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Abstract: In this work, using photoluminescence (PL), optical absorption (OA), Raman spectroscopy
(RS), and atomic force microscopy (AFM), the radiation damage of BaFBr crystals irradiated with
147 MeV 84Kr ions to fluences (1010–1014) cm2 was investigated. The manifestations of the oxygen
impurity contained in the studied crystals on the effects associated with ion irradiation are also
considered. In unirradiated crystals, the PL spectra exhibited bands related to the oxygen impurity.
Moreover, it was found that quenching and a shift of the PL maximum occur, which is due to the fact
that, with increasing dose, aggregation of defects occurs. Electronic and hole aggregate color centers
appear mainly in the bromide sublattice. A detailed study of the Raman spectra and comparison
with the corresponding data for KBr single crystals made it possible to reveal the corresponding
manifestations of the Raman modes of complex Br−3 -type hole centers.

Keywords: BaFBr; swift heavy ions; impurity; photoluminescence; X-ray luminescence; pulsed
cathodoluminescence; degradation

1. Introduction

So far, the world’s best and commercially used storage phosphor for X-ray radi-
ation imaging and dosimetry is barium fluorobromide BaFBr doped with Eu2+ as an
activator [1–5]. Eu2+ doped BaFBr and many related storage phosphors have excellent
properties and are most suitable for making various types of imaging plates consisting
of phosphor powder dispersed in various organic binders. Image plates were originally
developed for X-rays, but are now being extended to other types of ionizing radiation such
as neutrons, gamma rays, and electron, proton, and even ion beams [1–10]. It is now clear
that such materials have already found many interesting and indeed important applications
in many areas of radiation imaging.

When a storage phosphor, for example, based on BaFBr doped with Eu2+ impurity, is
mixed with a neutron converter, Gd2O3 or 6LiF, it becomes sensitive to thermal neutrons.

Neutron imaging plates (NIP) made of such accumulating phosphors, also including
BaFBrxI1−x and BaxSr1−xFBr, have demonstrated great potential as two-dimensional inte-
grating thermal neutron detectors for neutron radiography and crystallography, etc. [11–14].
It should be noted that, to date, there are only a few studies on the possibility of using
BaFBr:Eu2+ for ion counting during the microbeam irradiation of heavy ions (protons,
carbon, fluorine, and silicon) of biological cells [15]. In particular, it was demonstrated that
the energy response of the IP can be used to control ion microbeams with a high dynamic
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range. In [16], polycrystalline IP BaFBr:Eu2+ films were irradiated with swift heavy ions
(22Ne, 52Cr, 64Zn, 130Xe, and 238U) with energies from MeV to GeV. The storage efficiency
was studied as a function of ion fluence (106–1012) cm−2, and it was found that it decreases
with increasing energy loss and is orders of magnitude smaller than for X-rays.

BaFBr has a tetragonal structure perpendicular to the c-axis, of the PbFCl type with
the space group P4/nmm [2]. It is generally accepted that electron–hole pairs are gener-
ated during irradiation in a storage phosphor. They then recombine either by emitting
spontaneous luminescence or by generating a so-called latent image consisting of pairs
of electron–hole point defect centers. In BaFX crystals (X = Cl, Br, I), the electrons are
either trapped in the bromide vacancy giving F(Br−) or in the fluoride vacancy giving
F(F−). These centers have C4v and D2d symmetry and their optical characteristics are well
established, respectively, but other types of hole defects are practically unexplored, except
for those formed at low temperatures, such as self-trapped holes or Vk-centers, and a few
others [17–26]. It should be noted that the presence of a TSL peak at 363 K complicates the
study of color centers (CCs), due to the rapid bleaching [27]. Several types of more complex
defects and their various manifestations in luminescent processes have been studied in
detail [27,28].

