1€1 +xisgnty,. .. te€qd + rasgnta) H%,ai(wz‘)d%
4 5 i=1
with
1 .
i iF0 <ay <ty B 1
io(wy) =4 % and ¥ 1(x;) = ———.
¢l’0( l) { 0, lf ZT; > |t1|, wl’l( Z) ‘tl| + xT;
Let 2% < |t;] < 2% i=1,...,n, then
o0 oo
Hef(t)= > ... >
md:kd m1:k1
oma+1_okg gm1+1_gky 4
/ / f(tier +xisgnty, ... taeq +xdsgntd)Hwiysi(zi)dx.
omgq —2kq om1 ok =1

Then the mean value theorem gives
9] [e%S) d
CEUES SIS Ol | CCEE DY FIe
maq=Kkq mi=ky i=1 I,

where I,, = Iy, X ... X I, is a parallelepiped such that |I,,,| < 2™i. Since

Vi (2m =28y <27™ (1= 1,...,n),
Lemma 3 completes the proof:

) ) d

g0l = | 30 o 3 T[22 [ payis
ma=kq my=ky i=1 I
< e 27mTmemmd | f(x)dx
mdz::kd mi=Fk ;{

<24 f: i fem=t L omamly g

'md:kd ma :ktl
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Lemma 5. Let 0 < p < o0 and 0 < ¢ < oo. Then for any Cauchy sequence { fum }m from
Np.q and any € € E there exists the limit

lim (H-fm)(t),  teR%

m—r oo

Proof. Let {f,}52, be a Cauchy sequence in N, 4. Let € > 0, there exists N such that
for m > N and r € N one has

| fm — fm+r||/\/p,q <e&. (32)

Then, by N, < N, o, we derive that

1

sup 1 /(fm_fm—&-r)d,u ,SE, m > N.
eecM ‘e‘p’

e

Thus, for any e € M, { [ fmdu}::
exists

, is the Cauchy sequence, which implies that there

Jim [ fndp. (33)
e

Since fn, € N4, Lemma 1 yields that

i Z f(@m ..., 2™) < 0.
mg=1 mi=1

Let t € R? and 2 < t; < 2%*! By Lemma 4, there is N such that

N N
|(He(fmn = fmar) O <270 > 0 > (o = frn) (270, 279).
mg=kqg—1 mi=ky—1

From the definition of f(ty,...,t4), there are Q,,, € M satisfying

N N 1
[CRTE AU SalD DERTED DR / Foo(@) = Frosr (@)
md:kdfl mlzk‘lfl m m

Finally, taking into account that the limit (33) exists, the sequence {(Hfm) (t)},, is a

m
Cauchy sequence and, therefore, convergent. O

Proof of Theorem 1. Denote % = o+ % Then we have that 1 <p < r and g = 1% —
Let * = (j1, ja; -+, ja) be a permutation of (1,2, ...,d). Due to the embedding Ly, C L,
taking into account % — % > 0 and condition (9), we have
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1/r
| [ (aleteapi s proma) ae) @

d

1£1lz;,

By Theorem 3 and (34),

IS f = Sn4rfllv,,
1/r

hS (‘R/ ((|t1|...|td|)a|(fXQN+7,\QN)(t)|)r dt —+0 as N — +oo.

Thus, {Fn f} is a Cauchy sequence in N, 4, and using Lemma 5, there exists

lim (H3nf)().

N—+o00

Discretizing the integral yields

/ (] - 1ta)? | (Mo ) (8)])"

Rd

2/( [l Jtal) | ) (), (<1)P)])

Y Y Ly

dEE kg=—0c0 ki=—o00

okg+1 ok1+1

L-1 & Sa B
(tal o ) 5 [(HFN ) (D) 1, (<1)P20)]) .
Using Lemmas 4, 1, Theorem 3 and (34), we continue as follows:

/((\m - [ta)? |(HFn f) (0)])"

R4

<y LY ( Y Y m(le,...,de)>

kd——oo ki=—o00 mg=kq—1 mi=ky1—1

- q
< §nF1%, . <

Now (10) follows from (34) and from Fatou’s lemma.
If, additionally, (11) holds, then we can use the Hardy-Littlewood—Pdlya inequality
for rearrangements (see, e.g., [5, p. 7))
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oo o0

