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ABSTRACT: Quasi-static problems with respect to the stress-strain state and a class of 
problems with respect to forced vibrations acting in plain and spatial nodes of a high-class 
mechanism with elastic links are considered, taking into account the model of friction forces 
in kinematic pairs under the action of vertical and horizontal concentrated forces in kinematic 
pairs. The developed algorithms of solving quasi-static problems by the finite element method 
for the entire system of the elastic mechanism with the friction force in kinematic pairs are 
presented; the basic resolving equilibrium equations for the entire system are drawn up with
out and taking into account friction forces. The basic relations of the finite element method 
for plain and spatial nodes of high-class elastic mechanisms with the friction force in kine
matic pairs under dynamic loading are presented.

1 INTRODUCTION

The finite element method is better than other methods provided with numerical procedures 
for studying the mathematical model of an object. Its most important advantage is the pres
ence of implicit unconditionally stable methods of the numerical integration of systems of dif
ferential equations of motion that describe the motion of mechanisms and are compiled 
taking into account the links elasticity.

2 RESEARCH METHOD

For the finite element method in the variant of the displacement method when solving prob
lems of structural mechanics and the theory of elasticity, internal small displacements, veloci
ties, and accelerations are used as unknown values. From the point of view of convergence, 
when solving this class of problems, there are imposed certain requirements (Zenkevich 
O. 1975) on the functions of the finite element shape, the most important of which in the case 
under consideration is the following: it has realized and has not accumulated the energy of 
elastic deformations.

Modeling the kinematic pairs of a plain and spatial elastic high-class mechanism (HCM) 
with allowance for Coulomb friction is shown in Figure 1 (Volmir A.S. et al. 1989).

If a translational pair in a flat mechanism (Figure 1) moves along a fixed guide, then the 
sliding friction �Fmp force will be directed oppositely to the horizontal component �Rjx of the 
complete reaction.
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The Rjx, Rjy nodes of the complete reaction are determined through the reactions in the 
rjξ ; rjη local coordinate system (LCS):

In turn, reactions in the LCS are expressed through the unknown internal forces N;Qη;Mζ 
at the nodes in such a way:

When studying the dynamics of hinge mechanisms taking into account the friction forces, 
the reaction �rjη is considered passing through the center of the pivot; in kinematic pairs, the 
frictional moment is also taken mmp

jζ into account. In the presence of a rotational mjζ pair in 
a plain mechanism (Figure 2), the frictional moment is directed opposite to the internal 
moment. It is �Fmp assumed that the normal pressure forces are concentrated at point A and 
the friction force is applied at the same point. Then:

Figure 3 conventionally shows the slider of the spatial translational pair of the fifth class, 
which can move along the axis. In such a kinematic pair, it is assumed that the contacts of the 
links occur in two planes.

Sliding friction forces arise in these planes. The friction force Fmp1 is proportional to 
the second component of the reaction in the LCS, and the friction force Fmp2 in the side face is 
proportional to the third component of the reaction in the LCS:

Figure 1.  The friction forces in the translational kinematic pair of the plain mechanism.

Figure 2.  The rotational kinematic pair with the friction force in the plain mechanism.
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In turn, reactions in the LCS are expressed through the unknown internal forces 
Nj;Qjη;Qjζ ;Mj;Mjη;Mjζ are the nodes and are presented in the form:

Where �rf gT
¼ riξ ; riη; riζ ;…;mjζ
� �

; �Nf gT
¼ Nj;Qyj;Qzj;…;Mzζ
� �

akk ¼ � akþ6;k ¼ � 1;

a5;3 ¼ a6;2 ¼ l; the rest elements are equal to zero.
In the spatial model of a rotational kinematic pair, it is assumed (Figure 4) that contacts 

occur in the end planes of the hinge at two different points A and B.

Reactions in the LCS are rjξ1; rjξ2; rjη1; rjη2 determined through the internal forces by for
mula (6). The friction forces moments are determined by the following formulas:

N1 Д ;N2 Д where are the normal pressure forces; r is the pivot radius. Reactions are deter
mined rjξ1; rjξ2; rjη1; rjη2 by formula (6).

Based on the finite element method and analysis of the stress-strain state of plain and spa
tial structures based on the HCM with elastic links and friction forces in kinematic pairs, elas
tic displacements, internal forces in the elements of the rods are determined with and without 
regard to friction forces.

Figure 3.  Translational kinematic pair with a frictional force in the spatial mechanism. 
В – the slider contact width, L – its length, H1 – its height, Н – is the slider contact height

Figure 4.  Rotational kinematic pair with a frictional force in a spatial mechanism.
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The relationship equations between the vectors of nodal forces f e
�

� �
and displacements are 

δe
�

� �
represented in the form:

where Ke
�

� �
is the symmetrical square matrix of rigidity of the 12x12 FRE (finite rod element) 

order. It is called the matrix of rigidity of a spatial rod element:

The elements of the matrix of rigidity of the FRE (finite rod element) connecting the force 
and kinematic parameters at the nodes of a given FRE are determined through its geometric 
parameters of the cross section, elastic characteristics and length (Postnov et al., 1979, Archer 
1965).