Since BaFBr crystalline materials are used for the production of radiation imaging
detectors and have already shown their applicability in the case of ion irradiation, the
purpose of this work was to study the effects of ion irradiation on photoluminescence (PL),
optical absorption (OA), and Raman spectra (RS) in order to identify which mechanisms
of radiation degradation occur. Thus, the aim of our study was to investigate the stable
radiation defects in BaFBr crystals stored for a long time in the dark with oxygen impurity,
irradiated with 147 MeV 84Kr ions to different fluences at 300 K, using photoluminescence,
optical absorption, and Raman spectroscopy.

2. Experiments

BaFBr single crystals were grown using the Shteber method on a special device (Vino-
gradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences SB RAS,
Irkutsk, Russia) in a graphite crucible in a helium–fluoride atmosphere using stoichiometric
mixtures of BaBr2 and BaF2. However, it is not possible to completely get rid of oxygen,
and because of this, in all such prepared crystals several optical absorption bands were
detected [29]. The oxygen O2—vacancy defects are known to induce several absorption
bands in the ultraviolet up to the exciton fundamental absorption edge. The effect of low
concentrations of cationic impurities was further investigated and showed a few additional
ways to improve the storage properties of BaFBr [30,31].

Elemental analysis via energy-dispersive X-ray spectroscopy (EDX) was performed
using SEM Hitachi TM3030 with Bruker attachment and software quantax 70. EDX analysis
found the elements Ba, Br, F, and O (Figure 1). Carbon particles with a peak of 0.3 keV
were not considered due to the presence of carbon in the chamber. The grown crystals
were colorless and transparent. X-ray diffraction analyses were performed using a D8
ADVANCE ECO X-ray diffractometer having a tube with Cu-anode (Cu Kα, λ = 1.54056 Å,
40 kV, 15 mA) within the 2θ angle range (11.87–83.55◦) in 0.01◦ increments (Figure 2).
BrukerAXSDIFFRAC.EVAv.4.2 software and the international database ICDD PDF-2 were
used for phase identification and corresponding crystal structure. The obtained results of
XRD measurements (Figure 2) are shown in Table 1, thus the formation of BaFBr crystals
was confirmed.
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Figure 1. Elemental analysis (EDX) of BaFBr crystals. The lower left corner shows an example of the 
surface of one of the crystals. 
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Figure 1. Elemental analysis (EDX) of BaFBr crystals. The lower left corner shows an example of the
surface of one of the crystals.

Table 1. Crystallographic parameters of single crystalline BaFBr.

Phase Structure and Space Group (hkl) 2θ◦ d, Å Cell Param., Å Volume, Å3 and
Density, g/cm3 Content of Phase %

BaFBr Tetragonal P4/nmm (129) 102 31.13 2.871

a = 4.5109
b = 4.5109
c = 7.4430

α = β = Υ = 90◦
151.452 and 4.969 100

BaFBr crystal samples were irradiated with 147 MeV 84Kr ions at 300 K to fluences
(1010–1014) ion/cm2, at the DC-60 heavy ion accelerator (Nur-Sultan, Kazakhstan). The
sample temperature during irradiation was about 70–90 C. Plate samples prepared for
irradiation were 10–12 mm long, 9–10 mm wide, and about 1 mm thick. A clear coloration of
the samples was observed upon irradiation with sufficiently high ion fluences. At fluences
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of 1012 ion/cm2, 1013 ion/cm2, the color was pale pink, while at fluences of 1014 ion/cm2,
it was already bright pink.
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Figure 2. XRD analysis of a BaFBr single crystal sample.

Radiation parameters of 84Kr ions in the BaFBr crystal obtained using code SRIM [32]
are presented in Figure 3 and Table 2, where it is clear that electronic energy losses dominate,
and most of the ion energy is converted into ionization and electronic excitation energy.
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Figure 3. Electronic energy loss (red) and nuclear energy loss (black) of BaFBr crystals irradiated 
with 147 MeV 84Kr ions. 
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Figure 3. Electronic energy loss (red) and nuclear energy loss (black) of BaFBr crystals irradiated
with 147 MeV 84Kr ions.
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Table 2. Radiation parameters of 147 MeV 84Kr ions in BaFBr.

