ПОДСЕКЦИЯ 12.2 ТРАНСПОРТ, ТРАНСПОРТНАЯ ТЕХНИКА И ТЕХНОЛОГИЯ

UDC 629.3.027.3

INNOVATIVE REPAIR KIT

Kalshora Espenbet, Bekmukhamedov Bekzat

*zkaty*777@*mail.ru* L.N.Gumilyov Eurasian National University, Astana, Kazakhstan Scientific supervisor – D. Kushaliev

The analysis showed that bearings and shock absorbers are non-recoverable elements that perceive the greatest share of wear. Increasing their durability and cost-effectiveness of manufacturing is a significant and urgent task. In a car, various groups of parts and assemblies are not equally reliable, some of them serve the entire operational repair cycle, others part of it, and others work very little time compared to the service life of the car before major repairs. Functional tuning is designed to bring the reliability of various parts and assemblies, which is not provided at the design and manufacturing stage, equally.

The design of a sliding bearing for reciprocating motion is proposed, in which the conditions of activation of the working surface by plastic deformation and suppression of oxidative processes are fulfilled [1, 2, 3, 4, 5]. For this purpose, the bearing is equipped with a movable insert in the form of a helical cylindrical spring (an intermediate element), which in the oscillatory mode is forcibly rotated only in one direction and thus uniform wear and lubrication distribution is achieved. The spring tension required to achieve microplastic deformations is created by its preload. In the oscillatory mode, due to the twisting or unwinding of the spring liner, elastic tension occurs, respectively, on the inner or outer surface, and it is forcibly rotated in one direction (ratchet effect). Suppression of oxidative processes in the proposed design is easily achieved by an oil seal. A positive effect is also obtained by reducing the adhesive component of friction (rest friction) and partial implementation of the ideas of N.E. Zhukovsky's "on motion without friction" (rotation of an intermediate support) without using an external energy source for this. Such a bearing (Fig. 1) can be widely used instead of needle bearings of the driveshaft, suspension silentblocks, steering hinges and other pivots operating in reciprocating mode.

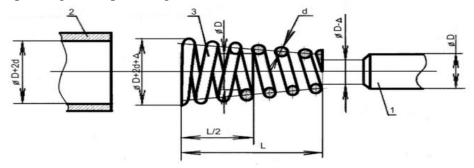


Figure 1. Scheme of a bearing with a movable spring insert

Examples of the implementation of some components of car units using a bearing of a new design are given below.

Needle bearings do not rotate, but only oscillate with small amplitudes (within the contact zone) and actually perform the function of a clutch between shafts with variable misalignment. Under the influence of torques arising during transmission through them, high contact stresses,

dents are formed on the working surfaces of the bearings, called "false brinelling", and the most loaded bearing is jammed. In a standard needle bearing, there is no inner ring, and the surface of the pin serves as a raceway for needles.

(Fig. 2) shows a photograph of the part of the pin on which the bearing needles worked, with pronounced dents (false brinelling) formed during operation in severe road conditions.

Figure 2. Sinks with traces of wear ("false brining")

In the crosspieces of the cardan joints, the same wear occurs as in the bearings of the pin suspension. For oscillatory movements with small amplitudes $\Delta \alpha$ (Fig.3) and large normal Rc loads, needle dents form on the working surfaces of the ring and the spike of the crosspiece, and further operation becomes impossible and dangerous.

The literature [8, 9, 10] also describes sliding supports containing fixed intermediate elements (inserts) in the form of cylindrical spiral springs with rigidly fixed coils, which could be used instead of needle bearings.

The necessary precision of manufacturing a traditional fit requires the use of high-precision equipment and expensive tools, which is economically unprofitable for the manufacture of a spring insert and parts mated with it. Therefore, it was proposed to make the spring insert conical, and the rest of the mating surfaces of the parts with it cylindrical.

Photos of Direct load-bearing ball joint (Fig. 3). The upgraded crosspiece of the VAZ Niva car is shown in (Fig. 4).

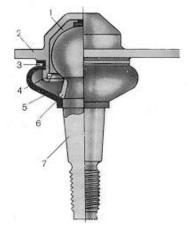


Figure 3. Direct load-bearing ball joint (a) and a variant of its modernization (b) using spring liners 1 – plastic insert; 2 – hinge body; 3 – spring ring; 4 – locking ring; 5 – rubber cover; 6 – spacer sleeve; 7 – hinge pin

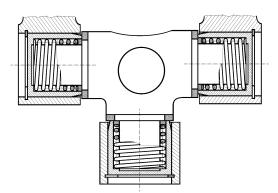


Figure 4. The upgraded crosspiece of the VAZ "Niva" car

Suppression of oxidative processes in the proposed design is easily achieved by an oil seal. A positive effect is also obtained by reducing the adhesive component of friction (rest friction) and partially implementing the ideas of N.E. Zhukovsky "on motion without friction" (rotation of the intermediate support) without using an external energy source for this. Such a bearing can be widely used instead of needle bearings of the driveshaft, suspension silentblocks, steering hinges and other pivots operating in reciprocating mode.

