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Consider the problem of determining the coefficients in the differential equation of parabolic
types and boundary conditions on the known sections of the solutions of the initial-boundary
value problem. Used spectral approach based on spectral properties of the elliptic operator
of the initial-boundary value problem and the methods of solving the inverse spectral
problem of restoring the Sturm—Liouville operator on two sequences of the eigenvalues, that
corresponding to two sets of boundary conditions. In the work presented sufficient conditions
of determination of two sequences of the eigenvalues by two sets of boundary conditions and
terms of the uniqueness of the solution of the inverse problem The paper considers the case
where the initial-boundary value problem contains the specifics — the interval of change
contains variable include a finite number of the points, where the differential equation is
meaningless and replaced conditions agreement.

Keywords: parabolic system, inverse problem, the eigenvalues of boundary value problems,
the poles of the analytical continuation of the Green’s function.

Introduction. Many questions of mathematical physics lead to the need to determine
the coefficients in a partial differential equation and the coefficients in the boundary
conditions with known functionals from the solution of the corresponding initial-boundary
value problem. In the case when the coefficients in a differential equation depend on
the spatial variable, an explicit representation of the solution (for example, as an
expansion in the eigenfunctions of the elliptic operator of the problem) makes it impossible
to determine these coefficients. Therefore, other approaches are used, in particular,
spectral, based on the spectral properties of the elliptic operator of the initial-boundary
value problem and methods for solving the inverse spectral problem of recovering the
Sturm—Liouville operator from two sequences of eigenvalues corresponding to two sets of
boundary conditions (B. M. Levitan, M. G. Gasymov, I. S. Sargsyan, V. A. Yurko [1-
7] and bibliography there). The sufficient conditions for determining of two sequences of
eigenvalues from two sets of boundary conditions and the condition for the uniqueness of
the solution of the inverse problem are presented below. Solving the inverse problem, we
consider two cases — first, we will consider in detail the case of using the classical recovery
problem of the Sturm—Liouville operator, then we will specify the way to solve the inverse
problem with features determined by the presence of points in the spatial variable change
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interval, where the differential equation is replaced by the matching conditions ([8, p. 33;
9, p. 31]).

Setting of a problem, the basic statement. Consider a uniform rod of length ¢,
insulated from the sides and thin enough so that at any time the temperature at all points
of the cross section can be considered the same. Denote by T'(z,t), x,t € [0, ¢] x [0, 00), the
function that determines the quantitative characteristic of the process of heat propagation
in the rod, and by a(x), b(x), € [0, £] the functions characterizing the internal properties
of thermal phenomena (thermal conductivity, velocity characteristics, thermal resistance
of the medium). Let the functions T'(z,t), a(x), b(x) satisfy the differential equation

afw) Z5e = 2 (b(@) 22D, we(0,0), t>0, (1)

that determines the law of heat transfer in the rod.
We divide the segment [0,¢] by dots & (j = 0,1,...,. NN 4+1): 0 = & < & <
N

. < &N < &nyg1 = L and we denote: (0,0)¢ = U (&,&+1) ([0,4] is the closure (0,£)¢),
3=0
Qoo = (0,0)¢ x (0,00), Qoo = [0, €] x [0, 00]. Let functions T'(z,t), z,t € [0, 4] x [0, 00), a(z),
b(x), z € [0, ] be connected by a differential equation

a(x)aT(x,t) _ 9 (b(m)%), T € O, (2)

ot — oz T

and the agreement conditions in points &;:

T(& 1) =T 1), bEH TS — b)) 5 = m, T (e, 0) )
(j=1,2,..,N),

here

T(E ) = Im T(¢ + 1), OLET) _ Jipy OT(Etet)

e—0

T(E 1) = lm T(¢—et), L5t = lim HEol,

Relations (2), (3) are called the differential equation on (0, ¢) with singularities at the
points &; (7 =1,..., N). In applied heat transfer problems, equation (2), (3) describes the
process of heat distribution with external control devices (such can perform the functions
of control actions on the process), the peripheral components of which are located at
the points &;, j =0,1,..., N, M + 1 (see, for example, [10, p. 10]). Physical phenomena in
extreme situations with phase transition temperatures and diffusion processes in materials
of complex structures such as polymers are studied using integro-differential equations with
memory. The inverse problem for such a process is solved, for example, in [11], where the
boundary control method [12, 13] is applied. It is based on deep connections between
controllability and identifiability of dynamical systems.

The agreement conditions (2) describe the distribution of heat in the neighbourhood
of the points that the peripheral components of control devices put on and represent
generalized Kirchhoff relations — a jump in heat fluxes with proportionality coefficients in
adjacent parts of a heat-conducting material (rod).