" 1
O/ 0O U < / g(x)p(x) dz

— 00
to obtain

1/r 1/r
(R/ ((1a]. - fta3=F o)t 5(R/ (] tal) F @D dt] <o,

which completes the proof. O

Proof of Theorem 2. Since by (24), H. in bounded on L, for 1 < s < co, we have

(Hef,9) = (f, Hi-c9) (35)

for f € Ls and g € S. Suppose now that f satisfies condition (15). Then, by Remark 1,
f € Ll°¢ for some 1 < s < min(r,2) and so §yf € Ly. Thus (35) can be applied for

SN
Let us introduce the weighted Lebesgue space L,(R?, 3) by the norm

1/q
12,8 = (‘R/ ((ta] - tal)? £ (1)) at
d
Since the Schwartz space S is dense in Ly (—/3), we have
SN,y = sup (HSnfo9)
9l , <t
= sup <3Nfa Hl—sg> = sup <fXQNa Hl—eg>a
”9”Lq,(-[s)<1 ”9“Lq,(—ﬁ)<1

where ¢ € S. Now we show that @ = H.g. It is enough to prove this for one
dimension and for the operator H. Indeed, since Hg € L for a given 1 < s < 2,

N—o00

- Nh*m""Q/N 0/1 g(&x) dé e ™Y dx
Jim /1 [ gy e azag

0 QN

%(y): hm Sn(Hg)(y) = lim / / Ydze Y dg
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1
_ 0/ R/ g(€x) e da d, (36)

where the limit denotes the L -limit. The last equation comes from

/1 /_/ g(Ex) e ™ da d¢ </1 /—/ g(éx)e ™ dx|| dé— 0 (37)
0 \R On 2

s 0 QN s
as N — oo. Indeed, by Hausdorff-Young inequality,

/—/ glea)e ™ do| = | Gxmian
R Qn

s/

< |Gxryoull, = 0

s/

as N — oo and £ € (0,1), where G(x) := g(£x). On the other hand

|Gxryan I, < IGIl, = €714 gll,

which is integrable on (0,1) with respect to £. Now Lebesgue dominated convergence
theorem implies (37). Changing the variables in (36), we get that

1 1
— [ [asyemreas® = [ e % = Biy).
/1 S

Using this and Holder’s inequality, we arrive at

[HSNf 1, (8)

= sup  (fxqn,H0)
HQHLQ,(_B)<1

N

sup /(Itll [t I Oxou @ ([t - - [ta) ™" [Heg(2)] dt

\|9\|Lq,(—[3)<1 a

R

(R/ (1] Ita)” |7 ()xr ()"
HQHL /( 5)\

(m/ (] )™ Pg0))

Now, by Theorem 1, there holds

1/r

1/r!
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1/r
1Bl S | [ (] ) 10 O
d
Finally, the theorem follows from a density argument. O
5. Hardy spaces and atoms
Let us choose a one-dimensional Schwartz function ¢ such that fR ¢dx # 0. Then we

say that a tempered distribution f is in the product Hardy space H, = H,(R x --- x R)
(0 < p<oo)if

< o0,
P

sup |(f x (6, @+ @ dr,)|

t1>0,...,t4>0

11, ==

where * denotes the convolution, ¢,(y) := s 1¢(y/s) (s > 0,y € R) and

(D1, @+ @ ¢,) ( H bt (25), z e R

It is known that different Schwartz functions yield equivalent norms. Moreover, H), is
equivalent to L, for 1 < p < co. For more about Hardy spaces see [36,21].

By a dyadic interval we mean one of the form (k27" (k 4+ 1)27™). For each dyadic
interval I let I” (r € N) be the dyadic interval for which I C I" and |I"| = 2"|I|. If

R:=1, x---x 14 is a dyadic rectangle, then set R" := I x --- x I].
For each dyadlc interval I we define I := {z € R : [z] € (|I | Y )} Obviously, I C J
implies TcJ. Fora dyadic rectangle R =11 X --- X I let R = Il -x I;. If F c R

is a measurable set, then let

F= |J =

RCF,R is dyadic

It is clear that F} C F, implies Fy C Fy.

