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i f ()AL = F(b) - F(a),

forall a,beT . Afunction F:T — R is called an antiderivative of f:T — R provided
FA(t) = f(t)
holds forall teT .

Denote [a;0); ={teT:t>a}, where T is a particular time scale, which is unbounded
above. For VYaeR the set of rd-continuous functions f :[&;00); =R will be denoted by
C,.[a; ).

We consider an integral inequality in the following form:

. . AV %
[qu(x)(jf(t)AtJ Ax} sCUfp(x)vp(x)AxJ , v eC,4[a;);, (1)

where the constant C does not depend on function f,and p; g are fixed parameters and u and v

be nonnegative weight functions. If T =R, then we get that the well known classical weighted
Hardy type inequality was studied by the books [2], [3], [4] and [5].
Our main result reads as follows.

Therome 1. Let 1< p<g<o and }/p+}/p.=1. Then the inequality (1) holds if and only

B <o satisfied, where

. TN 2
B:= sup (qu(x)ij [Iv‘p(r)Ar] <00,

te[a; o) t

Moreover, B ~C, where C is the best constant in (1).
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Since the discovery of the classical Hardy inequalities (continuous or discrete) much work
has been done, and many papers which deal with new proofs, various generalizations and

1449


mailto:adiyashaldybaeva@mail.ru

extensions have appeared in the literature. We refer the reader to the books [1-2] and the references
cited therein.

Atime scale T isan arbitrary closed subset of the real numbers R. The cases when the time
scale is equal to the reals or to the integers represent the classical theories of integral and of discrete
inequalities.

In this paper, without loss of generality, we assume that supT =oo, and define the time
scale interval [a,b]; by [a,b]; =[a,b]NT . For more details of time scale analysis, we refer the

reader to the two books by Bohner and Peterson [3], [4] which summarize and organize much of the
time scale calculus. The three most popular examples of calculus on time scales are differential

calculus, difference calculus, and quantum calculus, ie, when T=R , T=N and
T=q"™ ={q':teN,}, where T=R. The forward jump operator and the backward jump

operator are defined by:

o)=inf{seT;t<s}, pt)=inf{seT;s<t}.

A point t €T, is said to be left-dense if p(t) =t, is right-dense if o(t) =t , is left-scattered
if p(t) <t and right-scattered if o(t)>t . A function f:T — R is said to be right-dense
continuous (rd—continuous) provided f is continuous at right-dense points and at left-dense points
in T, left hand limits exist and are finite. The set of all such rd—continuous functions is denoted by
C([abl;).

Assume f:T —R is a function and let teT . Then we define f*(t) to be the number

(provided it exists) with the property that given any € >0, there is a neighborhood U of t (i.e.,
U=(t—-0o;t+5) \T for some ¢ >0) such that

I[f(e@®) - T ()] Olo®) -sllk e a(t)-s].
We call f*(t) the delta (or Hilger) derivative of f at t [5]. If F*(t) = f(t), then the Cauchy

b
(delta) integral of f(t) is defined by jf(t)At =F()—-F(a). It can be shown (see [3]) that if

t
f €C,,([a,b];) , then the Cauchy integral F(t):'[f(t)At exists, t,eT , and satisfies

to
FA(t)=f(t), teT.
The functions g, and h, are g,(t,s)=h,(t,s)=1 for all t,seT , and, given g, and h, for
k e N,, the functions g,,, and h,,, are

t
O (6,5) = [ 9 (o(t), )t forall t,seT,
t

and

t
hk+1(t,5)=fhk (t,s)at  forall t,seT,
t

If we let h (t,s) denote for each fixed s the derivative of h, (t,s) with respect to t, then
he(t,s)=h,(t,s) forallt,seT,

Similarly

9, (t,s)=g,,(o(t),s) forall t,seT.
Hence, we can define the Riemann-Liouville integral operator:
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for ke N and f eC,([a,b];).
We consider an integral inequality in the following form:

b B o Yo
Uuq(x)(Rhf(X))qAxJ sc(jfp(x)vp(x)Ax] , vf eC,[a;b];, 1)

b Ja b Jo
Uuq(x)(Rgf(x))qAxJ SCU fp(x)vp(x)Ax] , Vf eC,[a;b];, )

where the constant C does not depend on function f,and p; g are fixed parameters and u and v
be nonnegative weight functions. If T =R, then we get that the well known classical weighted
Hardy type inequality was studied by the papers [6] and [7].
Our main result reads as follows.
: 1<p< =1. i i i
Therome 1. Let p<g<oc and }/p+}/p 1. Then the inequality (1) holds if and only

B:=max{B,, B,} < satisfied, where

. N 4
B:= sup Uhkq_l(x,s)uq(x)AxJ va (r)ArJ ,

te[a; o) t

. Bre Y
B:= sup Uuq(x)ij (J.hkp_l(x,s)vp (T)ATJ

te[a; o)1 t

Moreover, B ~C, where C is the best constant in (1).

Therome 2. Let 1< p<g<o and }/p +}/p. =1. Then the inequality (2) holds if and only
A=max{ A, A} <o satisfied, where

. e Ve
B:= sup Ugfl(a(x),s)uq(x)Ax] Uv"’ (T)ATJ :

tefa; )7\ %
. Jary , S
B:= sup U uq(x)AxJ U g’ (c(x),s)v" (T)AT]

te[a; o) t

Moreover, B ~C, where C is the best constant in (1).
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The theory of h -discrete fractional calculus is a developing areas recently drawing attention
from both theoretical and applied disciplines. During the last decades, There have been of great
interest on this calculus and have been studied by many authors, we refer the reader to (see [1], [2],
[3], [4], [5], [6]) and references therein. Also study its applications in many fields of mathematics
(see [7], [8], [9]). However, h -discrete fractional calculus represent a very new area for scientists.
It is a subject of applied mathematics that has proved to be very useful in applied fields such as
economics, engineering, and physics (see [10], [11], [12], [13], [14]).

Now, we state the some preliminary results of the h -discrete fractional calculus which will be
used throughout this paper.

Let h>0 and T, ={a,a+h,a+2h,--} with VaeR.

Definition 1. (see [15]) Let f:T, >R . Then the h -derivative of the function f(Xx) is
defined by
D, f (t) = f(5h(t)h)_f(t), teT,

a

where o, (t) =t+h.
Definition 2. (see [15]) Let f:T, - R. Thenthe h -integral (h -difference sum) is given

b-a_,

b b/h-1 h
jf(x)dhxzz > f(khh= > f(a+khh,
a k=a/h k=0

for a,beT,:b>a.
Let D,F(x)= f(x). Then F(x) is called an h-antiderivative of f(x) and is denoted by
If(x)dhx [11]. If F(X) isan h -antiderivative of f(x) and beT,, we have that

.Tf (x)d,x:= F(b)-F(a).

Definition 3. (see [15]) Let t, €R. Then the h -fractional function is defined by
rit 11

(@) e W& h
t.“ :=h 5
I(H+1—a)
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