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ABSTRACT: The problem of the action on the surface of a circular cylindrical cavity 
located in an elastic half-space (array) uniformly moving along its forming normal and twist
ing loads is solved. Dynamic equations of elasticity theory are used to describe the motion of 
the array. On the basis of the obtained solution, the stress-strain state of the Earth’s surface is 
investigated under the action of axisymmetric loads of this type uniformly moving along an 
unsupported tunnel of shallow laying.

1 INTRODUCTION

The stress-strain state (SSS) of the earth’s surface under the action of a twisting load uni
formly moving along an unsupported tunnel is investigated in the article [1]. In this paper, 
a similar study was carried out in the case when, in addition to the twisting load, a normal 
load moving at the same speed acts on the tunnel. Such an impact occurs, for example, when 
cleaning devices are operating in a circular tunnel.

2 MATERIALS AND METHODS

The research uses the method of mathematical modeling involving models of the theory of 
elasticity.

Formulation and analytical solution of the problem.
For research, we will present the design scheme of the tunnel in the form of an extended circu

lar cylindrical cavity with radius R, located in a linearly elastic, homogeneous and isotropic 
half-space (array), assigned to fixed Cartesian x,y,z and cylindrical r,θ,z coordinate systems, the 
z axis of which coincides with the axis of the cavity and is parallel to the load-free horizontal 
boundary of the half-space (Earth’s surface), the x – axis – perpendicular to this boundary: 
x � h (Figure 1), where h – is the distance from the axis of the cavity to the boundary of the 
half–space (earth’s surface). The physical and mechanical properties of the array are character
ized by the following constants: v – Poisson’s ratio, μ – shear modulus, ρ – density.

In the direction of the z axis, the normal Рr(θ, η) and twisting Рθ(θ,η) loads move along the 
surface of the cavity with the same constant velocity с

where r; θ; η ¼ z � ct – movable cylindrical coordinate system, σrj – components of the stress 
tensor in the array, j = r, θ, η.
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Since the boundary of the half-space is free of loads, then, for x ¼ h

To describe the motion of the half-space, we use the dynamic equations of the theory of 
elasticity in a moving coordinate system [2]

where u – displacement vector of elastic medium; Mp ¼ c=cp; Ms ¼ c=cs – Mach numbers, 
cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μð Þ=ρ

p
, cs ¼

ffiffiffiffiffiffiffiffi
μ=ρ

p
– velocities of expansion-compression and shear waves in the 

medium, λ ¼ 2μν=ð1 � 2νÞ, r2 – Laplace operator.
We transform equation (3) by expressing u in terms of Lame potentials [3]

where eη – ort of the η axis.

It follows from (3) and (4) that the Lame potentials jj j satisfy the equations

where M1 ¼Mp; M2 ¼M3 ¼Ms:

Applying the Fourier transform with respect to η to the last equations, we obtain

where r2
2– two-dimensional Laplace operator, m2

j ¼ 1 � M2
j ; m1≡mp; m2 ¼ m3≡ms, 

j�j r; θ; ξð Þ ¼
R∞

� ∞
jj r; θ; ηð Þ e� iξηdη:

By expressing the components of the stress-strain state of the medium through the Lame 
potentials and applying the Fourier transform according to the η, it is possible to obtain 
expressions for stress σ�lm and displacement u�l transformants in cylindrical ðl;m ¼ r; θ; ηÞ and 
Cartesian ðl;m ¼ x; y; ηÞ moving coordinate systems as a function of j�j . To determine the 
stress-strain state of the array, you need to find j�j .

If we limit ourselves to the case when the speed of movement of loads is less than the speed 
of propagation of shear waves in the array (c5cs), then Ms51 ðms40Þ and the solutions of 
equations (5) can be represented as follows [2]

Figure 1.  Design diagram of an unsupported tunnel.
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where �ð1Þj ¼
P∞

n¼� ∞
anjKn kjr

� �
einθ, 

�
ð2Þ
j ¼

R∞

� ∞
gj ξ; ζð Þ exp iyζþ ðx � hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ 2 þ k2
j

qh i
dζ :

Here Kn kjr
� �

– MacDonald functions, kj ¼ mjξ; gj ξ; ζð Þ, anj – unknown, to be determined, 
functions and coefficients, j = 1,2,3.

It follows from [2] that when representing potentials in the form (6), expressions for trans
formants of potentials in the Cartesian coordinate system have the form

where fj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ k2
j

q

; �nj ¼
ζþfj

kj

� �n
; j ¼ 1; 2; 3:

The functions gj ξ; ζð Þ are expressed in terms of coefficients anj from the boundary con
ditions (2), rewritten for voltage transformers taking into account (7). To do this, it is 
necessary to allocate the coefficients at eiyζ and equate them, due to the arbitrariness of 
y to zero. Then:

Here Δ ¼ 2ρ2
0 � β2� �2

� 4ρ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2
0 � α2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2
0 � β