Let us introduce the concept of simple p-atoms. A function a € Lo is called a simple
p-atom if there exist I; C R dyadic intervals, i = 1,...,j for some 1 < j < d — 1, such
that

(i) supp @ C I1 x ... x I; x A for some open bounded set A C R4~

(i)

lally < (112 T3] ADY2747,
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i [atsitin = [oar=o

R A

foral ¢ = 1,...,4, k = 0,...,N = [2/p — 3/2] and almost every fixed

Liyeeo sy Lim1sLit1y---5L4-

If j = d — 1, we may suppose that A = I; is also a dyadic interval. Of course if a € Lo
satisfies these conditions for another subset of {1,...,d} than {1,...,j}, then it is also
called simple p-atom.

Although not every function in H,, can be decomposed into simple p-atoms [10], the
following result holds.

Lemma 6. Let ) be a measure on the Lebesque measurable sets of R? satisfying
n(F) < C|F| for all open bounded F C R, (38)

Let0 <p <1,V :L;— Lg be a bounded linear operator for some1 < q¢<2,1<s< 00

and
4 i
Tty =[]t | Vr®), teR%i=o,1
j=1
Suppose that there exist 11, ...,1nq > 0 such that for every simple p-atom a and for every
ry...,rqg € P,

/ [izapan gz 2o, (39)

(@) (m17) 3

where Iy x ... x I; x A is the support of a. If j =d —1 and A = I is a dyadic interval,
then we also assume that

/ / |Ta|P d77 § 9=MrL ., 97 MNd—1Td~1 (40)

(R (07T )
If T is bounded from Lo(R?) to Ly(R% n), then

1T, @em S W fllm,, € HpN L. (41)

If limy_o0 fr = f in Hp-norm implies that limy_, o V fi, = V f in the sense of tempered
distributions, then (41) holds for all f € Hp.
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Note that H,N L, is dense in H,,. We omit the proof because it is exactly the same as
those of Theorems 3.6.12 and 1.8.1 in [41] (see also [39]). The only difference is that we
have to apply (38). In [41], we supposed that ' = F and 7 is the Lebesgue measure \. For
d=2and F = F, n = ), the lemma was shown in Fefferman [14] in a different version.
However, that version does not hold for higher dimensions. For d > 3, the present lemma
is due to the last author [41]. Applying Lemma 6, we can prove Theorems 4 and 5.

6. Proofs of Theorems 4—6

Proof of Theorem 4. Let us introduce the measure
d
n(A) = / [[t2d,  Acr, (42)
a4 J=1

and the operator
d ~
Ty =[]t | F), teR™
j=1

We say that n = (n1,...,nq) € N® and m = (my,...,mg) € N? are incomparable if
neither n < m nor m < n hold. Let us denote by F,, (n € Zd) the set of all dyadic
rectangles

T=(k27™ (ky +1)27™) x - x (kg27 ", (kg +1)27), ke N9
For I € F,, (n € Z%), let
Ip = (0,27") x -+ x (0,2774).

Since F' is bounded, if I C F, I € F,, is a dyadic rectangle, then ny,...,ng are bounded
from below. Thus there are only finitely many dyadic rectangles IV ¢ F, j =1,..., N
such that U e Fni and nM, ..., n™) are incomparable vectors. It is easy to see that

10 = (2 o0) x -+ x (2 | 00),  j=1,...,N

and

1§,

C=

N —_—
F = U 70G) =
j=1 j=1

For IU) € F, ;, the union Uj-vzll(j) has minimal measure if 70) N I*) =£ () for all j # k,
more exactly,
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N N
U’ <|J19].
j=1 j=1

Indeed, if 7G) N 1) = (), then the set I(()j) U I(gk) arises from the set 10) U T (j # k) by
a dyadic translation. By the same dyadic translation, we get Iéj ’n I(gk) from 1) N 1)
and the intersections have equal measures. If 1) N T(*) = (), then the set I(gj ) Ulék) arises
from the set 1W) U I*) (j # k) by two dyadic translations. The same holds for more
than two dyadic rectangles. So the corresponding set to Iéj 'n Iék) is counted only once
in the measure of the union Ué\’:lféj) and at most once in Ué\f:lI(J’). By the substitution
1/t; = @j,

N d
n(F) =n | I = / [1t%at
! NORa
N N
= 1o = || J18”| < || 19| < |F),
U, 1§ J=1 J=1

which is exactly (38).

