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Once the Chlorella microalgae have absorbed the pollutants from the flue gases, they can be 

harvested and treated with recycling water. The recycling water acts as a medium for the microalgae 

to continue photosynthesis and CO2 fixation, as well as providing nutrients for growth. The treated 

microalgae can then be reused for further treatment of flue gases. The process of CO2 fixation by 

microalgae involves several steps. First, the microalgae are cultivated in a suitable growth medium 

containing the necessary nutrients and CO2. The microalgae then absorb CO2 from the air or from a 

source such as flue gas from a power plant. The absorbed CO2 is then used in photosynthesis, 

where the microalgae convert it into organic compounds such as lipids, proteins, and carbohydrates. 

No additional CO2 is created, while nutrient utilization is achieved in a continuous fashion leading 

to the production of biofuels and other secondary metabolites. Therefore, microalgal-mediated CO2 

fixation coupled with biofuel production, and wastewater treatment could present a promising 

alternative to existing CO2 mitigation strategies (Wang et al. 2008; Lam et al. 2012). Biological 

CO2 fixation appears to be the only economical and environmentally viable technology of the 

future (Ho et al. 2011; Kumar et al. 2011). 

In practice, the treatment of flue gases with recycling water after treatment with Chlorella 

microalgae involves several steps. Firstly, the flue gases are passed through a bioreactor containing 

Chlorella microalgae. The microalgae absorb CO2 and other pollutants from the flue gases, and 

continue to grow and produce biomass in the bioreactor. Once the microalgae have absorbed the 

pollutants, they are harvested and treated with recycling water. The recycling water provides a 

medium for the microalgae to continue photosynthesis and CO2 fixation, while also providing 

nutrients for growth. The treated microalgae can then be reused for further treatment of flue gases, 

providing a sustainable and cost-effective solution. Past research initiatives suggest that practical 

CO2 utilization using microalgae still requires innovative scientific and technological 
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breakthroughs to render this a feasible technology. Unless coupled with other technologies or 

coprocesses, investments into microalgae R&D are unlikely to make a considerable contribution to 

solving the CO2 problem globally. The use of microalgae can be classified as a direct CO2 

mitigation technology. Direct strategies usually encompass much higher economic projections, 

going into billions of dollars, as opposed to indirect approaches. Therefore, for this technology to be 

a success, future R&D should focus on achieving higher biomass productivities, culture stability 

over long periods of time, economical harvesting techniques and improved biomass to-fuels 

conversion technologies. The economics of microalgal CO2 utilization may be improved by 

integrating this procedure with other co-processes. Potential co-processes include wastewater 

treatment, production of useful metabolites, as well as biofuels, animal feed and biofertilizer 

manufacturing (V. Bhola et al. 2011). 

Microalgae 

The use of Chlorella microalgae in treating flue gases with recycling water has several 

advantages. Firstly, it is a highly efficient process that can remove up to 90% of the pollutants from 

flue gases. Secondly, it is a sustainable process that does not require any chemicals or energy 

inputs. Thirdly, the harvested microalgae can be used for a variety of applications, such as biofuels 

or animal feed, providing a valuable resource. Microalgae are able to endure high concentrations of 

CO2, and this inherent ability makes them very advantageous in utilizing CO2 from flue gases of 

power plants. They are fast growers with biomass volumes that double within 24 h. At a flow rate of 

0.3 L/min of air with 4 % CO2 concentration, most microalgal strains are able to achieve a carbon-

fixation rate of roughly 14.6 gcm-2/day (Farrelly et al. 2013). 

Photobioreactor (PBR) 

Microalgal production using closed PBR technology has been implemented to overcome 

some of the key problems associated open pond production systems. A major advantage of PBRs 

when compared to open raceway systems is that they permit culture of single species of microalgae 

for prolonged durations with lower risk of contamination (Brennan and Owende 2010). Harvesting 

costs may also be significantly reduced owing to the higher cell mass productivities attained, and 

CO2 is also utilized more effectively (Chisti 2007; Brennan and Owende 2010; Vasumathi et al. 

2012). Despite the fact that a great deal of work has already been done to develop PBRs for 

microalgal cultures and effective CO2 utilization, more efforts are still required to improve PBR 

technologies and know-how of microalgal cultures. Photobioreactor design and development is 

perhaps one of the first major steps that should be undertaken for efficient mass cultivation of 

microalgae for carbon mitigation (Ugwu et al. 2008). An increase in the maximum growth rate of 

microalgal species due to higher CO2 concentrations has been investigated by many researchers 

(Cheng et al. 2006; Ono and Cuello 2006; Lo ´pez et al. 2010; Ho et al. 2011; Kumar et al. 2011). 

Microalgal-CO2 fixation occurs via photoautotrophic growth. Therefore, the CO2-fixation potential 

of microalgal species should positively correlate with their light utilization efficiency and cell 

growth rate. Increases in temperature (20 C) can cause significant reduction in CO2 solubility, 

which eventually leads to a decline in the photosynthetic efficiency. 