In this work, the object of the study was the rear shock absorber of the VAZ 2108 car, (Fig. 5).

Changes were made to the design of the shock absorber piston concerning the piston ring, made according to the type of helical cylindrical spring with preloaded coils. The material of such a ring is a square–section wire made of 65G copper-plated steel.

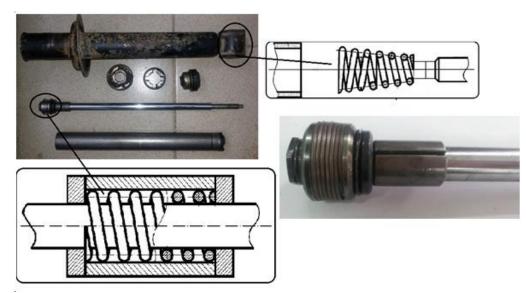


Figure 5. The rear shock absorber of the VAZ 2108 car: the design of a piston with a seal made of a square-section helical cylindrical spring with preloaded coils

The proposed sliding bearings for reciprocating motion can be used in railway, automobile transport, suspension units, shock absorbers, steering, cardan gears, bearing units of aircraft, electrical contactors, sewing, mining, oil and gas production and processing industries and some others where traditional sliding and rolling bearings are used under heavy loads in the reciprocating-rotational mode [11].

References

1. V.G. Kuranov, A.N. Vinogradov, A.S. Denisov. Wear and tear: a monograph.// Sarat. gos. tech. un-t, - Saratov, SSTU. 2000. P.136.

2. V.G. Kuranov, A.N. Vinogradov. Movement without friction and wear: studies. manual// Sarat. gos. tech. un-t,- Saratov: SSTU. 2007. P. 52.

3. V.G. Kuranov, A.N. Vinogradov, A.V. Burov, Yu.A. Petrov, V.A. Karakozova. Sliding bearing for reciprocating motion// Pat. 2162556 RF MPK7 F 16 C 17/00, 33/26. No. 99107058/28; Declared 31.03.99; Publ. 27.01.01 // Inventions. Utility models. 2001. - No. 3. - P. 147.

4. A.N. Vinogradov, V.G. Kuranov. Sliding bearings for rotational-rotational motion based on new tribological principles and effects / / Restoration and strengthening of machine parts: Interuniversity. sciences'. collection. Saratov. state tech. un-ta, - Saratov: SSU. 2003.- P.175-182.

5. D.K. Kushaliev, A.N. Vinogradov. Modeling of a sliding bearing with a movable spring insert for nodes of transport equipment and technological equipment // Development of transport in the regions of Russia: problems and prospects. II All-Russian Scientific and Practical Conference Kirov. 2012. P. 28-30.

6. N. N.A. Spitsin and A.I. Spiridonov. Rolling bearings: a reference guide// State Scientific and Technical Publishing House of Machine-Building Literature. 1961. P. 828.

7. V.I. Borisov, A.I. Gor, V.F. Gudov .Car "Volga" GAZ-24 // M.: Mashinostroenie, 1972. P. 384.

8. V.B. Gurik. Sliding support // No. 3848187/25-27; application № 28.01.85; 23.01.88. №. 3. – 3 p.: ill.

9. M.P. Kopak, N.P. Sliding support// - No. 4832204/27; application 30.05.90; 15.08.92. P.30. - 3.

10.V.B. Cherkunov, Yu.P. Busarov, B.V. Cherkunov, A.E. Tatarchenko. Sliding support// No. 1687951, cl. F16C 33/26 / (USSR). - № 4449229 application №. 25.05.88; 30.10.91, Bul. №. 40. P 2.

11.A.V. Vinogradov. Improving the quality of bearings based on the formation of rational physical and mechanical properties of contact surface layers using tribotechnical methods in finishing: dis. //Doctors of Technical Sciences: 05.02.08, 05.03.01 Vinogradov Alexander Nikolaevich. - Saratov: 2008. P. 370.

УДК 656.132

ҚОЗҒАЛТҚЫШ МАЙЫНЫҢ САПАСЫНА МАУСЫМДЫҚ ПАЙДАЛАНУ ЖАҒДАЙЛАРЫНЫҢ ӘСЕРІН ЗЕРТТЕУ

Алтынпилқызы Сандуғаш

sandu.altynpil@mail.ru Л.Н.Гумилев атындағы Еуразия ұлттық университеті, «Көлік, көлік техникасы және технологиялары» білім беру бағдарламасының 1 курс магистранты Ғылыми жетекшісі – А.А. Каражанов

Аңдатпа: Мақалада қозғалтқыш майының сапасына маусымдық жұмыс жағдайларының әсерін зерттелген. Ғылыми жұмыста температураның өзгеруі, ылғалдылық, отын сапасы және автомобильдің пайдалану қарқындылығы сияқты әртүрлі факторлардың мотор майының қасиеттеріне әсері мен әрекетіне талдау жасалды. Қолайлы майды ұтымды таңдау, техникалық қызмет көрсету жиілігі және маусымға байланысты қозғалтқыштың