Now we are going to prove (39). Choose a simple p-atom a with support R = I X
... x I; x A for some open bounded set A C R47 and for some 1 < j < d — 1, where we
may suppose that I = (0,275*%) (K, € Z,k =1,...,7). Note that

oK1-m1

oKj—rj
/ / (Tal? dn = / / /<|t1|---|td|>p*2|a<t>|f’dt.
—oKj—ri A

A —2K1-m

(R\TTT ) x-x (R\1;7 ) A

By the definition of the atom,

la(t)| = ///a(w) ﬁ e kT
L I A

k=1
J

_ ///”

ol (—1tpay)" d
<6“5kf”k_z —; k )) H I

k=j+1
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d

/a(:p) H e ek dxjyr - dxg| doy - - dy,

4 k=j+1

where N = |2/p — 3/2]. Using Taylor’s formula,

j N+1
at)|<c/.../<H|thk|>
I 7, k=1

d
/a(x) H e rTk drjii--- dag| doy - dz;
s k=j+1

N+1

ofi) (i)

k=j+1

d
/ / / (x) H e URTE dzjpr--- deg| doy - -

Then Np+2p—1> 0 and

/ [1zar an

()<l ox (0177) 7

j (N+1)p 21— 2%~ (N+1)p+p—2
s (H 2—Kk> / / (H |tk|> /
k=1 _9Ki—r1 _2K -7 a
d
/- : / /a(ax) H e " | dajyg o dog| day - daj
Lo I 1A k=j+1
j Np+2p-1 , p—1 d p—2
k=1 k=1 = k=j+1

A
// / ztkm) dl‘]+1 dll?d del de
I, I; k= j+1

By Holder’s inequality,

/ [1zap an

(]R\IlTl) XX (R\I;j) A

dl’j.

|tk|

_]+1

p

p

dt

dtjyr -

(43)

dty.
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i Np+2p—1 , p—1 4 -2 (2-p)/2
S <H 2%) <H 2ch> / H Ite dtjpy -+ diy
k=1 k=1 J k=j+1
A
2 p/2
d
/ /...//a(x) H e | dpy o dag| doy - day | dtjy - dtg
A I 1; A k=j+1
j Np+2p—1 p—1
< (H 2_Tk> <H 2Kk> (A)(2 p)/2
k=1 k=1

2
d
/ / / iL’) H Giltkwk dijrl e dl’d d.’El s diL’j dtj+1 LR dtd
jp

I I; =i+l

/

In the next step, we use Holder’s inequality and Plancherel’s theorem and (38) to obtain

/ [ 1zar an

(R ) oo x (RVT) A

j Np+2p—1 j j p/2
<(mee) (I ) g (1110
k=1 k=1 k=1

2 p/2
d
// / /a(:v) ( H e Rk dzjiq---dxg| dey---dejdtjp,--- dig
I 60 I; 14 k=j+1
; Np+2p—1 , p/2-1
i) )
k=1 k=1
9 p/2
d
/// /a(z) ( H e HkTk dzjyq -+ dag| dry--- dzjdtjq - dig
5 i i la k=j+1

p/2

j Np+2p—1 , ; p/2-1
5<H2”> (H?“) ez | [ [ [lata
k=1 k=1 I I A

Taking into account (ii) of the definition of the atom, we conclude
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Np+2p—1
/ /|Ta|”dn< (Hz ) .

(R\IlTl)XWX(R\ j

Since Np +2p — 1 > 0, (39) holds.
To prove (40), we obtain

/ [ rapay

(RAET ) (RALGET) RV

9K1—71 oKd—1-rd—1 9Kg
—2K1-m1 _9Kd—1-rd-1 —2Kq

where I; = (0,27 %) (K, € Z). Similarly to (43),

N

d .
~ _ (—Ztkl‘k)l
t)| = ... ( Ty _ 7) da
[ fotf£s
d N+1
<C /- 17% > la(x)| dz
[/ e
d N+L o, g N+1 o,y 1/2
N 2~ |t |> ( |1 |> o | a(z)|? da
() () (i) (/-