 Green microalgae that are effective carbon sequesters generally belong to the genera 

Chlorococcum, Chlorella, Scenedesmus and Euglena. A study by Kurano et al. (1995) showed that 

C. littorale was able to reach a maximum cell concentration of 4.9 g L-1 at a 20 % CO2 

concentration. When exposed to CO2 concentrations of more than 20 %, a short lag phase was 

observed prior to active photosynthesis. It must be noted that the performance of microalgal strains 

does not solely depend on CO2 concentrations, but also on culture and experimental conditions, 

such as culture medium, temperature, light intensity as well as reactor design. Variation in any of 

these conditions could have an effect on the CO2-fixation efficiency of the strains (Ho et al. 2011). 

Challenges and economics associated with microalgal CO2 sequestration 

There are numerous hurdles that need to be overcome before microalgae can be employed to 

significantly reduce CO2 emissions at a commercial level. Strain selection and design of the 

culturing system are key factors in maximizing CO2 mitigation rates. Even though open systems are 

much more cost-effective compared to closed PBRs, it is difficult to maintain culture purity in such 
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systems. Closed systems are efficient vessels for sustaining axenic cultures as well as minimizing 

CO2 loss to the atmosphere. However, cleaning and sterilizing of large-scale PBRs is difficult, and 

this then poses a problem in the production of high value-added products. Land availability for set-

up of propagation vessels also becomes a problem in developing countries (V. Bhola et al. 2011). 

For example, Kadam (2001) demonstrated that 1,000 ha of land area will be required for the 

construction of open ponds to mitigate CO2 emissions from a 50-MW power plant. Carbon-fixation 

rates for microalgal cultures differ under varying operational conditions. Geographical 

considerations must also be taken into account: fluctuations in temperature and solar irradiation 

over the seasons. Tropical areas are often considered most suitable for microalgal cultivation. To 

maximize the overall economic and environmental efficiency of microalgal CO2 sequestration, 

culturing systems should be located as close as possible to the point source. Furthermore, a 

comprehensive plan should be compiled for the large-scale production of microalgae. This scheme 

should encompass modeling and LCA of the overall process. Failure in doing so could render many 

algal production systems unsustainable. It should also be noted that potential leaks from large-scale 

algal systems could cause ecological damage by eutrophication (Pires et al. 2012; Farrelly et al. 

2013). 

 Biomass recovery poses a challenge in microalgal biomass production processes. Common 

harvesting practices include flocculation, filtration, flotation and centrifugal sedimentation. Some of 

these procedures can be highly energy intensive. Selecting an appropriate harvesting technology 

during microalgal cultivation is crucial to economic production of microalgal biomass (Brennan and 

Owende 2010). The choice of harvesting technique is dependent on microalgae characteristics such 

as size, density and the value of the target products (Packer 2009; Brennan and Owende 2010). 

Flocculation is a popular technique as it is straightforward and cost-effective. This harvesting mode 

uses multivalent cations to overcome the overall negative charge present on the surface of 

microalgae. Multivalent metal salts (ferric chloride, aluminum sulfate and ferric sulfate) and 

polymers (polyelectrolyte and chitosan) are usually effective flocculants. An ideal flocculant is one 

that can be applied at low concentrations, inexpensive, non-toxic, and further downstream 

processing is not adversely affected by its use. For effective microalgal harvesting, flocculation is 

often combined with ‘‘floating.’’ This simple technique allows microalgae to float on the surface of 

the medium and can be easily removed as scum (Packer 2009). Life cycle analysis (LCA) 

essentially covers cultivation, harvesting, lipid extraction and finally product formation. Wastewater 

emissions as well as waste (solids or wastewater) treatment is generally not covered in a LCA study 

(Khoo et al. 2011). 

Conclusion 

In conclusion, the use of Chlorella microalgae in treating flue gases with recycling water is a 

promising approach for reducing air pollution and greenhouse gas emissions. The theoretical basis 

of this approach is based on the ability of microalgae to photosynthesize and fix CO2, as well as 

remove other pollutants from flue gases through bioadsorption. The practical basis involves several 

steps, including passing the flue gases through a bioreactor, harvesting the microalgae, and treating 

them with recycling water. While there are challenges to be addressed, the potential benefits of this 

treatment approach make it an important area of research and development in the fight against 

climate change. For effective CO2 sequestration, an in-depth knowledge of flue gas composition 

and biology of microalgal cells would be required. Temperature, pH, SOx, NOx, heavy metals, 

light, culture strain and density, as well as CO2 mass transfer and O2 accumulation are major 

factors that affect CO2 sequestration and biomass production. LCA is imperative to ascertain 

economic feasibility and environmental sustainability of algal CO2 sequestration systems. For 

example, harvesting and dewatering are processes that are highly energy intensive; thus, research 

efforts should focus on developing an optimal harvesting strategy. Furthermore, strategic 

engineering decisions should be taken into consideration to realize effective microalgal CO2 

sequestration systems. Microalgal cultivation requires the development of suitable reactors with 

features such as high S/V ratio, mixing, mass transfer, scalability and ease of operation. Airlift 



1217 

 

bioreactors that distribute light through optical fibers could be a possible solution (this increases the 

ratio between the illumination surface and reactor volume). 
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