To set the initial-boundary value problems we introduce the initial
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T(z,0)=0, xz€][0,4, (4)

and boundary conditions

OO — o (T(0F,6) = To(t), 228 — _g(T(~,8) = Tu(t)), t>0.  (5)

To simplify the presentation, the initial condition (4) is assumed to be homogeneous. The
boundary conditions (5) are determined by the functions To(t), T¢(t), t > 0, and constant
«, (. In this case, the simplest case — the linear one — of the absence of the convective
effect of the thermal process is studied.

Further we assume that T(z, ) from the class C10(Q)NC?*1 (Quo), a(z), b(x) positive

N N
on [0,¢] and a(x) € U Cl&j,&41], b(x) € U C1&j,&j41); functions To(t), Te(t) continuous
j= j=

on [0,00), such that there exist constants C; > 0, Cs for them, and there are relations
ITo(t)] < C1eC?t, |Ty(t)| < Cre?t.

The initial-boundary value problem formed by the differential system (1), (4), (5) has
a unique solution [9, p. 75], the unique solvability of system (2)—(5) was established in
[8, p. 33; 10, p. 10], where a problem with singularities is interpreted as a problem with
distributed parameters on a geometric graph.

Solution T'(x,t) of problem (1), (4), (5) or (2)—(5) with given functions a(x), b(z),
To(t), Ty(t) and constant «, § will be called the solution of the direct problem (1), (4), (5)
or (2)—(5). By the inverse problem (1), (4), (5) or (2)—(5), we understand the problem of
recovering functions a(z), b(x) and constants «, § according to information about solution
T(x,t).

Let, further, the parameter « in the boundary conditions (5) takes two different values
a1 and asg. Let us denote by Ti(x,t) solving the initial-boundary value problem (1), (4),
(5) or (2)—(5) for o« = ay for each fixed k = 1,2, and by fi(t) = Tk(zs,t), t > 0, the
solution cross section Ty(z,t), k = 1,2, at the point = =z, (for system (2)—(5) the point
x, can coincide with one of &;, j =1, N).

Definition. Let the functions b( ), To(t), Te(t) and frx(t) € C*0,00) (k = 1,2) are
given. The set {Ty(z,t), a(z), ag, B (k =1,2)} is called the solution of the inverse problem
(1)3 (4)7 (5) or (2)7(2% if :

1) Tk(xat) € C(Qoo) n 02’1(900)7 Tk(x*at) = fk(t);

2) a, (3 are constants, o+ (3% > 0;

3) for each fixed k = 1,2 function Ty(x,t), a(z), b(x), To(t), Ti(t) and constants ay,
B, satisfy the problem (1), (4), (5) or (2)—(5).

As it follows from the definition, to solve the inverse problem (1), (4), (5) or (2)—(5)
means: for given b(z), To(t), Te(t) and two sets of functions fi(t) = Ti(x«,t) (k = 1,2),
that meet the corresponding boundary conditions (5) and = 0 with a = oy, (k = 1,2),
recover functions Ty (z,t), a(z) and constants ay (k = 1,2), 8. The inverse problem (1),
(4), (5) or (2)—(5) in the case when the function a(x) is known, but b(x) to be determined,
is put in a similar way.

We prove the uniqueness of the solution of the inverse problem (1), (4), (5) or (2)—(5),
based on the results of [1, 4, 5, 7] on the recovering of the Sturm—Liouville operator from
two spectrum corresponding to two different boundary conditions at a point x = 0.

We give equations (1) and (2) using the substitution

b

®
2
2
1
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1

T L
=1 () 12 3)' o
1
U(z,t) = (a(x)b(x))* T(x,1)
(replacement {x,T'(x,t)} = {z,U(z,t)}) to mind
L2200 PUED )T (2,1), @€ (0,0), t>0, (6)
and
2
L2200 - SUEN — q(2)U (= 1), 2 € (G Gen) (=010 N), 1>0, (D)

respectively, where g(z) = 5&, 0(2) = (a(@)b(x))*, ¢ = 2(&) (G = TLN), G = 0,
2(€n+1) = . The agreement conditions (3) take the form

_ Ut  dU 1)
U(C] ,t) = U(Cjat)v Dz - dz = ij(ijt)

(j=1,2,..,N),

the initial condition (4) does not change its form:
U(z,0)=0, ze€l0,7], (9)

and the boundary conditions (5) are converted to

+ T —
SO —hU(0,1) = —gETo(t), LG+ HU(n™ 1) = £5Tu(t), (10)
where h = (aL + 6(0)0'(0))/6%(0), H = (BL + 6(7)0'(m))/6%(r). In this case, the interval

[0, £] is converted to [0, 7].

