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Abstract In the present paper, we investigate some exact
cosmological models in F(R, T̄ ) gravity theory. We have
considered the arbitrary function F(R, T̄ ) = R + λT̄ where
λ is an arbitrary constant, R, T̄ are respectively, the Ricci-
scalar curvature and the torsion. We have solved the field
equations in a flat FLRW spacetime manifold for Hubble
parameter and using the MCMC analysis, we have esti-
mated the best fit values of model parameters with 1 −
σ, 2 − σ, 3 − σ regions, for two observational datasets like
H(z) and Pantheon SNe Ia datasets. Using these best fit
values of model parameters, we have done the result anal-
ysis and discussion of the model. We have found a transit
phase decelerating-accelerating universe model with transi-
tion redshifts zt = 0.4438+0.1008

−0.0790, 0.3651+0.1644
−0.0904. The effec-

tive dark energy equation of state varies as −1 ≤ ωde ≤
−0.5176 and the present age of the universe is found as
t0 = 13.8486+0.1005

−0.0640, 12.0135+0.6206
−0.2743 Gyrs, respectively for

two datasets.
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1 Introduction

The universe underwent two episodes of accelerated expan-
sion at early and late times of the cosmological evolution,
according to the conventional paradigm of cosmology, which
is based on a growing amount of observable data. Although
the cosmological constant might be the best explanation for
the late-time acceleration, the possibility that the acceleration
is dynamic in nature and the presence of some potential ten-
sions may call for a revision of our understanding-something
that is unquestionably necessary for early time acceleration.
There are primarily two paths one could take in order to
accomplish this. The first is to build extended gravitational
theories that, although having general relativity as a spe-
cific limit, can generally offer more degrees of freedom to
adequately describe the evolution of the universe [1,2].
The second approach is to modify the conventional particle
physics model and take general relativity into account. This
involves assuming that the universe contains additional mat-
ter in the form of dark energy [3,4] and/or inflation fields [5].
Keep in mind that the first approach has the extra theoretical
benefit of may be leading to an improved [6,7].

One can begin building gravitational modifications from
the Einstein-Hilbert action, that is, from the curvature
description of gravity, and extend it appropriately, as in the
cases of Lovelock gravity [8,9], F(R) gravity [10], and F(G)

gravity [11,12]. He may also examine torsional modified
gravities, such as F(T ) gravity [13–15], F(T, TG) gravity
[16], etc., starting with the analogous, teleparallel formula-
tion of gravity in terms of torsion [17,18]. Cosmologists are
interested in f (T ) teleparallel gravity, one of the intriguing
modified theories of gravity. The study of modified Telepar-
allel f (T ) gravity, where T is the torsion scalar, was driven
by the generalization of f (R) gravity, where R is the Ricci
scalar. To characterize the effects of gravitation in terms of
torsion rather than curvature, [19–22] employed the curva-
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tureless Weitzenböck connection in teleparallel gravity, as
opposed to the traditional torsionless Levi–Civita connection
in general relativity.

The linear forms of f (T ) lead to a teleparallel gravity
equivalent to general relativity (TEGR) [23]. Nonetheless,
there are disparities in the physical interpretations of the two
theories of gravity, f (T ) and f (R). In f (T ) gravity, the
torsion scalar T just comprises the first-order derivatives of
the vierbeins, but in f (R) gravity, the second-order deriva-
tives of the metric tensor are contained in the Ricci scalar
R. This means that, as opposed to other modified theories of
gravity, the exact solutions of cosmological models in f (T )

gravity may be readily found. f (T ) gravity is a straightfor-
ward modified theory of gravity, however there aren’t many
precise solutions suggested in the literature. In isotropic and
anisotropic spacetime, some cosmological models [24–26]
with power-law solutions have been discovered in the litera-
ture. Some cosmologists have studied some exact solutions of
the cosmological models in [19,27,28] for static spherically
symmetric spacetime and Bianchi type-I spacetime. When
compared to other modified theories of gravity, the analysis of
cosmic situations in f (T ) gravity is straightforward. Conse-
quently, a large number of cosmological scenarios, including
the big bounce [29–32], inflationary model [33], and late time
cosmic acceleration [34–36], are studied using f (T ) gravity
theory. In the field of f (T ) gravity, there have been recent
developments including spherical and cylindrical solutions
[37], conformally symmetric traversable wormholes [38],
and noether charge and black hole entropy [39]. Recently,
we have discussed and reconstructed some �CDM cosmo-
logical models in f (T ) gravity [40–43].

Additionally, nonmetricity could be used to create
gravitational alterations [44]. Furthermore, altering the fun-
damental geometry itself might give rise to an intriguing
class of modified gravity; this could include, for example,
Finsler or Finsler-like geometries [45–48]. The non-linear
connection’s potential to introduce additional degrees of free-
dom and make the gravitational modification phenomenolog-
ically interesting is one of the framework’s intriguing features
[49,50]. This feature was also obtained through the use of
a different theoretical framework for metric-affine theories
[51–55].

