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Abstract: In this work, we studied the phase space of f (R) gravity in the presence of a misalignment
axion, including parity violating Chern–Simons terms. We construct the autonomous dynamical
system by using appropriate dimensionless variables and find the cosmological attractors of the
phase space, which are basically the fixed points of the autonomous dynamical system. We focus
on the R2 model and the misalignment axion potential near the minimum. We demonstrate that the
Chern–Simons terms have no effect on the phase space. We found four distinct, possibly unstable
fixed points with physical significance. Specifically, we found two identical de Sitter fixed points, one
radiation domination fixed point, and one dark matter dominated fixed point. Thus, in the presence
of a kinetic misalignment axion, the vacuum f (R) gravity contains all of the cosmological fixed points
that can characterize all of the known evolution eras of our universe.

Keywords: inflation; modified gravity; f (R) gravity; early acceleration; CMB; primordial universe;
early universe

1. Introduction

Currently, the focus of most theoretical physicists is on the inflationary era [1–15],
whether it occurred in the first place, and its characteristics. All the current and future
gravitational wave experiments [16–26] focus on this fundamental question about the
primordial era of our universe. To this end, the stage 4 Cosmic Microwave Background
(CMB) experiments [27,28] will probe the B-modes of the CMB polarization spectrum.
Thus, the essential features of the primordial era will be probed directly via the B-modes,
or indirectly via the primordial gravitational wave tensor modes. These gravitational wave
experiments along with the CMB stage 4 experiments will shed some light on the evolution
of the universe from the primordial era, believed to be controlled by inflation, up to the
late stages of the radiation domination era. If the inflationary era is confirmed, the difficult
task is to understand which theory controls the inflationary era and what the characteristic
features of the universe are during the post inflationary era.

In this work, we concretely examine the phase space of f (R) gravity in the presence of
a kinetic misalignment axion, also allowing the axion to have non-trivial Chern–Simons
couplings that primordially violate the parity [29–32]. The study of the phase space
provides vital information for the existence of cosmological attractor points, mathematically
being fixed points of the dynamical system. The nature of the cosmological fixed points
is determined by the value of the effective equation of state (EoS) parameter ωe f f for
these points. Thus, the phase space reveals information about the existence of a physical
solution in the context of a specific theory, so there are trajectories that may connect these
cosmological fixed points. Since the universe goes through distinct evolutionary eras, it is
important for a theoretical model to have these cosmological eras in the form of fixed points
in its phase space. Moreover, the fixed points must be unstable in nature in order to have
a sequence of distinct cosmological eras. The eras that the universe went through during
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its evolution are the inflationary era, which is described by a de Sitter fixed point with
ωe f f = −1, the radiation domination era with ωe f f = 1/3, the matter domination era with
ωe f f = 0, and a late-time acceleration that can be quintessential with −1 < ωe f f < −1/3
or even exactly de Sitter with ωe f f = −1. The ordinary f (R) gravity possesses the de
Sitter fixed points but does not describe all the subsequent eras. Thus, in this paper, we
examine the effect of the presence of a kinetic misalignment axion on the f (R) gravity
phase space, including the Chern–Simons term. We are interested in an R2 gravity and the
misalignment axion after the axion begins its oscillations near the origin of its potential.
We construct an autonomous dynamical system using appropriately chosen dimensionless
variables and the field equations. As we will show, the Chern–Simons term does not affect
the phase space at all, and it is only affected by the f (R) gravity and the misalignment
axion. Remarkably, the kinetic axion has an important effect on the vacuum f (R) gravity,
and we report the existence of four distinct fixed points in the phase space, specifically
two identical de Sitter fixed points, one radiation domination fixed point, and one matter
domination fixed point. Thus, the misalignment axion complements successfully the f (R)
gravity, enabling the latter to describe successfully all the evolutionary eras of our universe.