I. Let us dwell on the analysis of the inverse problem (1), (4), (5), reduced to the
form (6), (9), (10). The initial boundary value problem (6), (9), (10) generates a spectral
problem

-y +qz)y=py, =z€(0,m), (11)

y'(0%) —hy(0%) =0, y'(77)+ Hy(r~) =0. (12)

Let in the first relation (5) o = ag, k = 1,2, then in (12) h = hy (kK = 1,2). Let us

also denote the sets of eigenvalues {ul 12 and {u2}2° of the boundary value problems

(11), (12) for h = hy and h = hg (the Sturm—Liouville problem (11), (12) has only a
discrete spectrum [7]).

There is an inverse Sturm—Liouville problem [1, 4, 7] based on the following fact:

the spectral function p(u) of the operator generated by the boundary value problem (11),

(12) uniquely determines this problem (i. e. ¢(z), h1, he, H), and in the case of a regular

Sturm—Liouville problem7 the spectral function is determined by two sequences of numbers

{lu‘n =0 and {iu‘n n=

_ 1 — ho—hy HL—by
p('u') - Z wnt Wn = Mo —Ha, i:()g;én) Rl (13>

pi<p

here w, (n = 0,1,...) are the norms of the eigenfunctions y(z, u},) (normalization factors)
corresponding to the eigenvalues pl. Numerical sequences {uh}°, (or {u2}°°,) and
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{wn}5%, are called the spectral characteristics of the Sturm—Liouville operator of the
boundary value problem (11), (12).

We can specify the necessary and sufficient conditions for the two sequences of real
numbers {p1}5 ) and {u2}5°, to be two spectrums of the boundary value problem (11),
(12) (h = hg, k = 1,2), corresponding to the same equation (11) with a continuous
potential ¢(z), i. e. solve Sturm—Liouville problem (11), (12). These conditions are as
follows [1, 4]:

1) numbers p) and 2 (n=0,1,...) are alternated,

2) asymptotic formulas are valid for them

ik =n+ % 1 o(k), k=12,

where a # a?.

The main result. The solution of the inverse problem (1), (4), (5) will consist of
three stages:

1) determination of eigenvalues pl, p2 (n = 0,1,...) of problem (11), (12) (h = hy,
k=1, 2)3

2) definition of potential g(z) in equation (11) and constants hy (k = 1,2), H in
boundary conditions (12),

3) the definition of the combination {Tk(x,t), a(x), ax, 8(k =1,2)}.

Remark 1. In the case when the function a(x) is known, but b(z) to be determined,
the set is determined {Tk(z,t), b(z), ax, 8 (k =1,2)}.

In the future, along with problem (1), (4), (5), we consider its Laplace transform (for
the possibility of applying the Laplace transform in this case, see [14, p. 234]).

The Fourier method for problem (1), (4), (5) allows us to construct a solution when
the boundary conditions (5) are inhomogeneous. Under some conditions that are not
burdensome in applications, relatively a and § (8 — a — o8¢ # 0) the solution T'(z,t)
can be represented as [9, p. 473]

T(z,t) = (c1z + CQ)TO( )+ (e3z 4+ ca)Te(t) +

s <Wn( Je—t +fV Je—in(t— T)dT) un(2), (14)
n=0
where ¢1,¢9,¢3,¢4 are fixed constants, v, u,(x) (n = 0,1,...) are eigenvalues and

orthonormal eigenfunctions of the boundary value problem
—% (b(z)2) = va(z)u, z € (0,0),

b)) — au(0%) = 0, b(&7) 2 + Bu(t7) =
Wy (t), Vau(t) (n=0,1,...) are the Fourier coeflicients of functions

W(SL’, t) = (01.'1,‘ + CZ)TO(t) + (03.'1/' + C4)Tg(t)7
Vi) = —ale) 20 4 (bia) 2520

when decomposing them in a Fourier series in a system {u,(z)}, .