If there is a hinge at nodes i and j of the design element “e”, bending moments Мi or Mj in 
them are equal to zero. In this case, the equations for linking the forces at the nodes with the 
displacements of the nodes are transformed accordingly. If the node i has a hinge, then the 
corresponding row of the element matrix of rigidity is excluded in the usual way.

If the spatial structure consists of m rod elements, then the basic system of equilibrium 
equations is written as follows:

where Fkf g
T
¼ ðFk;Fyk;Fzk;Mxk;Myk;MzkÞ, k ¼ 1; 2;…;m is the vector of external forces 

applied to the k-th node in the global coordinate system (GCS) OXYZ, m is the total number 
of nodes.

To determine displacements, angles of rotation and forces in the system of m rod elements 
that make up the structure, it is necessary to satisfy the deformation compatibility conditions 
and equilibrium equations.

The kinematic characteristics at the nodes of each element automatically satisfy the first 
condition. Therefore, it is enough to satisfy the equilibrium conditions at the nodes of the 
structures. Essentially, satisfying these conditions at all nodal m points, we construct the main 
resolving system of linear algebraic equations for the components of the nodes displacements 
and angles of rotation in the form:

where K½ � ¼ Krs½ �, r; s ¼ 1; 2;…; 6mð Þ is the square matrix of the 6m*6m order; it is called the 
system matrix of rigidity (SMR);

Thus, the SMR (the system matrix rigidity) is formed from the rigidity matrices of all m rod 
elements of the mechanism defined in the GCS. Taking into account the boundary conditions, 
the components of displacements and deformations of the nodes of the mechanism are found 
by solving system of equations (17) by the iterative Gauss-Seidel method. This method is easy 
to program, each equation is iterated, and the determined value is refined. The process is 
repeated as many times as needed to obtain the acceptable solution accuracy.

Accounting for the boundary conditions in the GCS in the presence of friction forces in 
kinematic pairs is carried out by excluding the corresponding degrees of freedom. This is done 
using the procedure of calculating the number of zeros in the given matrix ID, the degree of 
freedom of nodes IID, the boundary condition of internal force factors, and replacing them 
with the ordinal numbers of the corresponding degrees of freedom, and replacing units with 
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zeros. When frictional forces act on a structure, corresponding bending moments are gener
ated in rotational kinematic pairs. To study the impact of forces and moments of friction 
forces of translational and rotational pairs at a certain quasi-static position of the structure, 
the values of forces and moments of friction are calculated using the determined internal 
forces at the nodes according to the corresponding formulas [4].

Solutions by the finite element method for plain and spatial dynamic problems on the 
stress-strain state of structures based on the HCM with elastic links and friction forces in kine
matic pairs at their different positions and subject to external dynamic loads.

Methods of accounting for friction forces in various kinematic pairs of plain and spatial elas
tic HCMs are considered when obtaining the basic systems of differential equations of motion 
relative to the kinematic parameters of all the structural units for the development of computa
tional algorithms and quantitative analysis of their state at different fixed positions, taking into 
account the corresponding boundary, initial conditions and specified external variable forces.

The system of equations for the dynamic equilibrium of a set of finite rod elements, with the 
help of which the considered structure is discretized at the t moment with the mechanism pos
ition under study has the form:

where M½ �; C½ �; K½ � are respectively the matrices of the system mass, damping, and rigidity that 
are obtained by summing up the corresponding matrices of all the computed rod elements; 

€U
� �

; _U
� �

; Uf g are vectors of accelerations, velocities and displacements of the nodes with 
the use of which the computed rood structures are divided into finite two-node rod elements; 
FðtÞf g is the given vector of the external variable forces acting at the nodes.

In the calculations of the dynamic stress state of plain and spatial elastic HCMs taking into 
account the friction forces in kinematic pairs, the matrix of the system damping [C] according 
to Rayleigh is taken in the form of the combination of the mass matrix [M] and system rigidity 
[K], i.e. ½C� ¼ α½M� þ β½K�; the α and β constants are determined from the values of the damp
ing coefficients related to the two lowest frequencies.

When studying and analyzing the stress state of plain and spatial elastic HCMs taking into 
account the friction forces in kinematic pairs from the action of external variable forces, 
system of differential equations (18) was solved by the convenient absolutely stable stepwise 
method of direct integration according to the Newmark scheme with the step Δt ¼ 0; 01 (Hack 
& Becker 1999, Harlecki Andrzej. 1999).

3 CONCLUSION

In accordance with the theoretical solution of the quantitative and qualitative analysis of the 
dynamic stress state of plain elastic HCMs of II, IV classes and the spatial mechanism of 
VShD-8, taking into account the friction forces in kinematic pairs, algorithms have been 
developed and object-oriented software packages have been compiled in the Fortran high- 
level algorithmic language.

In the numerical calculations of the forced vibrations and the dynamic stress state, when the 
concentrated variable force F ¼ F0 sin ωt acts on them, the dynamic analysis of the stress state 
of plane elastic HCMs of II, IV class was first carried out taking into account the friction 
forces in kinematic pairs at different static positions (Chernousko 2000, Massanov, et al. 
1994). The elastic physical and geometric characteristics of the link materials are the same as 
when considering the static problems.
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