2. Essential Features of Kinetic Axion f (R) Gravity with and without
Chern–Simons Corrections

We will consider the kinetic axion f (R) gravity theoretical framework that was de-
veloped in [33], by also considering additionally Chern–Simons corrections. The kinetic
axion mechanism is based on the misalignment axion theory [34], and it is a variant form
of it. The difference between the canonical misalignment axion and the kinetic axion
is basically the fact that, in the latter case, the axion has considerably large kinetic en-
ergy during the inflationary era, with the primordial U(1) Peccei–Quinn symmetry being
broken during the inflationary era. Due to the excess of the kinetic energy at the end of
the inflationary era, the axion does not oscillate instantly after it reaches the minimum
of its cosine-like potential, but continues its motion toward the local maximum of the
potential. During this motion, the background EoS parameter of the axion is described by
a stiff value w = 1. Accordingly, the axion continues its motion toward the minimum of
its potential, where it starts oscillations and thereafter redshifts as cold dark matter. As
shown in [33], the combined f (R) gravity with a kinetic axion has some important effects
on the inflationary era. Specifically, if the inflationary era is described by an R2 model,
the kinetic axion does not affect the dynamics of the inflationary era directly, but indirectly,
by extending and enlarging the duration of it, causing an increase in the e-foldings number.
In this paper, we study the phase space of the combined Chern–Simons-corrected R2 model
in the presence of the kinetic axion. We aim to construct an autonomous dynamical system
using the resulting field equations, and we will find the fixed points of this autonomous
dynamical system and discuss the physical significance of these in some detail. As we
will see, the phase space is rich and full of physically significant fixed points, some of
which are stable and some of which are potentially unstable. The study of the inflationary
dynamics of the Chern–Simons-corrected R2 gravity in the presence of kinetic axion dark
matter will be presented elsewhere [35]. We will start with the most general kinetic axion
Chern–Simons-corrected R2 gravity, the action of which is

S =
∫

d4x
√
−g
(

f (R)
2κ2 −

1
2

gµν∇µφ∇νφ−V(φ) +
ν(φ)

8
RR̃
)

, (1)

where R is the Ricci scalar, κ = 1
MP

with MP = 1/
√

8πG is the reduced Planck mass,
1
2 gµν∇µφ∇νφ and V(φ) denote the kinetic term and the canonical scalar potential of the
scalar φ, ν(φ) denotes the arbitrarily chosen scalar coupling function, and
RR̃ = ηµνρσR αβ

µν Rρσαβ is a parity odd (causing parity violation) term, where Rµνρσ is
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as usual the Riemann tensor, and ηµνρσ stands for the totally antisymmetric Levi–Civita
tensor. Consider the R2 model,

f (R) = R +
R2

6M2 , (2)

with M being the mass scale, arbitrary for the moment. Consider also a flat Friedmann–
Robertson–Walker (FRW) metric of the form

ds2 = −dt2 + a2(t)δijdxidxj , (3)

with a(t) being the scale factor and δij denoting the Kronecker delta for the spatial compo-
nents of the metric. Due to homogeneity, we assume that the scalar field and in effect all
the functions of it, depend solely on the cosmic time. The field equations for the theoretical
framework at hand are

3FH2

κ2 =
1
2

φ̇2 + V(φ) +
FR− f

2κ2 − 3HḞ
κ2 , (4)

−2FḢ
κ2 = φ̇2 +

F̈− HḞ
κ2 , (5)

φ̈ + 3Hφ̇ + V′ = 0 , (6)

where F = d f
dR , and the prime indicates differentiation with respect to the scalar field.

Near the origin of the scalar potential, it can be approximated by a quadratic form as
we show later, so the axion energy density redshifts as cold dark matter ρ = 1

2 φ̇2 + V ∼
a−3(t) = (1 + z)3. As is apparent from the field equations, the Chern–Simons term essen-
tially does not affect the field equations at all. Thus, it is expected that the phase space will
not be affected at all. This is a peculiar result, since the Chern–Simons term affects only
the tensor perturbations and not the scalar ones. In fact, as will shown in [35], only the
tensor-to-scalar ratio and the tensor spectral index are affected by the Chern–Simons term.
Thus, we come to the important conclusion that the phase space is probably not affected by
the Chern–Simons term, although the dynamics of inflation is. We will show this explicitly

for completeness. The stress-energy tensor defined as Tµν = 1
4
√−g

δ(
√−gν(φ)RR̃)

