BpamaTensHbie 1BUKEHUS pOTOPOB BUOpOBO3OynuTeneii 1,2, moBOpPOT KOpiryca OTHOCUTEIBHO
HaroJIOBHHUKA, a TAK)KE NIepeMelIeHIe CBalfHOr0 3JIEMEHTA BIOJIb OCH Z.
Taxum 06pa3om 3a 00001IeHHBIE KOOPIUHATHI CIETYeT PUHSITD:

0 =0 (4)

3a yriaoBoi NOBOpOT potopa 1 mpumem ¢, .

d; =, (5)

3a yriaoBoi HOBOPOT POTOpa 2 IPUMEM ¢,.
O; =y (6)

3a er'IOBOfI IOBOPOT KOpITyCa MallIMHbI IPUMEM ¥/

; =12 (7)
Koopaunara nepemenienrue cBaiHOTO 3JIEeMEHTa BJIOJIb OCH Z.
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The surface of the body has the shape of a radius of curvature in the vicinity. In this case, the
body should be lower. A solid body rests on a rough horizontal plane at a point D (Fig. 1.).
Let the plane perform translational rectilinear harmonic oscillations according to the law

&(t) = Asin(at) , directed at an angle A to the horizontal.
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Fig. 1. A cylindrical solid on a rough surface

Here: A,o — amplitude and frequency of oscillations, t — time. The inertial properties of the
body are characterized by the mass m and the moment of inertia J . relative to the center of mass C.

We will set the position of the body by the coordinates of the center of mass X_, yC in the Oxy,

coordinate system associated with the rough plane and the rotation angle ¢ . The interaction of a solid
with a plane occurs through the action of the normal reaction N and the sliding friction force |~ o

(neglected rolling friction). We assume that friction obeys the law of Amonton-Coulomb:
F<f-N,

where f — coefficient of sliding friction. In this paper, we consider continuous motion, N >0. The

body is also under the influence of gravity G. In the relative motion to all forces it is necessary to add
the portable inertia force:

P=m-A -o’sin(w-t) @

The motion under investigation can consist of the following steps: rolling without sliding and
rolling with sliding. All stages of relative motion are described by a system of differential equations
arising from general theorems on the motion of the center of mass and on the change in the Kkinetic
moment [1,2]:

mx. = F +Pcosg,
my. =N —mg + Psin g, 2
J.¢ =—Fy. —Nlsing.

For a more convenient recording, we consider the direction of the rotation angle clockwise to be
positive. The coordinates of the center of mass C can be represented as:

X, =X, —Isin g, y. =R—1cosg, 3)

1377



where Xy Yo = R - coordinates of the center of curvature O,;1 =0,C. When rolling without sliding,

the instantaneous center of velocity is at the contact point D, i.e v, =0, or
Xo, =R, Y, =0 (4)
Using (3), (4), we find:
. = @(R—Icosp)+¢@’lsing, (5)
and then from the first equation of system (2) we determine the friction force:

F =m[-A-” -sin(et) -cos B + ¢(R — 1 cose) + ¢°l sing] . (6)

Similarly, substituting the expression in the second equation
Vo = @ sing(R—1cose) +¢°lsing, )

determine the normal reaction:

N =m[¢lsing + @*l cosp — A- @* -sin(at) -sin B + g]. (8)

Finally, using (6), (8), from the third equation of system (2) we obtain the differential equation
for the angle of rotation:

5e K
J—°+(R—Icosﬂ)2+lzsin2¢ ©)
m

where

K = A-@” -sin(at)[Rcos B — I cos(p + B)]- glsing — ¢l sing.

We consider the equation of motion (9) of the rotation angle together with the initial conditions

t=0:0=0,, 0=, (10)

To solve problem (9)(10), using the method of partial discretization of nonlinear differential
equations [3], we obtain
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K(t)

(b:%_zn:(ti"'tm) 5(t_ti)_

“C +(R-1cosp)? +1%sin® p(t;)
m (11)
_ K1) o(t—ti,)

J .
“C 4+ (R-1IcospB)? +1%sin’ p(t;,,)
m

where &(t)— Dirac delta function.