2
q

; α ¼Mpξ; β ¼Msξ; ρ2
0 ¼ ξ2 þ ζ2: The type 

of algebraic complements Δjk is defined in [2].
It should be noted that Δ ρ0ð Þ – is the Rayleigh determinant, which, as is well known, has 

two real roots: �ρR ¼ �ξ MR: Here MR ¼ c=cR – Mach number, cR – Rayleigh surface wave 

velocity (cR5cs) in an elastic half-space. Since the corresponding �ζR ¼ �ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
R � 1

q

, Z, then 

Δ ρ0ð Þ does not turn to zero on the real axis if MR51, or c5cR (Dorelean speeds of movement 
of loads). In this case, all integral functions in (6) are continuous and tend to zero rather 
quickly at infinity. Therefore, integrals exist and satisfy the conditions of attenuation at infin
ity. To calculate integrals (7), you can use one of the numerical integration methods, having 
previously determined the coefficients anj.

For c5cR, taking into account (8), the relations (7) will take the form

Using the known decomposition eikr cos θ ¼
P∞

n¼� ∞
inJn krð Þeinθ, can get 

exp iyζ þ ðx � hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ 2 þ k2

ph i
¼
P∞

n¼� ∞
InðkrÞeinθ ζþ

ffiffiffiffiffiffiffiffiffiffi
ζ 2þk2
p

k

� �n

e� h
ffiffiffiffiffiffiffiffiffiffi
ζ 2þk2
p

and, using (8), represent 

(6) in a cylindrical coordinate system:

where bnj ¼
P3

k¼1

P∞

m¼� ∞
amkAmk

nj ;A
mk
nj ¼

R∞

� ∞

Δjk

Δ �mk�nje� hðfkþfjÞdζ :
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The coefficients anj Z are found from the boundary conditions (1), rewritten as

where P�j ðθ; ξÞ ¼ pj θð Þp�j ξð Þ; pj θð Þ ¼
P∞

n¼� ∞
Pnjeinθ; p�j ξð Þ ¼

R∞

� ∞
pjðηÞ e� iξηdη; j ¼ r; θ:

When the coefficients of the Fourier-Bessel series are equated at einθ, an infinite system of linear 
algebraic equations with a determinant of normal type is obtained, for the solution of which the 
reduction method or the method of successive reflections (approximations) can be used [2]. More
over, as calculations show, the determinant of this system can turn to zero only when c � cR.

After determining the coefficients anj, applying the inverse Fourier transform to the displace
ment and stress transformants, it is possible to calculate the components of the stress-strain 
state of the array in cylindrical and Cartesian coordinate systems.

Figure 2.  Сhange u�x (м), u�y (м) and σ�yy on the Earth’s surface in the coordinate plane xy (η=0).
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3 RESULTS AND DISCUSSION

To study the dynamic effect of the loads discussed above on the stress-strain state of the 
Earth’s surface, consider a circular cylindrical tunnel with a radius of R = 1 m and 
a depth of laying h ¼ 2R H in a siltstone massif (ν = 0,2, μ = 2,532·109 Pa, ρ =2,5·103 kg/m3, 
cp = 1643,4 m/c, cp = 1643,4 m/c, cR=917 m/c).

Axisymmetric compressive normal Pr and twisting Pθ loads of intensity q (Pa), uniformly 
distributed over the tunnel surface in the interval ηj j � l0 ¼ 0; 2R Z=G, move in the direction 
of the z Y axis with a constant Dornel velocity c = 100м/с. The intensity q of each of the loads 
is selected in such a way that the total load along the entire length of the loading section 2l0 is 
equal to the equivalent concentrated ring load intensity P�� (N/m), that is, q¼P��=2l0.

Let ‘s introduce the notation: u�x ¼ uxμ=P�ðMÞ, u�y ¼ uyμ=P�ðMÞ, σ�yy ¼ σyy=P�, where 
P� ¼ P��/m (Pa).

Figure 2 shows the curves of change u�x (м), u�y (м) and σ�yy on the Earth’s surface in the 
coordinate plane xy (η=0). Curves 1 correspond to the action of a twisting moving load only 
on the tunnel, curves 2 correspond to the joint action of moving twisting and compressing 
normal loads.

As follows from the analysis of the behavior of curves, with the combined action of twisting 
and compressing normal moving loads on the tunnel, the maximum displacements and stresses 
on the earth’s surface are significantly greater than with the action of twisting loads alone. 
Therefore, in the case of calculating the stress-strain state of the Earth’s surface on the load 
from the work of cleaning devices moving along the axis of the tunnel and rotating relative to 
it, it is possible to represent their impact on the tunnel as a moving twisting load only when 
the pressure exerted on its surface is much less than the intensity of the twisting load.

4 CONCLUSION

In a strict mathematical formulation, the problem of the action of normal and twisting loads 
uniformly moving along its generatrix on the surface of a circular cylindrical cavity located in 
an elastic half-space is solved. The solution obtained for the Dorelev speeds of the movement 
of loads and the software package developed on its basis allows using mathematical modeling 
methods to study the dynamics of the rock mass under the influence of these loads at different 
depths of the tunnel laying.
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