The representation of the solution T'(x,t) in the form of a series (14) confirms the
validity of applying the Laplace transform to problem (1), (4), (5) in the right half-plane
P, = {p:Rep>=v, v>—}, if the constant Cy in the description of functions Ty(t),
Ty(t) is smaller than v. Below, the image of the Laplace function ¢ will be indicated ¢*.
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The initial-boundary value problem (1), (4), (5) transformed according to Laplace in
the half-plane P, takes the form

4 (b(@%) = pa(2)T*(z.p), € (0,0), (15)
OLNOT) — o (T4(0%,p) — Ty (p)) . L) = 5 (T(¢=,p) ~ T;(p)).  (16)

We introduce the following notation: M = {u,,} is the set of eigenvalues p,, of the
Sturm-—Liouville problem (11), (12), A = {L?\,,} is the set of poles \,, of the analytic

continuation of an element {;E:%, f*(p) = T*(z4,p), z« € (0,¢), along the real half-line
0
{p:Rep > —v,Imv =0}, T(x,t) is the solution of initial-boundary value problem (1),
(1), (5).
Theorem 1. If « # 0 and Ty(t) = 0 then the inclusion A C M is correct.
P r o o f. The boundary value problem (15), (16) in the half-plane P, has no
eigenvalues and, therefore, is uniquely solvable for p € P,. Let us denote by G(z,s,p)

the Green function of the problem (15), (16). Then
T*(z,p) = aG(z,0,p)T5 (p) + BG (2, £, p)T7 (p)- (17)

The Green function is a meromorphic function of a parameter p on the entire complex
plane, its poles (all poles of the Green function are simple) can only be the eigenvalues 7,
(n=0,1,...) of problem (15), (16) (for T{(p) = T, (p) = 0).

We denote \,, = —n,, the poles of the function G(x,s, —p). Obviously A, belong to
the real semi-axis {Rep > —v,Imp = 0}. Given the replacement {x,T'(z,t)} = {z,U(z,t)}

T 1 £ 1
(lezix)=1[ (%) Ydr, L= 1y (%) * dr), we obtain
0 0

fin = L2\, (18)

Since T;(t) = 0, the statement of the theorem obviously follows from (17) and the relation

_ T*(zwp) _ _f*
G(I*,O7p) - a%&(pﬁ) - QTJ(Z();)

Remark 2. If a = 0, then Ty(t) # 0, and the eigenvalues p,, are determined from
g;e*((—l;)) ’

Remark 3. If in the first relation (4) we replace a with o (k = 1,2), then the
eigenvalues pf (k = 1,2) of problem (9)—(11) with h = hy (k = 1,2) are associated by
means of (18) with the poles A¥ of the analytic continuation of an element f;(—p)/T¢ (—p)
(k=1,2) or of an element f;(—p)/T;(—p) (k =1,2), if any of oy equals zero.

Remark 4. If you only need to define a function a(x) or b(x), then the assumption
Ty(t) = 0 can always be considered complete.

We indicate a method of analytic continuation of elements defined in the half-plane
by the ratio of Laplace integrals. Moreover, some ideas were borrowed from [15].

Suppose now that Ty(t) # 0, then and Tp(t) # 0. Let be g1(p) = S;f]:g)g, g2(p) =
%, Go(p) = G(z4,0,p), Ge(p) = G(z«, ¢, p). In these notation, the relation (17) when
x = & takes the form

(18), where A, are the poles of the analytic continuation

g2(p) = Go(p) + 91(p)G(p). (19)

We represent the function go(p) as a power series in a neighborhood of an arbitrary
real point p; € Py

s

920) =Y 0’ (0 —p), 957 = 495 (p1). (20)

7=0
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According to the Fabry relation theorem, if on the boundary of the circle of convergence
of series (20) there is one singular point, namely, a simple pole p, then

0]

p=p+ hm W.

Since in the half-plane P to the right of the point v, the Green function G (x s ,p) has no
singular points, then p = — )¢ its first pole, and therefore —\g = p1 + hm 0 2. Singling

out the main member in (20), we get a series
1 00 <= 1 ] L+l _ —g3? _ 0,5+1
+ £ )\0+p1 Z 92 (p*pl) =9y — 22092 (p—p1), 93 = od4p 92
5=

with the same center at a point p; as (20), but with a radius of convergence equal to the
distance from the point p; to the second pole —A; of the Green function G(z, s,p). From
here we find —\;:

1,j+1 g5

927 0,5+1
9o j— )
—A=p1F hm noTET 927 T X %2

and so on. Thus we obtained (when g;(p) = 0, see (19)).
Theorem 2. Let the conditions of Theorem 1 were fulfilled, then the eigenvalues p,
(n=0,1,...,) of the boundary value problem (11), (12) are determined from the relations:

957 0,j ©)

—Xo=p1+ hm W’ 927 = 5795 (1),
o g+1 pohJ —1,j+1
7)\71 =p +]li)nolo Q;T, 92 mit = 7)\‘12 T — g;l Jt+ s n = 1,27 vy (21)

n=1L\,, n=0,1,..,

where p1 € Py is an arbitrary real number.