δgµν depends on
the Chern–Simons term, and the only non-zero contribution has the following form [36],

Tµν =
1
a

ε
ρσ

µ

[
(ν̈− Hν̇)Ċνρ,σ + ν̇(C̈νρ,σ + 3HĊνρ,σ −

�
a2 Cνρ,σ)

]
+ (µ↔ ν) , (7)

where εµνρ is the 3-D Levi–Civita tensor, and Cµν denotes the tensor perturbations. As
can easily be seen, only the off-diagonal terms are affected by the Chern–Simons term, so
the field equations are also unaffected. The tensor modes are, however, affected by the
Chern–Simons term, as can be seen by their evolution equation,

1
a3F

d
dt

(
a3FĊµν

)
− �

a2 Cµν −
2

aF
ε

ρσ

(µ

[
(ν̈− Hν̇)Ċν)ρ + ν̇(C̈ν)ρ + 3HĊν)ρ −

�
a2 Cν)ρ

]
,σ
= 0 , (8)

and by making a Fourier transformation,

Cµν(t, x) =
√

Vol
∫ d3k

(2π)3 ∑
l

e(l)µν(k)hlk(t)eik·x , (9)

we get
1

a3Qt

d
dt

(
a3Qt ḣlk

)
+

k2

a2 hlk = 0 , (10)
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where e(l)µν denotes the circular polarization of the gravitational waves, Qt =
F
κ2 + 2λl ν̇

k
a ,

and λl is ±1 for the right and the left handed polarizations, respectively. Note that the
propagation speed of the gravity waves is not affected by the parity-odd Chern–Simons
term. Thus, in the presence of the Chern–Simons term, there are two inequivalent ten-
sor perturbations evolving in spacetime. We need to note that the Chern–Simons term
does not affect the scalar perturbations at all, and this can be seen explicitly in the field
Equations (4)–(6). It does affect though the tensor perturbations, since it explicitly appears
in the evolution equation of the tensor perturbations, as can be seen in Equation (8).

We now turn our focus on the dynamics of the axion, since it will be important for the
phase space study. In general, as we will show, the presence of this dark matter component
will cause differences between the phase space of vacuum f (R) gravity and the kinetic
axion f (R) gravity. During inflation, the primordial U(1) symmetry of the axion is broken,
and the axion has a large vacuum expectation value ϕ = θα fα, where fα denotes the axion
decay constant, and θα is the initial misalignment angle with values in the range 0 < θα < 1.
Note that this angle is a dynamical field, as the axion is, so it is not constant, but it should
be considered as an average expectation value of a specific period of time. This is the actual
reason why the Chern–Simons term itself is not integrated away from the initial Lagrangian.
For the misalignment axion field φ, we also have φ̇ 6= 0 during the first horizon crossing.
After the breaking of the primordial U(1) symmetry, the axion potential is

V(φ) = m2
α f 2

α

[
1− cos

(
φ

fα

)]
, (11)

and near the origin of the scalar potential, it reads

V(φ) ' 1
2

m2
αφ2 , (12)

which is valid for φ
fa
< 1.

3. Phase Space Analysis of the Chern–Simons-Corrected Kinetic Axion f (R) Gravity

In this section, we thoroughly study the phase space of the Chern–Simons kinetic axion
f (R) model. As mentioned in the previous section, due to the fact that the Chern–Simons
contributions are in fact absent from the background field equations of motion, the overall
phenomenology of the scalar perturbations and the phase space of the model is identical to
that in the case of the kinetic axion f (R) gravity, since only the tensor perturbations are
affected by the inclusion of the Chern–Simons term. Therefore, if one only studies the phase
space of the kinetic axion f (R) gravity, it should coincide with that of the Chern–Simons
kinetic axion f (R) model. We will showcase this in some detail.