In [56], R. Myrzakulov found an intriguing gravitational
modification called the F(R, T̄ ) gravity. Both curvature and
torsion are dynamical fields associated with gravity in this
theory because one makes use of a particular but non-special
connection. Because of this, the theory has additional degrees
of freedom originating from both the non-special connec-
tion and the arbitrary function in the Lagrangian. The the-
ory belongs to the class of Riemann–Cartan theories, which
are part of the broader category of metric theories with
affine connections [57,58]. A few of the theory’s applications
were examined in [56,59–62]. Specifically, [56] addressed

certain theoretical concerns; [59] examined energy condi-
tions; [60] examined theoretical relationships with various
scenarios; [61] examined Noether symmetries; and [62]
examined neutron star theory. Recently, in [63] have analyzed
the resultant cosmology of such a framework and to compute
the evolution of observable quantities like the effective dark
energy equation-of-state parameter and density parameters.
By expressing the theory as a deformation from both general
relativity and its teleparallel counterpart, they have examined
the cosmological behavior with an emphasis on the connec-
tion’s effect by employing the mini-super-space approach.
The observational constraints on F(R, T̄ )-gravity have been
investigated in [64]. Various Metric-Affine Gravity Theories
and its applications are discussed in [65–71].

Motivated by the above discussions, in this paper, we
investigate a spatially flat, isotropic and homogeneous
spacetime universe in F(R, T̄ ) Gravity in the context of
generalized connection �, in which curvature R and torsion
T both are non-zero. The paper is organized as follows. In
Sect. 2, we give a brief review of the F(R, T̄ ) gravity the-
ory. The cosmological solution for the particular linear case
F(R, T̄ ) = R + λT̄ are given in Sect. 3. Observational con-
straints for the model are studied in Sect. 4. The result anal-
ysis and discussions are presented in Sect. 5. The age of the
universe is considered in Sect. 5.2. The last Sect. 6 is devoted
to conclusions.

2 F(R, T̄ ) gravity and field equations

To explore the cosmological properties of the universe in
F(R, T̄ ) gravity, we consider the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) space-time described by the met-
ric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1)

where a = a(t) is the scale factor. The orthonormal tetrad
components ei (xμ) are related to the metric through

gμν = ηi j e
i
μe

j
ν , (2)

where the Latin indices i, j run over 0...3 for the tangent
space of the manifold, while the Greek letters μ, ν are the
coordinate indices on the manifold, also running over 0...3.
We consider the action for F(R, T̄ ) gravity [56,63] as

S =
∫

e[F(R, T̄ ) + Lm]dx4, (3)

where e = √−g with g as the determinant of metric tensor
gμν , R = R(LC)+u and T̄ = T̄ (W )+v with R(LC) is the Ricci
scalar corresponding to Levi–Civita connection and T̄ (W ) is
the torsion scalar corresponding to Weitzenbök connection.
And u is a scalar quantity depending on the tetrad, its first and
second derivatives, and the connection and its first derivative,
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and v is is a scalar quantity depending on the tetrad, its first
derivative and the connection. Hence, u and v quantify the
information on the specific imposed connection [63].

The general modified field equations for F(R, T̄ ) gravity
are obtained by varying the action (3) with respect to metric
field as below (see the reference [65] for detail):

FRR(μν) − 1

2
gμνF + FT̄

×
(

2Sνi j Sμ
i j − Si jμS

i j
ν + 2Sνi j Sμ

j i − 4SμSν

)
= Tμν

(4)

where FR = ∂F
∂R , FT̄ = ∂F

∂ T̄
, R(μν) is the symmetric part

of the Ricci tensor of the affine connection �, Sμν
λ is the

torsion tensor, Sμ is the torsion trace, Ti j is the stress-energy
momentum tensor defined by

Tμν = − 2√−g

δ(
√−gLm)

δgμν
(5)

On the other hand, the connection field equations are

Pλ
μν(FR) + 2FT̄

(
Sμν

λ − 2Sλ
[μν] − 4S[μδ

ν]
λ

)
= 0 (6)

where Pλ
μν(FR) is the modified Palatini tensor,

Pλ
μν(FR) = −∇λ(

√−gFRgμν)√−g
+ ∇α(

√−gFRgμiδν
λ)√−g

+2FR(Sλg
μν − Sμδν

λ − Sλ
μν) (7)

with ∇ as the covariant derivative associated with the general
affine connection �.
Here, we consider the energy momentum tensor for perfect
fluid matter source as

Tμν = (ρ + p)UμUν + pgμν (8)

where ρ, p are respectively, energy density and pres-
sure of the considered perfect fluid matter source, Uμ =
(−1, 0, 0, 0) is the four velocity vector.

In this paper, we restrict ourselves to the case u = u(a, ȧ)

and v = v(a, ȧ). The scale factor a(t), the curvature scalar R
and the torsion scalar T̄ are taken as independent dynamical
variables. Then after some algebra the action (3) becomes
[72],

S =
∫

Ldt, (9)

where the point-like Lagrangian is given by

L = a3(F − T̄ FT̄ − RFR + vFT̄ + uFR)−6(FR+FT̄ )aȧ2

−6(FRR Ṙ + FRT̄
˙̄T )a2ȧ − a3Lm . (10)

The corresponding field equations of F(R, T̄ ) gravity are
obtained in [72,73], as

3H ṘFRR − 3(Ḣ + H2)FR + 3H ˙̄T FRT̄ + 6H2FT̄

+1

2
F − 1

2
ȧuȧ FR − 1

2
ȧvȧ FT̄ = ρ, (11)