Remark 5. If exists Ui
770 ()
I oG =4

for arbitrary real p € P, and series

B(p) = z LT M ) (p+ M)

(representation of the function T (p) as a power series) converges, and ®(p) # 0, then
p+A=—-1

Indeed, from the statements of Theorem 2 it follows that

. g; (j+1)(p)

1
Aotp T 0 (1) D)

We denote this limit by ¢; and show that ¢ = ¢;. Use equality

1 px(9)
_ wle = |
=m@£kn-+m¢Uuﬂ%“mm§%%Hm+ﬁ“@Mm
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from which it follows:

1 5P
* e _
=Te(p) + ... + J(]—l)..r.rgj!—m-i-l)T;(m)(p)52 () 4 AT (J)(p> g2(p)

95" (p) 95" (p)

()
Passing to the limit at the left and right when j — oo, we find lim i%(p) = O(p).

j—oo g3 (p)
So as @(p) # 0 and ®(p) # oo then

g = lim L@ KT KT

j—00 f}:uﬂ)(p) (j+1)f;<j>(p) 99 (p) =4q,

that required to prove.

We note the obvious benefit of the above statement: it allows us to find the first pole
on the basis more simply than (21), the calculated limit in Remark 5.

The statements of Theorems 1 and 2 for finding the eigenvalues p,,, n = 0,1, ..., of the
boundary value problem (11), (12) make it possible to determine the poles of the Green
function G(z, s, p) with fixed first two arguments. In this connection, it may happen that
the set of eigenvalues A does not coincide with the set of these poles M (therefore, in
Theorem 1, only the inclusion A C M takes place). However, in applications for some
cases, from a priori considerations it is possible to obtain information about the choice
of a variable fixation point x (everywhere above is a point # = x, or any ¢;, j = 1,N)
so that at least the first few eigenvalues i, will determine (see (18)) the first poles A,.
Therefore, we can assume that the choice of the point of fixation of the variable x is such
that the sets A and M coincide. i,

Theorem 3. Two sequences of numbers {,ufl}nzo, k = 1,2, uniquely determine the

T

norms wy, = [y?(z,puk)dz of the eigenfunctions y(z,ul) of the boundary value problem
0

(11), (12) (normalization numbers, see the second ratio (13)):

2 1 1 1
ag—0ag By — gy

2 __ 1 2_ 1>
Ha=Hn i—o(izn) #i

Wp =T

absolutely continuous on [0, 7] function q(z) and constant hy, he, H. In addition he —h; =
m(ad — a}).

A detailed proof of the theorem is given in [1].

Denote by y(z, 1) solution of the equation (11) with initial conditions y(0, ) = 1,

y'(0, 1) = hy. Then the solution to this problem is represented as

y(z,p) = cos \/nz + [ K(z,s) cos /urdr.
0

Such a relation connecting the solution y(z, 1) of equation (11) and the solution cos \/uz
of the equation —y” = py with the initial conditions y(0, ) = 1, 3’(0, 1) = 0, is called
the transformation operator with the kernel K(z,s). Knowledge of the kernel K(z,s)
determines the function y(z, ), and the function ¢(z) is thereby determined since p —
q(z) = =y"(z,1)/y(z, 1), as well as constants h and H from the boundary conditions
(12). Thus, the inverse problem (11), (12) is reduced to the definition of a function K(z, s)
that satisfies the integral equation

F(z,s)+ K(z,8) =

O —n

F(r,s)K(r,s)dr=0, 0<s<z<m,
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where
oo

_1 1 2
F(z,8) =2+ > (U-’_n COS /I % COS \/[lns — 2 COSNZ COS ns),
0

pn (n=0,1,...) are eigenvalues of the boundary value problem (11), (12).

Theorem 4. The inverse problem (1), (4), (5) cannot have two different solutions.

P r o o f. Suppose the opposite: there are two solutions to the inverse problem (1),
(4), (5), that is, two sets {T,i(x,t), al(x),al, B (k =1, 2)}, 1 = 1, 2. Hence, these solutions
correspond to two functions ¢*(z) and two sets of constants hi (k = 1,2), H', i = 1,2.
For each fixed i = 1,2 function ¢%(z) and constant hi (k = 1,2), H?, correspond to the
sequence of eigenvalues {,ufl’i}:ozo (k =1,2), i = 1,2. On the other hand, the analytic
continuation of the elements f;(—p)/T;(—p) (frx(t) = fi(t), k = 1,2, i = 1,2) uniquely
determine the poles \¥ (k = 1,2), and therefore, uniquely determine the eigenvalues
(k = 1,2). This means that for i = 1,2 %% = pk (k = 1,2). It follows from Theorem 3
above that the sequences {Mﬁ}:ozo (k = 1,2) uniquely determine the function ¢(z) on
the interval [0, 7] and the numbers hy (k = 1,2), H. Therefore, for i = 1,2 ¢'(z) = q(2),
ht =hy (k=1,2), H' = H.