Ion Energy, MeV (dE/dx)e, keV/nm (dE/dx)n, keV/nm R, µm
84Kr 147 12.04 1.36 17.87

The energy losses for ionization and excitation (dE/dx)e dominate (Table 2) over the
energy losses (dE/dx)n leading to elastic collisions. Note that, in the case of alkali halides
such as LiF crystal irradiated in similar conditions with 150 MeV 84Kr ions [33], the Se/Sn
ratio = 576, while for BaFBr it is 8.8. As it is well known, for heavy ions with a specific
energy above 1 MeV/nucleon, the energy loss is determined via electronic interactions and
collisions with the target atoms (nuclear energy loss) are of minor importance [34–37]. As is
also well known, heavy ions in solids induce ionization events along the ion path; primary
electrons and δ-electrons have a broad spectrum of kinetic energies [38,39]. The maximum
electron energy obtained from the krypton ion in BaFBr through analogy with the alkali
halide crystals can be estimated using the formula [33,40]:

Ee
max =

4meEion
M

, (1)

1. Here, me is the mass of the electron, M is the mass of the ion, and Eion is the ion energy.
For 147 MeV 84Kr ion, Ee

max ≈ 3.9 keV. These electrons form a cascade of secondary
δ-electrons. Accordingly [16] the ion energy is thus distributed to a cylindrical region
around the ion path typically following a 1/r2 law (r denotes the distance from the ion
path). Thus, ions eventually generate low-energy electron excitations: electron–hole
pairs and excitons. After thermalization of the exciton color centers and other lattice
defects are created within a cylindrical region of several tens of nanometers. The pos-
sibility of off-center exciton formation in BaFBr and similar materials was theoretically
predicted by Baetzold [41]. All this was based on many analogies between excitons in
alkali halides and BaFX (X-Br, Cl, and I).

2. The photoluminescence spectra of the crystals were measured according to the stan-
dard procedure on an SM2203 spectral fluorimeter (SOLAR, Minsk, Belarus). In this
device, the excitation source is a xenon FX-4401 flash lamp (PerkinElmer Optoelec-
tronics GmbH, Wiesbaden, Germany) with a pulse duration of a few microseconds
and the light detector is PMT R928 (Hamamatsu, Japan). The control of the device
and processing the results of measurements is carried out from the external computer
by means of the “Universal” software.

3. The optical absorption spectra were measured using Specord UV-VIS spectropho-
tometer (SPECORD 250 PLUS) in spectral interval (2.0–6.0) eV. This is double beam
spectrophotometer with variable spectral bandwidth and double monochromator, in
which the wavelength setting accuracy is ±0.1 nm. An external personal computer
using the software WinASPECT is used to control the device and for data processing
during measurements.

4. Finally, Raman spectra were measured at room temperature with a Solver Spectrum
spectrometer (NT-MDT America Inc, Tempe, AZ 85283, USA), using a solid-state
diode laser beam with wavelength of 473 nm (2.62 eV) and a spectral resolution of
1 cm−1. The laser was focused using a 100× objective, forming a spot on the sample
surface with a diameter of 2 µm.

3. Results and Discussion

The PL spectra of BaFBr single crystals, previously irradiated with 147 MeV 84Kr ions,
were measured under excitation with 280 nm wavelength light and are shown in Figure 4.
The spectra were measured after a sufficiently long storage of irradiated crystals at room
temperature in the dark.
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Figure 4. PL spectra of BaFBr crystals irradiated with 147 MeV 84Kr ions at 300К to fluences 1 × 1010–
1 × 1014 ion/cm2. Excitation wavelength λ = 280 nm. 
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Figure 4. PL spectra of BaFBr crystals irradiated with 147 MeV 84Kr ions at 300 K to fluences
1 × 1010–1 × 1014 ion/cm2. Excitation wavelength λ = 280 nm.