Ṙ2FRRR + (R̈ + 2ṘH)FRR + (3H2 + 2Ḣ − 1

2
R)

×(FR + FT̄ ) + 2 ˙̄T HFT̄ T̄ + 2Ṙ ˙̄T FRRT̄ + ˙̄T 2
FRT̄ T̄

+(2ṘH + 2 ˙̄T H + ¨̄T )FRT̄ + 1

2
F − 1

6
auȧ ṘFRR

−(
1

2
ȧuȧ + 1

6
au̇ȧ − 1

2
u − 1

6
aua)FR

−1

6
avȧ

˙̄T FT̄ T̄ − (
1

2
ȧvȧ + 1

6
av̇ȧ − 1

2
v − 1

6
ava)FT̄

−1

6
a(vȧ Ṙ + uȧ

˙̄T )FRT̄ = −p. (12)

where

ρ = Lm − ȧ
∂Lm

∂ ȧ
,

p = 1

3a2

[
d

dt

(
a3 ∂Lm

∂ ȧ

)
− ∂

∂a
(a3Lm)

]
. (13)

3 Cosmological solutions for F(R, T̄ ) = R + λT̄

In this investigation, we take the arbitrary function F(R, T̄ )

in linear form in R and T̄ as given by

F(R, T̄ ) = R + λT̄ , (14)

where λ is an arbitrary constant, R = u + 6(Ḣ + 2 H2) and
T̄ = v − 6H2. Using Eq. (14) in Eqs. (11) and (12), we
obtain the field equations in the form

3(1 + λ)H2 + 0.5[(u − ȧuȧ) + λ(v − ȧvȧ)] = ρ, (15)

and

(1 + λ)(2Ḣ + 3H2) + 0.5[u − ȧuȧ − 1

3
au̇ȧ

+1

3
aua] + 0.5λ[v − ȧvȧ − 1

3
av̇ȧ + 1

3
ava] = −p.

(16)

The energy conservation equation is obtained as

ρ̇ + 3H(ρ + p) = 1

2
(u̇ − ȧua − äuȧ)

+1

2
λ(v̇ − ȧva − ävȧ) (17)

Now, we consider the scalars u and v in the form of [70]

u = c1
ȧ

a
ln ȧ, v = s(a)ȧ, (18)

where c1 is an arbitrary constant and s(a) is an arbitrary
function of scale factor a.
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Using Eq. (18) in Eqs. (15)–(17), we get the following form
of the field equations (15)–(17):

3(1 + λ)H2 − 1

2
c1H = ρ, (19)

(1 + λ)(2Ḣ + 3H2) − 1

2
c1H − 1

6
c1

Ḣ

H
= −p. (20)

and

ρ̇ + 3H(ρ + p) = 0 (21)

For λ = 0, c1 = 0, the field equations, (19) and (20) will
reduced into original Einstein’s field equations in general
relativity (GR). One can obtain the Friedmann like equations
as

3H2 = ρ + ρMG , (22)

2Ḣ + 3H2 = −p − pMG , (23)

where ρMG , pMG are the geometrical corrections in energy
density and pressure, respectively given by

ρMG = 1

2
c1H − 3λH2,

pMG = −
[

1

2
c1H + 1

6
c1

Ḣ

H
− λ(2Ḣ + 3H2)

]
. (24)

These, geometrical corrections, respectively, in energy den-
sity and pressure ρMG , pMG , called as effective dark energy
sector in F(R, T̄ ) gravity. We can show that effective dark
energy sector is conserved, namely ρ̇MG + 3H(ρMG +
pMG) = 0, and it can be easily deduced from matter energy
conservation equation ρ̇ + 3H(ρ + p) = 0.
We define the matter equation of state as p = ωρ with
ω =constant and using Eqs. (19) and (20), we get

12(1 + λ)H − c1

6H
Ḣ + 6(1 + λ)H2 − c1H

2
(1 + ω) = 0,

(25)

or

12(1 + λ)H − c1

6(1 + λ)H2 − c1H
dH + 3(1 + ω)

da

a
= 0. (26)

After integration Eq. (26), we get

6(1 + λ)H2 − c1H − c2

(a0

a

)3(1+ω) = 0, (27)

where c2 is an integrating constant.
Solving Eq. (27) for Hubble parameter H , we obtain

H(a) = c1

12(1 + λ)
+ 1

12

×
√(

c1

1 + λ

)2

+
(

24c2

1 + λ

) (a0

a

)3(1+ω)

, λ �= −1.

(28)

For c1 = 0, we get Hubble parameter as H(a) =√
6c2

6
√

1+λ

( a0
a

)3(1+ω)/2 which gives a power-law expansion cos-
mology with a constant deceleration parameter (DP). If we
take c2 = 0, then we find H = constant which gives
exponential-law expansion cosmology with constant DP.
Using the relation a0

a = 1 + z [3], we get

H(z) = c1

12(1 + λ)
+ 1

12√(
c1

1 + λ

)2

+
(

24c2

1 + λ

)
(1 + z)3(1+ω), λ �= −1.

(29)

The deceleration parameter is derived from q = −1 + (1 +
z) H

′
H as

q(z) = −1

+ 36(1 + ω)c2(1 + z)3(1+ω)

c2
1

1+λ
+24c2(1 + z)3(1+ω)+c1

√(
c1

1+λ

)2 + 24c2
1+λ

(1 + z)3(1+ω)

, λ �= −1.