Do the replacement {z,T(z,t)} = {z,U(z,t)} in the opposite direction: {z,U(z,
t)} = {x,T(x,t)}, then

a(z)b(z) = 0%(2(2)), x € [0,4), (22)
where 6(z) is the solution of a boundary value problem
0"(z) = q(2)0(=), =z¢€][0,n], (23)

6(0) = (a(0)b(0))%,  6(m) = (a()b(0))*, (24)
but z(x) is the solution of the Cauchy problem

J)= 158 wef0,d, =0)=0. (25)

From the assumptions made about the functions a(z) and b(x) it follows that the boundary
value problem (23), (24) is uniquely solvable. The constants oy (kK = 1,2) and § are
uniquely determined from the relations

ap = £ (he0?(0) — 0(0)0'(0)), B =+ (HO*(w) + 0(m)0' ().

By the found a(z), oy (k = 1,2) and 3, the function Ty (z,t) for each fixed k = 1,2 is
uniquely determined by solving the direct problem (1), (4), (5). It is clear that the resulting
set {Tx(z,t), a(x), ag, B (k =1,2)} satisfies the definition of the solution of the inverse
problem (1), (4), (5) and for i = 1,2, Tj(z,t) = Tj(x,t), a'(z) = a(x), af, = ax (k= 1,2),
3" = (3. The theorem is proved.

Remark 6. The assertion of Theorem 4 remains true also in the case when the
function b(x) is unknown, but the relation connecting a(z) and b(x) is known: a(x) =
O (b(x)), where ®(-) > 0 is twice continuously differentiable by its argument. If the system
of equations (22), (25) has a unique solution b(z) > 0, b(x) € C?[0,¢] and z(z) € C*[0, /]
then the solution to the inverse problem (1), (4), (5) is unique. The function a(x) is
determined from a(z) = ®(b(z)).

The proof of Theorem 4 implies an algorithm for constructing a solution, i. e. set
{Tk(x,t), a(x), ax, B(k =1,2)}, inverse problem (1), (4), (5). The initial data for the
inverse problem (1), (4), (5) are:
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a) the functions entering the boundary conditions (5) Ty(t) and Ty(t), t > 0;

b) the sections fi(t), fa(t), t > 0, at the point z = x, of solutions of the initial-
boundary value problem (1), (4), (5) under two different (o = ag, k = 1,2, a1 # a2)
boundary conditions (5) at a point « = 0;

¢) function b(x).

Remark 7. In the case when the function a(x) is known (see clause (c)), the set
should be determined the set {T)(z,t), b(x), ax (k = 1,2), B}.

The algorithm for constructing the solution of the inverse problem (1), (4), (5):

1) there are poles A¥, n = 0,1,... (k = 1,2), of analytic continuation of elements
g,i’i(_’;)), fx(t) = fr(t) (k=1,2) — statements of Theorems 1 and 2;

2) on two sequences of eigenvalues puf (uf = L2\F), n = 0,1, ... (k = 1,2), the function
is built

F(z, ): =+ Z ( cos \/puh z cos \/ ks — %cosnzcosns)

2
here w, = 7 “" 11 ” “”f and the solution K (z,s) of the integral equation is
ll"n, B, i=0(in) l‘, —H;

determined

F(z,8)+ K(z,8)= [ F(r,s)K(7,s)dT =0, 0<s<z<m;

Ct—n

3) the potential ¢(z) and constants hy (k = 1,2), H are determined from the function
K(z,s) found

q( ) _ 2dK(z z)

== hy = K(0,0) = —F(0,0), hy=K(0,0)+7(aj — a).

= Y _ ) Y ()
y(m,ud) y(mpd) 2 y(mul)

where y(m, p) = cos\/phz + [ K(7,8)\/phrdr, n=0,1,...;
0

4) functions Ty (z,t) (k = 1,2) are defined as solutions of direct problems (1), (4 ), (5)
with those found a(z), o, (k = 1,2), 8, and, therefore, the set {Ti(z,t), a(z), o, B (k=
1,2) is determined.