1

d N+l o, N+2-1/p
< (H m) (H sz) | m
k=1 k=1

1/2

Hence,
/ [ rapy
(RATTT) oo (RATET) RIS
d Np+2p—1 2K1-71 oKda—1-7a—1 oKq d (N+1)p+p—2
5(1‘[2—1@) / / /<H|tk|> dt
k=1 —2K1-7m1 _oKq—1-ra—1 —2Kq k=1
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If limpso0 fr = f in Hp-norm, then the convergence holds also in the sense of tem-
pered distributions and then limg_, o fk = f in the sense of tempered distributions. By
Lemma 6, this completes the proof of Theorem 4. 0O

Proof of Theorem 5. The proof is similar but slightly more advanced than that of The-
orem 4. We use the measure defined in (42) and introduce the operator

d
[It | #iw, ter?
j=1

Inequality (43) implies that

50 < (HQKIC)N“@HH)N“ i) '/'/'/ [

k=1 k=j+1 0 0 n I

k=j+1

o) )

/ /H]-i-l LdlFjea, a0, @yt ta)| day - dag,

/a(x) H e "k N dry g - dag| day - - dogdujgg - dug
A

where
. —at
.7:j+1’,”’da(.%'1,...,xj,tj+1,...,td) : / H e Rk da j+1 ... dxg
Rd—i k=j+1
and
Hj—‘rl,...,df(xlv v axjvtj-‘rla v atd)
tit1 td
1
= f(xl,...,xj,uj+1,...,ud)duj+1-~-dud,

tiv1ta
0 0

(ty #0,k=j+1,...,d). Then
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oK1-71
-/ - / / ] [tal)?2 [HAP dt
—2K1-7r1 _oKj-rj A
j (N+1)p 2K1—m 2K j (N+1)p+p—2
s@p%ﬁ /(Hw)
k=1 —2K1-m1 oK —r; k=1

p—2

/ [tk]
I

k=j+1

/ /H]Jrl ,,,,, d|fj+1 ,,,,, (5517...,.’Ej7tj+1,...,td)|dx1"' dl’j dt

< <ﬁ 2m> e (ﬁ 2Kk> A/ 4]

k=1 k=j+1

/"'/Hj+1’m’d|.7:j+1““,da($tl‘1,...,ajj,tj+1,...,td)|d$1~-- dx; dtjqq---

By Holder’s inequality,

[ [irara

(©T) (1) 4

j Np+2p=1 , p—1 d (2—p)/2
< (H 2—“') (H 2Kk) / IT 1tel 2t - dta
k=1 k=1 o k=j+1
A 1
2
/H]+1 Fiti,. (.1‘1,...,xj,tj+1,...,td)|d$1~'~dl‘j dtjiq--- dtg

1

j Np+2p—1 j p—
5 (H 2rk> (H 2Kk> " (Z) (2—p)/2
k=1 k=1

dtq.

p/2
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A 1

/HJ+1

2 p/2

(xl,...,.’Ej,tj+1,... ,td)|d(E1 diCj dtj+1 dtd

Taking into account (24) and Plancherel’s theorem, we conclude that

/ /~-~/”Hj+1“H,d|]:j+1w,da(x1,...,xj7tj+1,...,td)|dx1--~ dl‘j dtj+1"' dtd

<|nl- |f\/ //
j Rd—i
2
(Hj+1 ..... alFjta,..., da(xla~~~axjatj+1»~~,td)|) dtjy1--- dtgdxy - dx;

<C|11|.--|1j|/.../ /

I, I, Rd-j

|]:J+1 da T1y-.- .Z‘j, GALs ey )‘ dthrl dtd d(L‘l dSCj
< ClL|--- | |/ //|a )2 de.