(30)

4 Observational constraints

For our model and dataset combination, we use the freely
available emcee program, available at [74], to conduct an
MCMC (Monte Carlo Markov Chain) analysis so that we
may compare the model with observational datasets. Through
parameter value variation across a variety of cautious priors
and analysis of the parameter space posteriors, the MCMC
sampler constrains the model and cosmological parameters.
We then obtain the one-dimensional and two-dimensional
distributions for each parameter: the one-dimensional distri-
bution represents the posterior distribution of the parameter,
whilst the two-dimensional distribution shows the covariance
between two different values.

4.1 Hubble function

To ensure the model’s validity and feasibility, a model that
aligns with observational datasets must be obtained. As a
result, in order to obtain this condition, we first investigated
32 observed statistically non-correlated Hubble datasets
H(z) across redshift z, with H(z) [75–82] having errors (see
Table 1). We used the following χ2-test formula while fitting
data:

χ2(c1, c2, λ, ω) =
i=N∑
i=1

[(Hob)i − (Hth)i ]2

σ 2
i

Where N denotes the total amount of data, Hob, Hth , respec-
tively, the observed and hypothesized datasets of H(z) and
standard deviations are displayed by σi .
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Table 1 Observed values of H(z)

S. no. z H(z) σH References

1 0.07 69.0 19.6 [75]

2 0.09 69.0 12.0 [76]

3 0.12 68.6 26.2 [75]

4 0.17 83.0 8.0 [76]

5 0.179 75.0 4.0 [77]

6 0.199 75.0 5.0 [77]

7 0.2 72.9 29.6 [75]

8 0.27 77.0 14.0 [76]

9 0.28 88.8 36.6 [75]

10 0.352 83.0 14.0 [77]

11 0.3802 83.0 13.5 [78]

12 0.4 95.0 17.0 [76]

13 0.4004 77.0 10.2 [78]

14 0.4247 87.1 11.2 [78]

15 0.4497 92.8 12.9 [78]

16 0.47 89.0 50.0 [79]

17 0.4783 80.9 9.0 [78]

18 0.48 97.0 62.0 [80]

19 0.593 104.0 13.0 [77]

20 0.68 92.0 8.0 [77]

21 0.75 98.8 33.6 [81]

22 0.781 105.0 12.0 [77]

23 0.875 125.0 17.0 [77]

24 0.88 90.0 40.0 [80]

25 0.9 117.0 23.0 [76]

26 1.037 154.0 20.0 [77]

27 1.3 168.0 17.0 [76]

28 1.363 160.0 33.6 [82]

29 1.43 177.0 18.0 [76]

30 1.53 140.0 14.0 [76]

31 1.75 202.0 40.0 [76]

32 1.965 186.0 50.4 [82]

For �CDM model, we have considered the Hubble func-
tion H(z) = H0

√
�m0(1 + z)3 + ��0 with ��0 = 1 −

�m0. Using this Hubble function, we have performed the
MCMC analysis with 32 statistically non-correlated Hubble
datasets H(z) with error bars in H(z). The output likelihood
plots of H0,�m0 at 68%, 95%, and 99% confidence levels
are given in Fig. 1 and the best fit Hubble curve for �CDM
model is shown in Fig. 3. We have obtained the best fit value
of Hubble constant as H0 = 68.0+2.110

−2.137 km s−1 Mpc−1 by
varying H0 in the range 50 < H0 < 100 and �m0 in the range
(0, 1) for �CDM model which is mentioned in Table 2.

The contour plots for model parameters c1, c2, λ, and
ω at 68%, 95%, and 99% confidence levels, respectively,
are shown in Fig. 2. The best fit shape of Hubble function

Fig. 1 The contour plot of H0, �m0 at 1−σ, 2−σ and 3−σ confidence
level in MCMC analysis of H(z) datasets for �CDM model

Table 2 The MCMC results in H(z) datasets analysis

Model Parameter Prior Value

�CDM H0 (50, 100) 68.0+2.110
−2.137

�m0 (0, 1) 0.322+0.04403
−0.03846

χ2
min – 26.3066

c1 (0, 800) 289.92+57.915
−51.841

c2 (2000, 20000) 9632+69.668
−67.726

f (R, T̄ ) λ (− 1, 1.2) 0.12963+0.13399
−0.1255

ω (−1, 1) − 0.036663+0.038194
−0.039458

χ2
min – 22.8994

for F(R, T̄ )-model with H(z) datasets is shown in Fig. 3.
As indicated in Table 2, we have selected a broad range
of priors for our study in order to estimate the cosmologi-
cal parameters, which have the highest likelihood of exist-
ing for the theoretical values of these parameters for the
best-fit model. We have estimated best fit values of c1 =
289.92+57.915

−51.841, c2 = 9632+69.668
−67.726, λ = 0.12963+0.13399

−0.1255 and

ω = −0.036663+0.038194
−0.039458 at 1−σ, 2−σ and 3−σ errors using

the priors (0, 800), (2000, 20000), (−1, 1.2) and (−1, 1),
respectively. We have estimated the Hubble constant as
H0 = 64.3627+1.3291