II. Next, we consider the inverse problem with singularities (2)—(5), reduced to the
form (7)—(10). The initial-boundary problem (7)—(10) corresponds to the spectral problem

7y//+q(z)y:ﬂya FAS (Cj7<j+1)7 ] :0317"'7N7 (26>
y(G ) = (), Y () =y (G ) =myy(G,t), §=1,2,..,N, (27)
y'(0F) —hy(0*) =0, ¢'(x~)+ Hy(x") =0. (28)

In [8, p. 33] it is shown that the spectrum of the boundary value problem (26)—(28) is
discrete. If, as above, in the first relation (5) we put a = g, k = 1,2, then in (28) h = hy
(k=1,2) and we get two sets of eigenvalues, knowledge of which determines the spectral
function of the operator generated by the boundary value problem (26)—(28) (constant h
one of hy or hg) and further potential ¢(z) and constant hq, ha, H.

Assuming that the Laplace transform is applicable to problem (2)—(5) (section I),
statements similar to those presented in Theorems 1 and 2 are applicable to determine the
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eigenvalues of the boundary value problem (26)—(28). As a point x. where the sections of
solutions fx(t) = Ti(x«,t) (k =1,2) of problem (2)—(5) are known, we can take any of the
points §;, 7 = 1, N. Connection is established (transformation operator with the kernel
K(z,s))

z

y(z 1) =y°(z 1) + [ K(z,8)y° (7, p)dr
0
between the solution y(z, 1), z € (0, 7) equations (26), (27), satisfying the initial conditions
y(0,u) =1, ¥’ (0, u) = h and the solution

yO(Z“u,) = y?(z,,u), zZ € [ijCjJrl] (] = Oa 177N)

equations (26) (under g(z) = 0), (27) with initial conditions y(0, 1) = 1, ¥'(0, u) = 0; here

Yo (2, ) = cos \/pz,
( — M1 cos \/—Cfr sin\/_Cfr) cos /G +
+%mlcos \/_(1 sin /¢

W (zpm) = o= (Vi

and under j = 2,3,.... N

Y9 (z,p) = (COS\/ﬁny?_l(Cj,u) e w)sm\/_C*) cos /¢ +
+ (Sin\/ﬁqy?,l(gw) TRy (G COS\/_<+) sin /71,

0,1 /,— dyd_ 1 (¢ 1) -
where yj71( y ) = L+ m21/?71(5j S 1)

Knowledge of the kernel K (z, s) determines the solution of the inverse problem (26)—
(28), that is, the function ¢(z) and the constants h, H. The further reasoning is almost
word for word in Section I.

Conclusion. The paper presents a new approach in determining the eigenvalues
of the elliptic operator of the initial-boundary value problem (including peculiarities)
for an equation of parabolic type over the cross section for solving this equation at
the internal point of the spatial coordinate change (statements of Theorems 1, 2). This
made it possible to use the classical results of recovering the Sturm—Liouville operator
from spectral characteristics [1-3, 7] and the subsequent solution of the inverse problem
for a parabolic equation. Note that the results obtained complement (and in a certain
sense, develop) the ideas and research presented in [16-18] when analyzing the questions
of solvability of multidimensional systems. Recent results in the direction of analyzing
evolutionary systems in network-like regions (see [19-21]) allow partial use of the results
of this work in constructing stabilizing control actions in complex articulations. It should
also be noted that the approaches to the analysis of dynamic systems presented in [22-26]
allow partial use of the results of this work, namely, the widespread use of operational
calculus techniques.
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O6 ogHOM MoOaXO0/ie K pelleHnio obpaTHOM 3ada4uu
IJ1 1apaboJIMYecKOoro ypaBHEeHU "

A. II. Kabrko', K. B. Hypmasuna?, B. B. IIposomopoe>

I Canxt-IleTep6yprekuii TocymapcTBeHHEIH yHIBepCuTeT, Poccuiickas Peneparusi,
199034, Caukr-IlerepOypr, Yausepcurerckasa Hab., 7-9

2 EspasuiicKuii nanupoHabubii yausepcurer umenu JI. H. I'ymunesa, Pecny6nuka Kazaxcram,
010008, Hyp-Cyanran, yn. Carbaesa, 2

3 Bopomne:KCKuii rocynapcTBeHHbI yHIBepcuTeT, Poccuiickasa Deneparus,
394006, Boponerx, YHuBepcureTrckas II., 1

Hast iurupoBanus: Zhabko A. P., Nurtazina K. B., Provotorov V. V. About one approach to
solving the inverse problem for parabolic equation // Bectuuk Cankt-IleTepGyprekoro yHusep-
cureta. [Ipuknagnas maremaruka. Uudopmaruka. Ilporecesr ynpasmenns. 2019. T. 15. Bomm. 3.
C. 323-336. https://doi.org/10.21638,/11702/spbul0.2019.303 (In English)

