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Sufficient conditions for existence of the solution and coercive estimation for the solution
of a third-order linear differential equation with a variable high coefficient in the following form

Ly =5 (V5 y | a0 +ir()+ 2y = 100, ®

are obtained in this work, here f eL =L (R), 1< p<+w, 120.

In the works of R.D.Akhmetkaliyeva, L.-E.Persson, K.N.Ospanov, P.Wall [1], which was
published in 2015 various cases of the third-order linear differential equation with variable high
coefficient are studied in details, and the results are presented. The fifth-order linear differential
equation with a variable high coefficient was considered in the researching work of A.E.Muslim

[2].

The general form
(L+E)y = —ml(x)(mz(x)(mgy')') +Ha) +ir)+Aly=f(x), fel,, 1>1

of the third order differential equations was considered in the dissertation work of
R.D.Akhmetkaliyeva «Coercive estimate of the solution of the singular differential equation and
its applications» [3].

Definition. A function Y(X) € L,(R) is called a solution of the differential equation in the
following form

L,y =-m)mey | +[ae) +ir(9+aly = £ (),
if there exists a sequence {y,| ,of three times continuously differentiable functions with
compact support , and |y, — y||p -0, Ly, - f||p — 0, (Nn—> ) are fulfilled.

A symbol C®(R) is signified the set of all k times continuously differentiable functions
k . X)+ A +ir(x
o(X) . ZSup‘go“)(x)' < oo holds for a functions ¢(x) . Let W, (x) := |q( )5 v ( )| .
j=0 XxeR +
Our main results in this work read:
Theorem. Suppose that g(x) and r(x) are continuous functions on R and satisfies the
following conditions:

q(x) S
— 2 >1,r(x)>1,
25+10x% + x* (x)
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C_1<M M

< , <c, x,7eR, [x—n|<1 for some ¢~ 0
q(7) r(n)

X) —-W
sup Wal0 W, (7) _
et W (4 x =77
Then there is a number A, >0, such that there exists a unique solution y forall 1> A,
of the equation (1) and for it the estimate

400, 0<v<§+1, ye(O,l], A=0.

+[(@() +ir() + )y <] f )

holds.
For proving the obtained results firstly, we construct the function in the following form
1 ei(x_ﬂ)§1

_3(5+X2) éflz , —0=<n=<X,

i(X*’Y)éEj

|\/|0(X,77,/1):

1 i e

35+x7)i2 &

Here & =£,(x) (s=1,2,3) are the roots of the equation:

(5+ x2)§3 —r(x)+i(q(x)+1)=0.
Let d(77)e Cy(—11) be a function in the following form

, X<X1n <+,

1
1, <
am={" M=3
0, |n|2]“
We denote

+ x?

)= ) i) 7000 9 1280

M, (x,7,2) = —[2(\/5+772 |5+ (- x)+ 36+ 720 (7 - x)}_ﬁz'\"g%;mﬂ) _

—{(\/SMZ)"\/5+772d(n—x)+4(\/5+ x2)\/5+772d'(77—x)+3(5+XZ)d"(n_X)} 5'\/'05;,77,1)_

n

—[(\/5+772)”\/5+772d'(77—x)+2(\/5+x2)\/5+772d"(77—x)+(5+xz)d"'(n—x)}Mo(x,n,ﬂ).
We represent the next integral operators:
(M ()1 )62)= [ M (x,, 2)F (x)ax (j =1.2.3).

Lemma 1. Let 1< p <+, k(x,77) be a continuous function and
(Kv)(7):= [ k(x,mhv(x)ex.
R

Then
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K], ., SSUEJ'Hk(x,n)|+|k(n,x]]dx.
nerR R

Lemma 2. Let all conditions of the Theorem 1 hold. Then the operators Mj(ﬂ), j=123
are continuous in the L, and they satisfies the following estimate:

||M1(/1)||Lp—>|—|:> SW%&/(U), IUE(O,].], O'<V'<%+1 (3)
A

”MZ(;L)”LP—)LP < (4)

and, also
CS

M (D], ., G o)
where bi(x):3\/|r(x)_i(q(x)WL}LX :

5+ x°
Lemma 3. Let all conditions of Theorem hold, then it satisfies the next equality:

L, [Ms(2)1 )= () + [Mo(A) Jir) + [M(2) T o). )

Suppose that all conditions of Theorem holds for q(x), r(x) and let l+i.:1, where

p is conjugate number of p. The symbol (Lﬂ)' means the operators, which operate in the
L, (R), which is described by the next equality:

(Ly,2)= (y,(Li)'z), yeD(L,), ze D((Lﬁ)').
Apparently, from this it leads to:

(L,)z= (m(\/ﬁz)j +(q(x) + A —ir(x))z.

We examine the third-order differential equation in the following form
(L,)z= (\/5+ X (\/5+ X z)j +(q(x) + A —ir(x))z = g(x), (6)

here g(x), r(x) are continuous functions with a real value, 2 >1 and g(x) € Lp,(R).

Lemma 4. Let all conditions of the Theorem hold for the continuous functions q(x),
r(x) . Then there is a number 4, >0, such that equation (6) has the solution for all 1> 4, .

Proof of Theorem. Applying the estimates (3) and (4) from Lemma 1, we make a
conclusion that there is a number 4,20 such that the inequality

||Ml(ﬂ,)||LﬁLp +||M2(ﬂ]|LﬁLp g% fulfills for 4> A,. Because of this there exists a bounded

inverse operator G’l(/l) in L, of the operator, which is defined in the next form:
G(4)=E+M,(1)+M,(4). Consequently, assuming an equation h=[E+M,(1)+M,(1)]f,
taking into account an equality (5) from the Lemma 2, we receive that L, [M3(Z)G‘l(/1)h]77 =h.
So, it ensues that equation (1) for any right-hand side f has the solution.
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We make a conclusion that there is an right inverse of the operator (Lﬂ ) which operates in the
spaceL (R) during the 4> 2, by applying Lemma 3. A right inverse is defined on L (R). So,
ker((L,))] =10}, here ((L,)] is conjugate operator of (L,). Hence, we get that kerL, = {0},
A> 2 =max(4,,4,) due to ((Ll)) is an extension of the operator L,. So, L, is bounded

invertible operator in the space Lp, (R) Actually, we obtain that

(Lz)il: Ma(i)G_l(ﬂ)’ ZZZ:maX(/lo,/L_) (1)
Suppose that the equation (1) has a solution, and solution is y . Here 4> 1 = max(4,,4,)

. We should prove the estimate (2) by applying (7), Lemma 1 and all conditions of the Theorem.
We obtain that

@+ 2+irL, )‘lHLﬁLP =@+ 2+irM,(2)67(2)

L,—L,

n+l
< csup [b3(7)b;? (x)exp[- ofx 7o, (x)|ix <
ner pa

n+l

<csupb, () jexp[— olx — b, (x)dx < co.
n-1

neR

by combining the last two estimates we get (2). The Theorem is completely proved.

Due to this and (1) we make a conclusion that

< cﬂ| f ||p + ||y||p) Eventually,
p
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For a measurable function ¢:(0,) — (0,00) the generalized fractional maximal
operator M, is defined by

(M, )0 =supg(t) [|F(y)ldy.

B(x,t)

where B(x,t) is the ball in R" of radius r centered at x e R".
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