−1.3408 km s−1 Mpc−1 for the best fit model.
Recently, Cao and Ratra [83] have obtained the value of Hub-
ble constant H0 = 69.8 ± 1.3 km s−1 Mpc−1 while in [84]
they estimated this value as H0 = 69.7±1.2 km s−1 Mpc−1.
Recently, Alberto Domínguez et al. [85] have obtained this
parameter in their likelihood analysis of wide observational
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Fig. 2 The contour plots of
c1, c2, λ, ω at 1 − σ, 2 − σ and
3 − σ confidence level in
MCMC analysis of H(z)
datasets

datasets as H0 = 66.6 ± 1.6 km s−1 Mpc−1 and [86,87]
have obtained as H0 = 65.8 ± 3.4 km s−1 Mpc−1. Freed-
man et al. [88] have estimated the present value of Hubble
constant H0 = 69.6 ± 0.8 km s−1 Mpc−1, Birrer et al. [89]
have measured H0 = 67.4+4.1

−3.2 km s−1 Mpc−1, Boruah et

al. [90] have measured H0 = 69+2.9
−2.8 km s−1 Mpc−1 and

most recently, Freedman [91] has estimated H0 = 69.8 ±
0.6 km s−1 Mpc−1 and Qin Wu et al. [92] have measured
H0 = 68.81+4.99

−4.33 km s−1 Mpc−1. Recently, in 2018 [93], the
Plank Collaboration estimated that the Hubble constant is
currently H0 = 67.4 ± 0.5 km s−1 Mpc−1, while Riess et
al. [94] obtained H0 = 73.2 ± 1.3 km s−1 Mpc−1 in 2021.
In comparison of the above results, the result obtained in our
model for H0 is compatible with observational datasets.

4.2 Apparent magnitude m(z)

The relationship between luminosity distance and redshift is
one of the main observational techniques used to track the
universe’s evolution. The expansion of the cosmos and the
redshift of the light from distant brilliant objects are taken
into consideration when calculating the luminosity distance

Fig. 3 The best fit shape of Hubble parameter H(z) over z for our
model and �CDM model with observed non-correlated H(z) datasets

(DL ) in terms of the cosmic redshift (z). It is provided as

DL = a0r(1 + z), (31)
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Fig. 4 The MCMC analysis of the Pantheon SNe Ia samples for
�CDM model

where the radial coordinate of the source r , is established by

r =
∫ r

0
dr =

∫ t

0

cdt

a(t)
= 1

a0

∫ z

0

cdz

H(z)
, (32)

where we have used dt = dz/ż, ż = −H(1 + z).
As a result, the luminosity distance is calculated as follows:

DL = c(1 + z)
∫ z

0

dz

H(z)
. (33)

Hence, the apparent magnitudem(z)of a supernova is defined
as:

m(z) = 16.08 + 5 log10

[
(1 + z)H0

0.026

∫ z

0

dz

H(z)

]
. (34)

We use the most recent collection of 1048 datasets of the
Pantheon SNe Ia samples in the (0.01 ≤ z ≤ 1.7) range
[95] in our MCMC analysis. We have used the following χ2

formula to constrain different model parameters:

χ2(c1, c2, λ, ω, H0) =
i=N∑
i=1

[(mob)i − (mth)i ]2

σ 2
i

.

The entire amount of data is denoted by N , the observed and
theoretical datasets of m(z) are represented by mob and mth ,
respectively, and standard deviations are denoted by σi .

The mathematical expression for apparent magnitude
m(z) is represented in Eq. (34). Figure 4 depicts the like-
lihood analysis of Pantheon SNe Ia datasets for �CDM
model and the best fit values of �m0 are mentioned in
Table 3. We have found the best fitted value of �m0 =
0.3337+0.02943

−0.01352 at minimum χ2 value with 1 − σ , 2 − σ and
3 − σ errors at 68%, 95% and 99% confidence level, respec-
tively. Figure 5 shows the contour plots for c1, c2, λ, ω, H0

in MCMC analysis of Pantheon SNe Ia datasets. Figure 6
depicts the best fit curve of apparent magnitude versus
z for Pantheon SNe Ia datasets for the best fit values

Table 3 The MCMC results in Pantheon SNe Ia datasets analysis

Model Parameter Prior Value

�CDM �m0 (0, 1) 0.3337+0.02943
−0.01352

χ2
min – 1117.4328

c1 (0, 500) 294.8+0.1279
−0.1282

c2 (1000, 10000) 9625+0.1286
−0.1281

f (R, T̄ ) λ (−1, 2) 0.2486+0.1090
−0.1596

ω (−1, 1) 0.01065+0.1528
−0.1128

H0 (50, 100) 67.87+0.1281
−0.1290

χ2
min – 1103.6114

of model parameters. We have applied a wide range pri-
ors (0, 500), (1000, 10000), (−1, 2), (−1, 1), (50, 100) for
c1, c2, λ, ω, H0, respectively, in our analysis and obtained the
best fit values as c1 = 294.8+0.1279

−0.1282, c2 = 9625+0.1286
−0.1281, λ =

0.2486+0.1090
−0.1596, ω = 0.01065+0.1528

−0.1128, H0 = 67.87+0.1281
−0.1290

with 1−σ , 2−σ and 3−σ errors at 68%, 95% and 99% con-
fidence level, respectively (see Table 3). Our result is com-
patible with the recent observational datasets.