Firstly, we begin by including perfect matter fluids in the gravitational action, that is,

S =
∫

d4x
√
−g
(

f (R)
2κ2 −

1
2

gµν∇µφ∇νφ−V(φ) +
ν(φ)

8
RR̃ + Lmatter

)
, (13)

where Lmatter contains all the information available about relativistic and non-relativistic
matter, while the axion dynamics are specified by the scalar field. As a result, the equations
of motion are affected by the inclusion of perfect matter fluids as shown below:

3FH2

κ2 = ρ +
FR− f

2κ2 − 3HḞ
κ2 +

1
2

φ̇2 + V , (14)

−2FḢ
κ2 = ρ + P +

F̈− HḞ
κ2 + φ̇2 , (15)

φ̈ + 3Hφ̇ + V′ = 0 . (16)
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In order to perform a consistent and robust phase space analysis, we must first construct
an autonomous dynamical system using an appropriate dimensionless variable and ma-
nipulating the field equations appropriately. We make use of the fact that the f (R) gravity
follows a power-law behavior, that is, f (R) = R + ARn, while the scalar potential is equal
to V(φ) = V0(κφ)m. Obviously, we are interested in the cases n = 2 = m, where A = 1

6M2

and V0κ2 = 1
2 m2

α; however, the dynamical system is independent of A and V0 and is affected
only by the exponents. In addition, we define the following dynamical variables [37]:

x =
κ2φ̇2

6FH2 , y =
κ2V

3FH2 , z = − Ḟ
HF

, u = − f
6FH2 , v =

R
6H2 , s =

V̇
HV

, p =
κ2ρr

3FH2 , q =
κ2ρm

3FH2 , (17)

where it should be stated that, due to the presence of the f (R) gravity modifications in the
field equations, the variables p and q do not coincide with the usual density parameters
Ωr and Ωm. By making use of the e-foldings number as a variable instead of cosmic time t,
introduced via the differential operator d

dN = 1
H

d
dt , the dynamical variables easily satisfy

the following relations:
dx
dN

= x
[

2
φ̈

Hφ̇
− 2(v− 2) + z

]
, (18)

dy
dN

= y
[

s + z− 2(v− 2)
]

, (19)

dz
dN

= z(z + 1) + 6x + 4q + 3q + 2(v− 2)(1− z
2
) , (20)

du
dN

= u
[

z− 2(v− 2)
]
+

zv2

n(u + v)
, (21)

dv
dN

= −v
[

zv
n(u + v)

+ 2(v− 2)
]

, (22)

ds
dN

= s
[

φ̈

Hφ̇
− (v− 2)− s

m

]
, (23)

dp
dN

= p
[

z− 2v
]

, (24)

dq
dN

= q
[

z− 2v + 1
]

, (25)

where from the Friedmann equation and the Klein-Gordon equation, one can see that the
dynamical variables must satisfy the constraints,

x + y + z + u + v + p + q = 1 , (26)

φ̈

Hφ̇
= −3− s

2
y
x

. (27)

As can be seen, there exist eight dynamical variables that are needed in order to study the
phase space. If we focus on the vacuum kinetic axion f (R) model that we are interested in,
we can focus only on four dynamical variables. Three derive from the f (R) part, and the
final one refers to the kinetic term of the axion. Thus, working with this subsystem, we can
focus only on Equations (18)–(22) and demand that

