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O6uopazHooOpa3us U yCTOHYUBOCTH dKOcUcTeM. [ToHMMaHne MEeXaHU3MOB aJanTallul pacTeHUi
K CTPECCOBBIM YCIIOBHSIM ITOMOTaeT HaM MPOTHO3UPOBATh PEAKIMH PACTUTEIBHBIX COOOIECTB Ha
U3MEHEHHMS B OKpYXKalolled cpene, Takue Kak HW3MEHEHMs KJIMMara M aHTPOIOTeHHOe
BO3JICHCTBHE.

B 3axmroueHue, UCCIENOBAHMS AHTHUOKCUAAHTHOM YCTOWYMBOCTH PACTCHUM WIPAIOT
BA)KHYIO POJIb B HAayKe U IPAKTUKE CEIbCKOrO XO3sMCTBAa M 3Kosoruu. [IpomomkeHue stoin
paboTbl  OyZer cmocoOCTBOBaTh  CO3JAHUIO  0Oojee  YCTOWYMBBIX M HPOJYKTHBHBIX
CEeNbCKOXO3SMCTBEHHBIX CHCTEM M CHOCOOCTBOBATH COXPAHEHMIO IPHPOTHBIX JKOCHCTEM B
YCIOBHSIX H3MEHSIOLIETOCS MUPA.
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Cross tolerance mechanism of heat/cold shock vital for plant to cope with abiotic
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ABSTRACT

Global changes of environment changes such as temperature increase, drought, salinity,
heavy metals and chilling deadly affected to plants. Growth, development and reproductive
stages of plants disrupted by damages of stressors. As a first harbingers of stress condition
producing and accumulation of ROS happens in the cell. Naturally, accumulation of ROS is
toxic to plant cells, and lead to changes such as protein degradation, lipid peroxidation and
breaks of DNA, Hormonal dis-balance and other changes happened after stress treatment.
However, Cross tolerance mechanism serves as defensive strategy in plants during the stress
condition affected again. Obviously, accumulation of ROS, RCS, RNS have lethal consequences,
however, priming by heat/cold shock ameliorated crop’s physiological markers of plants.
Unfortunately, the molecular mechanism of Cross tolerance does not study deeply. Future
perspectives cross tolerance and priming by short term stress will be useful method to save crop
productivity under temperature condition.

INTRODUCTION

Abiotic stress and biotic stress are deadly affected factors to all the organism, including
plants, and recent decade studying the molecular mechanisms of plants in response to stress
condition is in priority. Obviously, under stress condition plants justle for life, and activated
many mechanism, activation of genes, enzyme activities, HSP protein and other metabolites
which ameliorated plant’s defense. Moreover, synchronic action of all these mechanisms tightly
linked each other, and regulated to high precision. Thus, through defensive mechanism in plants
will be more tolerable to other stress, and this phenomenon known us as a cross tolerance. Cross
tolerance has developed during the long time across the evolution, and it improves to plants fast
adaptation to environmental changes. Consequently, strong immune system of plants has
established because of cross tolerance mechanism [1,2]. Cross talk provides with flexible
signaling network and also maintained energy saving, thus ameliorated defense against to the
infections. As a familiar to us, phytohormones are critically important mediator of plants in
fighting stress [3]. One of the key player of hormonal cross tolerance mechanism is
brassinosteroids, which ensures antioxidant defense in response to excess amount of hydrogen
peroxide. Brassinosteroid’s genes expression occur in the cell as a result of signaling cascade
mediated by the cell surface receptor kinase brassinosteroid insensitive 1 (BRII). The
overexpression of the stress responsive genes, production of metabolites, PTI and PCD showed
the direct intervention of brassinosteroids [4,5]. Furthermore, cross tolerance mechanism of
plants begin with accumulation of Reactive oxygen species such as superoxide (O27) and
hydrogen peroxide (H202), consequently they triggered the thiol-modulated redox- and nitric
oxide-mediated (NO) signalling pathways. Additionally, superfluous amount of pollutants in air
leads to generation of ROS in apoplast, which cause of signaling network activation. Activation
of signaling cascades against to stressor, mediated by hormonal system such as ethylene (ET),
salicylic acid (SA), abscisic acid (ABA), auxin and jasmonic acid (JA) [6,7,8]. Moreover,
Reactive carbonyl species (RCS), reactive nitric oxide (RNS) and reactive oxygen species (ROS)
are cause heat or cold priming cross tolerance of plants, the importance of these molecules lay in
the role which activated stress responsive genes, heat shock proteins (HSP), plant hormonal
system, ROS scavenging enzymes, enhancing metabolism, osmolytes and redox signaling
pathways. Stress affects sensed by receptors located on cell wall and it was a cause of activation
of reactions by using secondary metabolites.
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Figure 1 Heat/cold priming cross tolerance mechanism. Figure adapted from Hossain, M. A
(et.al) [22].

Calcium ion, RNS, ROS, RCS and kinases are vital molecules which helps to plant
tolerance against to heat, cold stress. The main change which is capable regulate stress tolerance
of plants under temperature stress is a rigidity/fluidity of membrane [9,10,11,12].