By integrating the right-hand side of differential equation (11) twice, we obtain the general
solution in the form

n K(t.
p(t) = %Z(ti +1i,1) 3 -
= “C 4 (R-1cosp)? +1%sin p(t;)
_ m (12)
— K(ti,) (t-t,OH{-t ) r+Ct+C,,
HCJF (R-Icosp)? +1%sin? p(t;,,)

(t-t)H{E-t)-

where H(t) — Heaviside function, C, and C, — are arbitrary integration constants.
Using the initial conditions (10), we have

@(t):%i(ti ) S K(t) (t—t)H({t—t)—
=1 =€ +(R-IcosB)* +1?sin® p(t;)
" (13)
K(ti+l) v
=3 (t-t  H@E-t.)r+ oot + 0.
H¢+(R—Icos,b’)2 +1%sin’ p(t.,,)

According to equation (13), the expression of the function ¢(t) at points t; (i :1,_3) will be

o) = ooty + @y,
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K(t,)
‘:T:3+ (R-1cospB)? +17sin? p(t,)

(D(tS):%(tl-i_tZ) J Eb)
FCJF (R—1cosp)? +1%sin® p(t,)

1 .
(D(tz) = E(tl +t2) (tz _tl) + (potz + @y,

(t3 _tl) +

26 -t) 1)

(t; —t,) + oty + .
“C +(R-Icosp)? +1%sin’ p(t,)
m

Next, using the method of mathematical induction, we construct an analytical expression of the
desired function at an arbitrary point t (i=1,n)

o(t) =5 (6 +1) 5 L
F°+(R—Icos/3)2 +1%sin® p(t,)

(t; —t)+

. 14)
12 K ti . (
+EZ(ti+1 _ti—l) 3 ) (tj _ti)+¢0t1 * Po-
=2 € +(R-lcospB)? +1°sin’ p(t,)
m

Figure 2 shows the curves of the angle of rotation ¢(t) of a cylindrical body located on a
horizontal surface. The system parameters correspond to the values:m=50kg, 8 =0,524rad,
R =0,5m, ¢(0) =0,175rad, ¢»(0) =0rad/s.

In this case, the center of mass of the cylindrical body is offset from the geometric center by
half the radius, i.e. | =0,25m.

From graph 2a it follows that the nature of the beating occurs with the corresponding
parameters A=0,1m, w=23rad/s

Figure 2b shows a graph of the change in ¢(t) at A=0,001m, @ =10rad/s.

As follows from this graph, fluctuations in the angle of rotation obeys a harmonic law and has
an established character.

o)
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Fig. 2. Curves of the angle of rotation ¢(t)

It should be noted that forl < 0,25m, the period of oscillation of the rotation angle increases, and
for 1 > 0,25m the period decreases.
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Annotation. The article investigates longitudinal wave processes in the rail under the influence
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Key words: longitudinal oscillation, railway train, auto- coupling device.
1.Introduction
Most of the well-known works devoted to longitudinal vibrations occurring in a train solve
problems mainly of unsteady longitudinal vibrations characteristic of transient conditions and special
conditions of train movement and the influence of these vibrations on the realization of the traction
force of the traction rolling stock. At the same time, in the process of train movement under the
influence of constant or slowly changing forces, the regime of stationary longitudinal vibrations
occurring in the train is established. In stationary fluctuations, the forces arising in the shock-traction
devices (automatic coupler devices) are determined only by the applied external forces and are
independent of the initial conditions. In this work, we study the longitudinal vibrations occurring in the
composition and the influence of the longitudinal vibrations of the locomotive on these vibrations. In
this case, the force arising between the electric locomotive and the train is external to the composition
of the cars.
In this work, a train moving rectilinearly and uniformly with speed V (Figure 1) is presented as
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