5 Result analysis and discussion

In this section, first we introduce matter energy density
parameter �m and effective dark energy density parameter
�MG , respectively as

�m = ρ

3(1 + λ)H2 , �MG = c1

6(1 + λ)H
. (35)

From Eq. (19), we can define the relationship between energy
density parameters �m and �MG as

�m + �MG = 1. (36)

Equation (35) represents the expressions for matter energy
density parameter �m and effective dark energy density
parameter �MG , respectively. The geometrical evolution
of �m , �MG , respectively are shown in Fig. 7a, b. Fig-
ure 7a depicts that the early universe is matter dominated
limz→∞ �m → 1 and in late-time universe limz→−1 �m →
0. Figure 7b depicts that late-time universe is dark energy
dominated limz→−1 �MG→1 and in early time universe
limz→∞ �MG→0. At present z=0, we have estimated val-
ues of these parameters as (�m0,�MG0) = (0.3767+0.0620

−0.0559,

0.6233+0.0016
−0.0018), (0.2831+0.0294

−0.0156, 0.7169+0.0020
−0.0041), respectively,

along two observational datasets H(z) and Pantheon SNe Ia
datasets while for the standard �CDM model, these quanti-
ties are obtained as �m0 = 0.322+0.04403

−0.03846, 0.3337+0.02943
−0.01352

with Hubble constant H0 = 68.0+2.110
−2.137 km s−1 Mpc−1.

These values are compatible with recent observations [83–
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Fig. 5 The contour plots of
c1, c2, λ, ω, H0 in MCMC
analysis of the Pantheon SNe Ia
samples

88]. The good observations in our model are the effective dark
energy term that comes from the geometrical corrections.

The effective dark energy equation of state parameter ωde

is obtained as

ωde = −1 + 1 + z

3

H ′

H
− 2λ(1 + z)H ′

c1 − 6λH
, (37)

or

ωde(z) = −1 +
12(1 + ω)c2(1 + z)3(1+ω)

c2
1

1+λ
+ 24c2(1 + z)3(1+ω) + c1

√(
c1

1+λ

)2 + 24c2
1+λ

(1 + z)3(1+ω)

− 6λc2(1 + ω)(1 + z)3(1+ω)

c1(2+λ)
2

√(
c1

1+λ

)2 + 24c2
1+λ

(1 + z)3(1+ω) − λ(1+λ)
2

[(
c1

1+λ

)2 + 24c2
1+λ

(1 + z)3(1+ω)

] , λ �= −1. (38)

The mathematical expression for effective dark energy
EoS parameter ωde is represented in Eq. (38) and its geomet-
rical behaviour is shown in Fig. 8. From Fig. 8, we can see that
effective dark energy EoS varies as −1 ≤ ωde ≤ −0.6787
along H(z) datasets, −1 ≤ ωde ≤ −0.5795 along Pantheon

datasets and −1 ≤ ωde ≤ −0.5176 for �CDM model, over
the redshift −1 ≤ z ≤ 3. At z = 0, we have measured
the value of EoS ωde = −0.7552+0.0079

−0.0109,−0.7583+0.0103
−0.0018,

respectively, along two observational datasets and for�CDM
model it is estimated as ωde = −0.85. Also from Fig. 8,
we observe that ωde → −1 as z → −1 (at late-time uni-
verse) for all datasets. Thus, these behaviours of effective

dark energy EoS parameter ωde confirm that our model is in
good agreement with observational datasets, and our derived
F(R, T̄ ) model is very closed to �CDM standard cosmo-
logical model.
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Fig. 6 The best fit plot of apparent magnitude m(z) versus z for Pan-
theon SNe Ia samples

The expression for deceleration parameter q(z) is rep-
resented in Eq. (30) and its geometrical nature is depicted
in Fig. 9. From Fig. 9, we observe that limz→−1 q → −1
(accelerating phase of late-time universe) and limz→∞ q →
1+3ω

2 > 0 (decelerating phase of early universe) that reveals
that for to obtain past decelerating universe the perfect fluid
equation of state parameter should be ω > − 1

3 . At present
(z = 0) we have estimated the value of deceleration param-
eter q0 = −0.2295+0.0218

−0.0226,−0.2590+0.0372
−0.0455, respectively

along two observational datasets H(z) and Pantheon SNe Ia
and for �CDM standard model, it is obtained as q0 = −0.55,
and this reveals that the present phase of the expanding uni-
verse is accelerating which is in good agreement with recent
observations. From Fig. 9, one can see that evolution of q(z)
shows a signature-flipping (transition) point called as transi-

Fig. 8 The evolution of effective dark energy equation of state param-
eter ωde versus z

tion redshift zt at which q = 0 i.e., the expansion of universe
is in accelerating phase for z < zt and it is in decelerating
expansion phase for z > zt . The general expression for zt ,
we have derived from Eq. (30) as below

zt =
[

c2
1(2 + 3ω)

6c2(1 + λ)(1 + 3ω)

] 1
3(1+ω)

− 1, λ �= −1. (39)

In the derived model, we have measured the transition red-
shift as zt = 0.4438+0.1008

−0.790 , 0.3651+0.1644
−0.0904, respectively, for

two observational datasets H(z) and Pantheon SNe Ia, while
for standard �CDM model, it is obtained as zt = 0.671.
From Eq. (34), we can obtain ever accelerating universe
for ω → −1 as zt → ∞. Recently in 2013, Farooq
and Ratra [96] have measured this decelerating-accelerating

Fig. 7 The geometrical evolution of matter energy density parameter �m and effective dark energy density parameter �MG = �� over z,
respectively
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Fig. 9 The geometrical evolution of deceleration parameter q(z) ver-
sus z

transition redshifts zt = 0.74 ± 0.05 while Farooq et
al. [97] have estimated as zt = 0.74 ± 0.04. In 2016,
Farooq et al. [98] have measured this transition redshifts
zt = 0.72 ± 0.05 and in 2018, Yu et al. [99] have sug-
gested this transition redshifts varies over 0.33 < zt < 1.0.
Thus, the decelerating-accelerating transition redshift zt =
0.4438+0.1008

−0.790 , 0.3651+0.1644
−0.0904 measured in our model is in

good agreement with the results obtained in [96–101].