Temperature stress affected negatively to plants, through delaying their growth and
development, reducing photosynthetic abilities, increasing water loss and at the result it can lead
to cell death. Interestingly, not extremal temperature and short term high temperature stress
improved tolerance of plants to not only high temperature stress. Also, heat priming useful for
cross tolerance of plant, agricultural usage of this method critically, but the mechanism of these
methods tightly linked with biochemical, physiological and molecular changes, which are not
known us [13,14].

Naturally, freezing or chilling cold stress lead to worsening of plant’s physiological
condition, but plants which primed by cold temperature illustrated the improved tolerance to
other stress. Additionally, cold priming lead to the activation of cold regulated proteins (COR),
accumulation of antioxidants, sucrose, enhancing of enzymes activities participating to Calvin
cycle [10,12,15].

Eventually, heat shock or cold shock provide cross- tolerance to stress in plants,
temperature treatment helps to plants to be more tolerable to other stresses.

The mechanisms which lay in the basis of the cross tolerance of heat/ cold priming,
tightly bounded with ROS accumulation. The production of ROS highly regulated with
enzymatic or non-enzymatic redox networks. Additionally, antioxidant defense participated to
control the ROS concentration in the cell, antioxidant scavenger basically located in apoplast,
cytosol and including chloroplasts, mitochondria and peroxysomes. Experiment which proven by
maize showed that the heat shock for 4h affected to accumulation of hydrogen peroxide (H202),
after several times those maize was more tolerable to drought stress, heat and salinity stress.
These study demonstrated the importance of H202 as a signaling molecules in cross stress
tolerance in Zea mays [17,18]. As another study reported, the cold, high temperature and
paraquat primed tomato plants showed a higher tolerance level to chilling, drought and photo-
oxidative stress tolerances, as a result of accumulation of hydrogen peroxide in apoplast [19].
Accumulation of hydrogen peroxide led to activation of ROS scavenging enzymes such as
catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione
reductase (GR), consequently, take place a mitogen-activated protein kinases (MAPKSs)
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activation. Also, this report shows the cross tolerance interaction of hydrogen peroxide and
MAPK kinase [19].

methylglyoxal (MG) is reactive carbonyl specie which produced by as a byproduct of
glycolysis and accumulation of Methylglyoxal (MG) is toxic to plants cell. MG affects to cell
deadly, by disrupting molecules such as protein glycation and glycation accumulation. Similarly,
effects such as mutation, DNA strain breaks, exchange of sister chromatids, were detected in
organism when RCS concentration higher than usual. In plans producing of MG happens through
several processes including enzymatic, non-enzymatic pathway, photosynthesis and respiration.
Despite the side effects of MG, methylglyoxal serves as signaling molecule, which lead to
changes of stomatal conductance, cross talk interaction with ROS, Ca ions and Abcisic acid
level. Correspondingly, RCS molecules capable to act as signaling to cross tolerance like ROS
molecules. Additionally, the exogenous treatment by MG can affect positively, by improving
germination rate, growth of wheat under salt stress [20,21].As a ROS molecules RCS are serve
as a signaling molecules which tightly bounded with cross tolerance mechanism of plants, also
exogenous treatment with MG helps to crops’ growth [22].

This research was funded by the Science Committee of the Ministry of Science and
Higher Education of the Republic of Kazakhstan grant No. AP19676731
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YK 3282775
YiyulieHue reHOMHOI0 peakTHpPoBaHusA ¢ noMoumbio aHTH-CRISPR Oenkos
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KopoTkue nanuHapoMHbIe TOBTOPBI, pacnonokeHHble peryisapHsiMu rpynnamu (CRISPR)
CITy’KaT BaKHEHIIMM KOMIIOHEHTOM aJallTUBHOIO UMMYHHUTETA y 3HAYUTEIHHON YacTH GakTepuit
U apxeil, oOecneumBas 3alIMTy OT BTOPTaloOUIMXCs (aroB M MOOMJIBHBIX TE€HETHYECKHX
snementoB [1]. BsaumopeiictBue wmexay CRISPR-PHK  (crRNAs) u  CRISPR-
acconuupoBaHHbIMU Oenkamu (Cas) MO3BOJISET OOHApyKHMBAaTh UYXKEPOJAbIH T'€HETHUECKUI
MaTepuaj ¢ MNOCIEAYIOIUM €r0 YHUYTO)KEHHEM, 3aIlMINAs TEM CaMblM OPraHM3M XO35iMHA OT
uHpekun. OAHAKO aJanTUBHOCTH (aroB NpHBesia K MOSBICHUIO MEXaHU3MOB YKIIOHEHUS WIN
npeononenuss ummynutera k CRISPR, Bkitoyas myTtanuio mocieqoBaTelbHOCTEH-MUILIEHEH U
BbIpaboTKy aHTU-CRISPR Genkos (Acr) [2].

[losiBnenne texHonoruu penakruposanus reHoma CRISPR, B yacTHocTH OCHOBaHHOM Ha
cucreme Streptococcus pyogenes (Spy) Cas9, mpou3BeNO PEBOJIOIHUIO B OMOMEIUITUHCKUX
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