Substituting this into (45) and using (38), we can see that

/ [1zar an

(R\ITl) x---x(R\I_;'J’) A

j Np+2p—1 , p/2-1
—Tk Ky 1-p/2 Cll'Q T
s<g2 ) (Hz) aperz | [ [ [apa

k=1 LI A

j Np+2p—1
<2 <H 2—”) )
k=1

Using (44), we remark that

d N+1 o, o, N+2-1/p
Ha(t)] S (H Itkl) (H 2K’“> -
k=1 k=1

p/2
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Hence, the estimate

/ [1zap an
) A

(R\TT) x - x (R\L7

oK1—-7m1 oKd—1-Td—-1 9K3
= [ [ [l ey
—oK1—-r1 —oKda—1-Ta-1 —2K3

oKd—1-ra-1 9K3

d Np+2p—1 2K1—m1
() S Jeaa

k=1 —oK1-71 _oK4g-1-74-1 —2K3

d—1 Np+2p—1
k=1

can be proved as in Theorem 4. Since V f := ’Hf is bounded from L, to L, for all
1 < ¢ <2, Lemma 6 finishes the proof. O

Let us denote by BMO the dual space of Hy (see [10]). Note that this space is
different from the usual BMO(RY) space, that is the dual of H;(R?) (see Fefferman and

Stein [15]). Similarly to Theorem 2, by a duality argument, one can obtain the following
corollary.

Corollary 1. If f € L{¢ and
sup ([ta] .. - [tal | f(£)]) < o0,
teR"
then, for all N € N,
B8 fllgaro < sup (It - - [tal LF (D)), (46)
teRn
where Fn f was defined in (3).
Note that inequality (27) implies that

IHSN fllparo < sup ([t .. [tal [f()])-
teRn

Note that the similar result to (46) for Walsh-Fourier coefficients of one-dimensional
functions was proved by Ladhawala [27]. Moreover, for the Fourier series f(z) ~
>0 o aqe™ with non-negative coefficients a,, the corresponding result follows from a
characterization of BMO due to Fefferman (see [35]).
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Proof of Theorem 6. We use the original version of Lemma 6, with ¢ = 0, 7 the Lebesgue
measure and F = F. It is easy to see that if a is a simple p-atom with support R (a
dyadic rectangle), then supp #a C R. This means that the integrals in (39) and (40) are
0. Since H is bounded on L, for all 1 < g < co, Lemma 6 completes the proof. O

It is known that the operator B is not bounded from BMO to BMO (see Golubov
[19]) but the following weaker result holds true.

Corollary 2. If f € Loo (\U1<y<o0 Lqs then

1Bfl o < Cllfllu-

Proof. Since B in bounded on L, for 1 < g < oo, we have

(Bf,g) = (f,Hg),

where g € S. We have by Theorem 6,

1Bfllgpro = sup (Bf,g) = sup (f, Hg)

lgll 1, <1 lgll s, <1

< sup [ flleolHollt < Ol flloe- O
lgll 1, <1

However, the operator H is bounded on BMO.

Corollary 3. If f € BMO MU, <00 Lqs then

1#flsao < CliflBao -

Proof. Inequality (28) implies that

1 Hfllgpo = sup (Hf,g) = sup (f,Bg)

lgll s, <1 lgll 1, <1

< sup | fllsaolBylla, < C|lfllsmo,
lgll s, <1

where g € S. In the second equality we used that H in bounded on L, for 1 < ¢ < oo. O
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Appendix A. Carleman-type result for Fourier transform

Example. There is a continuous function F' from N,s1L,(R) such that F ¢ Ly, p<2
and

/|x|1’—2|ﬁ(x)\pdx . p>2
R

Indeed, define

Z\/Wln (n+2)X-ints bl

where {e, },~ is the Rudin-Shapiro sequence.
First, it is easy to see that g € La(R), g ¢ L,(R), 1 < p < 2, and [ |z|°~?|g(z)|Pdz =
oo, p > 2. Second,

n+%
. 281n Ll e~ ikte
e " g(x 2 =: h(t t).
/ 9(@) t kz_o k+1ln k+2) Q0
RN =

Applying Abel’s transformation, we obtain

n—1 1 1 k

falt) = kz:o(\/k Til(k+2) VEr2ll(k+ 3))§)6_m‘”

1

1 Cint S
+ e e, =: apPr(t) + P,(t).
\/n—l—lln2(n+2); kZ:O ePe(t) Vi F1ln*(n+2) ®)

Since |Py(t)| < 5vk+1 and aj < (k—i—l)\/%lnz(k—&-Q)’ we have that f, — f uniformly,
where f is continuous and bounded on R, and § = hf € L,(R) for any 1 < p < 0.
Finally, we put F := g.
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