5.1 Om diagnostic analysis

It is simpler to classify concepts related to cosmic dark energy
because of the behavior of Om diagnostic function [102].
For a spatially homogeneous universe, the Om diagnostic
function is given as

Om(z) =
(
H(z)
H0

)2 − 1

(1 + z)3 − 1
, z �= 0 (40)

where H0 denotes the current value of the Hubble parameter
H(z) as stated in Eq. (29). A negative slope of Om(z) indi-
cates quintessence motion, whereas a positive slope denotes
phantom motion. The �CDM model is represented by the
constant Om(z).

Using Eq. (29) in (40), we get

Om(z) =

([
c1

12(1+λ)
+ 1

12

√(
c1

1+λ

)2 +
(

24c2
1+λ

)
(1 + z)3(1+ω)

]
/H0

)2

− 1

(1 + z)3 − 1
,

z �= 0, λ �= −1. (41)

The mathematical expression for Om(z) function is repre-
sented in Eq. (41) and its geometrical behaviour is shown in
Fig. 10. From Fig. 10, we observe that the slopes are neg-
ative along the both datasets H(z) datasets and Pantheon

Fig. 10 Evolution of Om(z) parameter versus z

SNe Ia datasets, during evolution of the universe and hence,
our model behaves just like quintessence dark energy model.

At late-time limz→−1 Om(z) →
[

1 − c2
1

36(1+λ)2H2
0

]
which is

a constant and it indicates that our model tends to �CDM
model in late-time scenario.

5.2 Age of the universe

We define the age of the universe as

t0 − t =
∫ z

0

dz

(1 + z)H(z)
, z ≥ 0 (42)

where H(z) is given by Eq. (29). Using this in (42), we have

(t0 − t) = lim
z→∞

∫ z

0

dz

(1 + z)

[
c1

12(1+λ)
+ 1

12

√(
c1

1+λ

)2 +
(

24c2
1+λ

)
(1 + z)3(1+ω)

] ,

λ �= −1. (43)

We can see that as z → ∞, (t0 − t) tends to a con-
stant value that represents the cosmic age of the universe,
(t0 − t) → t0 = 0.0141602+0.0001027

−0.0000655, 0.0122838+0.0006345
−0.0002805,

respectively, along two datasets H(z) and Pantheon SNe Ia.
The present cosmic age of the universe, we have measured
as t0 = 13.8486+0.1005

−0.0640, 12.0135+0.6206
−0.2743 Gyrs, respectively

along two observational datasets, which are very closed to
observational estimated values and estimated �CDM value
t0 = 13.3895+0.1240

−0.1129 Gyrs. Recently [103,104] have mea-
sured present age of the universe as t0 ≈ 13.87 Gyrs.
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Table 4 Information criteria for H(z) datasets analysis

Model AIC BIC

�CDM 30.7203 33.2380

F(R, T̄ ) 32.3808 36.7623

�AIC 1.6605 –

�BIC – 3.5243

Table 5 Information criteria for Pantheon SNe Ia datasets analysis

Model AIC BIC

�CDM 1114.4366 1124.3874

F(R, T̄ ) 1117.6689 1138.3845

�AIC 1.7677 –

�BIC – 13.9970

5.3 Information criteria

It is critical to understand information criteria (IC) in order
to assess a model’s level of reliability. One often used tool for
this work is the Akaike Information Criterion (AIC) [105–
109]. When we utilize more data, AIC provides a reasonable
approximation of the divergence between a model’s predic-
tions and reality. The Bayesian Information Criterion (BIC)
[110–112] is another factor that restricts complex models
more. These AIC and BIC criteria are interpreted as [113]

AIC = χ2
min + 2Nn

N − n − 1
, BIC = χ2

min + n ln N (44)

For both scenarios, n represents the count of independent
fitting parameters, whereas N represents the number of
data points utilized in the analysis. In order to assess the
efficacy of a dynamical dark energy (DE) model in compar-
ison to the �CDM model in accurately characterizing the
entire dataset, we calculate the pairwise differences �AIC
and �BIC with regards to the model. The greater these dis-
parities, the stronger the evidence against the model with
a higher value of AIC (BIC)-the �CDM, in this instance.
When the values of �AIC and/or �BIC fall between (0, 2)

then confronted models are consistent to each other while
their values in the range 6 and 10, it is appropriate to assert
that there is “strong evidence” against the model. If the values
exceed 10, it is considered “very strong evidence” [114,115].