Pabora mocssimena perennio 3ajaun onpeeseHus Koo MUIMEHTOB B JIMHEHHOM udde-
PEeHIMAIBHOM ypaBHEHUM MapaboMIecKOro TUIA W KPAeBbIX ycaoBusix. [Ipu aTom mpesmo-
JIATAl0TCsl U3BECTHBIMY 3HAYEHUSI PEIeHHUs] HAYAIbHO-KPAEBOH 3a1a41 B HEKOTOPOil (puKcu-
POBaHHOI TOYKe WHTEPBAJIa U3MEHEHUsI TPOCTPAHCTBEHHON MMEpEMEHHON U BO BCE MOMEHTBI
BpeMeHn (ceyeHue pernenwust). VICIIosb30BaH CIEKTPAJIBHBIN [IOJX0/, OCHOBAHHBIN Ha CIIEK-
TPaJIbHBIX CBOMCTBAX JUIUIITUYECKOrO OllepaTopa HAYAJIbLHO-KPAEBO 3a1a9U U METOJAX pPe-
[eHnsi OOPATHOM CIEKTPaIbHON 3amadn BoccTaHOBJeHUsi omeparopa llItypma—J/luysuiis
10 JIBYM IIOCJIEIOBATEBHOCTSIM COOCTBEHHBIX 3HAYEHUI, COOTBETCTBYIONIUM IBYM Habopam
IPAHUYIHBIX YCJIOBUI (P 9TOM HCIOIB3YIOTCs Kaaccuieckue pesysabrarel B. M. Jlesurana,
M. I'. Tacemvosa, 1. C. Capresina, B. A. FOpko). B ¢Bsi3u ¢ 9TUM OCHOBHBIE yCHJIUSI ABTOPOB
OBLIM HAINPABJIEHBI HA PEIleHNe 3aJadl ONpPEJeIeHNs] CIEKTPAIbHBIX XapaKTEPUCTUK OIle-
paropa llrypma—J/Inysumas. [Ipumensiercs npeobpasosanue Jlamnaca Kk HaUaIbHO-KPa€BOit
3a/a9e B [PABON NOJIYIUIOCKOCTH HW3MEHEHHUsl I1apamerpa HpeobpasoBaHusl (3/1€Ch HUCIOJIb-
3yeTCsl CBOMCTBO TMOJIOXKUTETBHOCTHA JUCKPETHOTO CIEKTPa CUMMETPUYIHOTO BIIOJTHE HeElpe-
PBIBHOTO SJUIANITHYECKOTO ONEPATOPA). YCTAHABINBAETCA MEPOMOPMHOCTD IO ITOMY IIapa-
MeTpy dyHKIUK ['prHa Moy YeHHON KpaeBoii 3a/1a9u, ee MOJI0CAMU SIBJISIFOTCST COOCTBEHHBIE

* Pabora BblltoIHEHA P (bUHAHCOBOI No/1iepKKe MununcTepcTBa 06pa3oBanus u HayKu Pecriybaukn
Kasaxcran (nmpoext Ne AP05136197).
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3HaveHus KpaeBoil 3ama4an. [IpencraBiensr qOCTATOYHBIE YCIOBUS ONPEIE/ICHIS JBYX [TOCTIe-
JI0BATEJILHOCTEN COOCTBEHHBIX 3HAYEHMI 10 ABYM HaOGOpaM I'DaHUYHBIX YCJIOBUI M YCJIOBUS
€IMHCTBEHHOCTH pelreHns oopaTHoii 3aa4u. B pabore paccMOTpeH cirydail, Koria HadaJbHO-
KpaeBasi 3a/1a9a COJEPIKUT OCOOEHHOCTH — WHTEPBAJ M3MEHEHWs IPOCTPAHCTBEHHON mepe-
MEHHOI COZEP>KNT KOHETHOE YNCJIO TOUEK, B KOTOPBIX Jud depeHInaIbHOe yPaBHEHUE TePSIET
CMBICJI U 3aMEHSEeTCHA YCJIOBUSME COrJIacoBaHUsl. llosiydeHHBIE pe3y/IbTaThl HUCIOIB3YIOTCH
[IPY HEPA3PYIIAIONEM KOHTPOJIE B TEINIOMUIMIECKUX TPOIECCAX.

Karoueswie caosa: mapabosmdeckas cucreMa, ooparHas 3a/1ada, COOCTBEHHbIE 3HAYCHIS Kpae-
BBIX 33184, HOJIIOCHl AHAJIUTHIECKOTO IPONOKeHus: dyHKnn ['puna.
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