x + z + u + v ' 1
φ̈

Hφ̇
' −3

dz
dN

= z(z + 1) + 6x + 3q + 2(v− 2)(1− z
2
) . (28)
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This can be done without a loss of generality, as we focus only on the dominant terms.
In turn, the inclusion of the remaining dynamical variables will not spoil the analysis;
rather, it will result in the inclusion of additional fixed points in the phase space. This
can easily be inferred from the fact that Equations (19) and (23)–(25) can become zero for
y = 0, s = 0, p = 0, and q = 0; thus, they do not affect the rest of the differential equations.
Studying this subspace implies that the total number of fixed points for n = 2 is 3, as shown
in Table 1. Here, it becomes abundantly clear that there exists a matter domination fixed
point, a radiation domination fixed point, and two de Sitter fixed points; however, the two
de Sitter fixed points are identical. Out of the these fixed points, only the matter dominated
fixed point is a saddle, while the rest are in fact non-hyperbolic fixed points. All of them are
physical and always exist. We can also further have a concrete idea on the phase space by
checking the trajectories focusing on the case n = 2. In Figure 1, we present the plot for the
trajectories u(N) and v(N) as functions of the e-foldings number, for the first 10 e-foldings.
We used many different sets of initial conditions for all the dynamical variables, but the
physical picture remains the same in all cases. The physical fixed points are reached quite
fast as can be seen, even before the first 10 e-foldings. For the plot of Figure 1, we used the
initial conditions x(0) = −8, z(0) = 5, u(0) = 1.5, and v(0) = 0.1, but as mentioned, the
result is robust and does not change by changing the initial conditions. In Figure 1, the
red curve represents the variable u(N), which approaches the fixed point P2 = (0, 0,−1, 2)
value of u(N) = −1. Accordingly, the blue curve represents the variable v(N), which
approaches the fixed point P2 = (0, 0,−1, 2) value of v(N) = 2. An apparent comment is
that this result holds true irrespective of the initial conditions chosen, and it is noticeable
that the fixed point is reached quite fast. Unfortunately, it is not easy to see the degeneracy
of the double de Sitter fixed point in the phase space trajectory plot. A deeper investigation
is required, where the center manifolds are studied. Such a study though exceeds by far
the purposes of this work. Furthermore, the fixed point P2 = (0, 0,−1, 2) seems stable, but
there is a zero eigenvalue, which means that the fixed point might be unstable, a fact that
can be verified only numerically. Thus, we can claim that the de Sitter fixed point is not
entirely stable.

Table 1. Fixed points for the kinetic axion R2 vacuum model with the kinetic axion scalar potential.

Fixed Point (x,z,u,v) Eigenvalues Stability q ωe f f

P1 (0,−4,5,0) (−6,−5,4,0) Non Hyperbolic 1 1
3

P2 (0,0,−1,2) (0,−6,−3,0) Non Hyperbolic −1 −1

P3 (− 9
4 ,3,− 1

4 , 1
2 ) (6,3,3,− 3

2 ) Saddle 1
2 0

Including a potential does not alter the already known fixed points; it simply predicts
an additional fixed point describing cold dark matter that differs only in the variable s.
Therefore, it does not influence the Friedmann constraint; rather, it affects the evolution
of the dynamical variable y and φ̇. Based on the phase space analysis, the most important
feature that must be mentioned is that the vacuum R2 kinetic axion model possesses all the
cosmologically interesting fixed points. In fact, in the phase space, there is a potentially
unstable de Sitter fixed point, an unstable radiation domination fixed point, and a matter
domination fixed point. The instability is due to the existence of a zero eigenvalue for
the corresponding fixed point, with the other two eigenvalues being negative. Thus, the
trajectories in the phase space are attracted to the fixed point, but eventually should be
repelled from it. A deeper analysis of this can reveal this physical picture, by analyzing
the center manifolds of the model, but this exceeds the aims of this work. We therefore
suspect that the fixed point is possibly unstable, but it is certainly not entirely stable. The
physical picture obtained is quite interesting, since it is apparent that the phase space may
contain trajectories that may connect four important cosmological eras for our universe,
starting from the unstable de Sitter fixed point, which describes the inflationary era with a
possible exit due to the instability caused by the zero eigenvalue, continuing to the unstable
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radiation era, followed by an unstable matter domination era, and lastly ending up in an
unstable final de Sitter era. Thus, this model can potentially describe early- and late-time
acceleration, with all the intermediate eras potentially able to drive the evolution. This
picture seems quite attractive, but needs to be confirmed numerically. This requires the
analysis of stable manifolds, which exceeds, however, the scope of this work, which was to
demonstrate the existence of these physical fixed points.

0 2 4 6 8 10

-1

0

1

2

3

4

N

u
(N

),
v
(N

)

Figure 1. The numerical solutions u(N) and v(N) for the dynamical system (18)–(25), for the
initial conditions x(0) = −8, z(0) = 5, u(0) = 1.5, and v(0) = 0.1 and for n = 2. The red
curve represents the variable u(N), which approaches the fixed point P2 = (0, 0,−1, 2) value of
u(N) = −1. Accordingly, the blue curve represents the variable v(N), which approaches the fixed
point P2 = (0, 0,−1, 2) value of v(N) = 2.