Tables 4 and 5 represent the scenarios of information cri-
teria for H(z) datasets and Pantheon SNe Ia datasets analysis.
From Tables 4 and 5, we can see that �AIC = 1.6605 for
H(z) datasets and �AIC = 1.7677 for Pantheon datasets
in the comparison of �CDM model which indicates that our
derived F(R, T̄ ) model is favored by datasets to be consistent
with �CDM model while the values of �BIC = 3.5243 for
H(z) datasets which is greater than 2 and this indicates that

our derived model is less favored with �CDM model. From
Table 5, we have �BIC = 13.9970 for Pantheon SNe Ia
datasets which is greater than 10 that reveals that our derived
model is strongly disfavored to be consistent with �CDM
model.

6 Conclusions

We study exact cosmological models in F(R, T̄ ) gravity the-
ory in the current paper. The arbitrary function F(R, T̄ ) =
R + λT̄ has been investigated, in which R represents the
Ricci-scalar curvature, T̄ is the torsion scalar in the context
of generalized connection �, and λ is an arbitrary constant.
After solving the field equations in a flat FLRW spacetime
manifold for the Hubble parameter, we estimated the best
fit values of the model parameters with 1 − σ, 2 − σ , and
3−σ regions by utilizing the MCMC analysis. We have con-
ducted a model discussion and outcome analysis using these
best fit model parameter conditions. For the best fit shape of
Hubble function H(z), we have found the values of model
parameters as c1 = 289.92+57.915

−51.841, c2 = 9632+69.668
−67.726, λ =

0.12963+0.13399
−0.1255 and ω = −0.036663+0.038194

−0.039458 at 1 −
σ, 2 − σ and 3 − σ errors for H(z) datasets, and c1 =
294.8+0.1279

−0.1282, c2 = 9625+0.1286
−0.1281, λ = 0.2486+0.1090

−0.1596, ω =
0.01065+0.1528

−0.1128, H0 = 67.87+0.1281
−0.1290 with 1 − σ , 2 − σ

and 3 − σ errors at 68%, 95% and 99% confidence level,
respectively, for Pantheon SNe Ia datasets (see Tables 2,
3). We have also find the best fit value of Hubble con-
stant for �CDM model with statistically non-correlated
H(z) datasets as H0 = 68.0+2.110

−2.137 km s−1 Mpc−1. In
the analysis of deceleration parameter q(z), our universe
model shows a transit phase dark energy model that is
decelerating q > 0 for z > zt and accelerating q < 0
for z < zt . We have found the transition redshift zt =
0.4438+0.1008

−0.790 , 0.3651+0.1644
−0.0904, respectively for two observa-

tional datasets H(z) and Pantheon. We have found the present
value of DP as q0 = −0.2295+0.0218

−0.0226,−0.2590+0.0372
−0.0455 with

Hubble constant H0 = 64.3627+1.3291
−1.3408, 67.87+0.1281

−0.1290 km s−1

Mpc−1, respectively, for two datasets. The Om diagnos-
tic analysis of H(z) indicates that the current behaviour
of our model is quintessential and late-time it approaches
to �CDM model. We have found that (�m,�MG)→(0, 1)

at late-time which is good observations for our model. We
have found the present values of total energy density param-
eters as (�m0,�MG0) = (0.3767+0.0620

−0.0559, 0.6233+0.0016
−0.0018),

(0.2831+0.0294
−0.0156, 0.7169+0.0020

−0.0041), respectively, along two obser-
vational datasets H(z) and Pantheon SNe Ia datasets while
for standard �CDM model, these quantities are as �m0 =
0.322+0.04403

−0.03846, 0.3337+0.02943
−0.01352 respectively along two obser-

vational datasets. We have found that the effective dark
energy EoS parameter varies as −1 ≤ ωde ≤ −0.6787
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along H(z) datasets, −1 ≤ ωde ≤ −0.5795 along Pantheon
datasets and −1 ≤ ωde ≤ −0.5176 for �CDM model, over
the redshift −1 ≤ z ≤ 3. At z = 0, we have measured
the value of EoS ωde = −0.7552+0.0079

−0.0109,−0.7583+0.0103
−0.0018,

respectively, along two observational datasets and for�CDM
model it is estimated as ωde = −0.85 with ωde → −1
as z → −1 at late-time universe. We have found the
present age of the universe for our derived F(R, T̄ ) model
as t0 = 13.8486+0.1005

−0.0640, 12.0135+0.6206
−0.2743 Gyrs, respectively

along two observational datasets, which are very closed to
observational estimated values and estimated �CDM value
t0 = 13.3895+0.1240

−0.1129 Gyrs. We have also, analyzed the Infor-
mation Criterion AIC and BIC to compare of derived model
with �CDM model. We have found that the H(z) datasets
analysis is favored our derived model to be consistent with
�CDM model while the Pantheon datasets is less supported.

Thus, we have found that the above derived F(R, T̄ ) grav-
ity model can describe the accelerated phase of expanding
universe without introducing the dark energy term �. The
results of F(R, T̄ ) gravity model is extremely very similar
and closed to �CDM standard cosmological model but with-
out introducing cosmological constant �-term. Also, we can
recover the original Friedmann model without �-term from
F(R, T̄ ) gravity model by substituting λ = 0, c1 = 0. This
F(R, T̄ ) gravity theory is the generalization of both F(R)

and F(T̄ ) gravity theory. Thus, the present modified gravity
model is interesting and attracts to researcher in this field to
re-investigate it for exploring the hidden cosmological prop-
erties of this F(R, T̄ ) gravity theory.
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