Finally, including perfect matter fluids does not increase the number of fixed points
in the matter and radiation eras as one may expect; on the contrary, their presence in
the equations of motion predict the appearance of two additional fixed points: one that
describes neither acceleration nor deceleration as ä = 0 with an effective EoS parameter
ωe f f = − 1

3 and another that describes quintessential late-time acceleration since the
effective EoS parameter is in this case ωe f f = − 1

2 < − 1
3 (see Table 2). Overall, the kinetic

axion model can potentially describe the evolution of the universe smoothly, even if the
axion mass is infinitesimal and the overall phase space is indeed quite richer compared to
the vacuum f (R) gravity. Obviously, the same applies to the kinetic axion f (R) model in
the presence of a Chern–Simons parity-odd term since the background equations remain
unaffected, and only tensor perturbations are influenced by such a term. In a sense, even
though the inclusion of perfect matter fluids in the axion-free vacuum f (R) gravity case
does not result in the generation of matter and radiation fixed points, the inclusion of the
kinetic axion can result in the appearance of a matter fixed point, which makes perfect sense
considering that the axion perfectly describes the matter of the dark sector of the universe
and thus has the most dominant contribution on non-relativistic matter. In addition, the de-
Sitter fixed point that emerges is, in a sense, degenerate. This is because, for a power-law
f (R) model, while there is a total of four fixed points, two of them coincide in the limit
n→ 2. If a different exponent was selected, then an additional fixed point that describes
acceleration can be produced.



Symmetry 2023, 15, 1897 8 of 10

Table 2. Fixed points for the kinetic axion R2 model in the presence of perfect matter fluids.

Fixed Point (x,y,z,u,v,p,q) Eigenvalues Stability q ωe f f

P1 (0,0,−4,5,0,0,0) (−6,−5,−4,4,−3,0,0) Non Hyperbolic 1 1
3

P2 (0,0,0,−1,2,0,0) (0,0,−6,−4,−3,−3,0) Non Hyperbolic −1 −1

P3 (− 9
4 ,0,3,− 1

4 , 1
2 ,0,0) (6,3,3,3,2,− 3

2 ,6) Saddle 1
2 0

P4 (0,0,2,− 1
2 ,1,− 3

2 ,0) (4,4,−
√

6,
√

6,−2,2,1) Saddle 0 − 1
3

P5 (0,0, 3
2 ,− 5

8 , 5
4 ,0,− 9

8 )
(−3,3,3, 3

8 (−1−√
41), 3

8 (−1 +√
41), 3

2 ,−1)
Saddle − 1

4 − 1
2

4. Conclusions

We studied in detail the phase space of f (R) gravity in the presence of a kinetic mis-
alignments axion, including parity violating Chern–Simons terms. We used appropriately
chosen dimensionless variables, and in conjunction with the field equations, we constructed
an autonomous dynamical system. We focused on the R2 model and the axion while it
undergoes its oscillations around the minimum of its potential. We found four unstable
cosmological fixed points with physical significance. The latter is determined by the value
of the total EoS parameter at the fixed points. The fixed points we found in the phase space
in the form of unstable fixed points are two de Sitter fixed points with ωe f f = −1, one
radiation domination fixed point with ωe f f = 1/3, and one matter domination fixed point
with ωe f f = 0. The two de Sitter points correspond to the early- and late-time acceleration
eras. This is remarkable since ordinary f (R) gravity possesses only the de Sitter fixed
points but does not describe all the subsequent cosmological eras. The existence of the fixed
points indicates that there might be trajectories in the phase space that may connect these
fixed points. It is also worth mentioning that the parity violating term does not affect the
phase space at all, since it only affects the evolution of the tensor perturbations and not the
background field equations. Thus, with this work, we highlighted the importance of the
coexistence of some modified gravity controlling the inflationary era with some coherent
non-thermal dark matter scalar field.

Finally, we will briefly discuss the potential implications of our findings for obser-
vational cosmology or experimental tests. With our phase space study, we proved that
the Chern–Simons f (R) gravity model is able to produce all of the cosmological eras of
our universe. This is important and serves as a first step toward the phenomenological
viability of the model. More concrete calculations are now needed in order to quantitatively
study the inflationary and other eras implications of this work, and this is deferred to a
future work.
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