In the PL spectrum, a broad band from 1.5 eV to 3.5 eV is observed, which is also
present in the unirradiated crystal, but with a lower intensity. Luminescence intensity
increases with the increase in fluence up to a fluence of 1011 ion/cm2. A further increase in
fluence leads to a quenching of the PL. A shift of the PL maximum from 2.5 eV (496 nm) to
2.62 eV (473 nm) is also observed. According to [29], PL can be ascribed to oxygen-impurity-
bound centers. In work [29], it is shown that the availability of oxygen in the structure of
BaFCl and BaFBr crystals leads to the formation of oxygen defect centers. The possibility of
two types of oxygen-vacancy center formation has been shown. Type I centers are created
when fluorine is replaced by oxygen in neighboring positions with vacancies of CI− and
Br− ions. Type II centers are formed due to oxygen in the regular sublattice of chlorine or
bromine. The summary of the luminescence properties of BaFBr in data analyses in the
literature is presented in Table 3.

Then, in unirradiated crystals, the luminescence of the second type of centers with
a maximum of 2.5 eV dominates. This means that the oxygen is mostly in the regular
bromine site. When the fluence is increased to 1011 ion/cm2, there is an increase in the
luminescence intensity of both the first type (2.05 eV) and second type (2.5 eV). However,
from a fluence of 1012 ion/cm2, the luminescence suppression begins. At a fluence of 1014

ion/cm2, the shape of the luminescence band develops without pronounced maxima. The
decrease in luminescence can be explained via reabsorption in the irradiated layer and via
the scattering on macrodefects from irradiated surface layers. Also, the red shift can be
explained via the selective reabsorption of luminescence. It should be noted here that the
anionic vacancies that are part of oxygen centers can and should capture electrons and
transform into F-type centers. But, although the irradiation temperature was not so high,
this does not allow F centers to survive and their most likely fate here is to form dimer
centers and metal colloids, as was observed in the case of CaF2 and MgF2 [41–44]. The
capturing of electrons by halogen vacancies near oxygen ions also makes it possible to
understand the modification of the PL spectrum. According to [45], the development of
the peak of thermostimulated luminescence connected with F(F) centers already begins at
330 K, and the peak itself has a maximum of 360 K.
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Table 3. Summary of luminescence properties of BaFBr.

eV Comments Reference

Self-trapped exciton 5.15
[46]4.20

Oxygen 2.25–2.48 Luminescent center in Br−-rich BaFBr:O2− [47]

Pb2+
4.77

Typical Pb2+ emission [48]4.28
2.38

Unknown
1.15 Excited in the F-absorption band [49]0.91

Oxygen (?) 3.4 In crystals with a low oxygen concentration [29]

Eu2+ 3.10
4f65d1 → 4f7(8S7/2) [9,50]3.19

O2−-v+a (Type I) 2.5 Excited at 5.0; 6.3; 7.0 eV [29]

O2− -v+a (Type II) 2.05 Excited at 4.2; 5.28; 6.35 eV [29]

Table 4 summarizes the available data in the literature on the optical absorption of
different point defects in BaFBr. These data are useful and important for understanding and
interpreting the experimental data obtained both on irradiated and unirradiated crystals.
Figure 5 shows the optical absorption region associated with the absorption of electronic
centers. A significant development of absorption in the region 2.2–1.0 eV indicates that the
aggregation of simple point defects into complex ones under ion irradiation occurs very
efficiently. This is due to the fact that both the heating of the crystals by the beam and the
beam flux density effect play a role here. A comparison of the above spectra with the data
in the literature allows us to conclude that, in the case of ion irradiation, the same electronic
centers are produced as in the case of X-rays or gamma irradiation.
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Table 4. Experimental data on optical absorption bands reported for BaFBr.

eV Comments Reference

Eg 8.20 [51]

exciton 8.15; 7.64 [51]

O2−-v+a (Type I) 7.0; 6.3; 4.95 2.5 eV emission is excited [29]

O2−-v+a (Type II) 6.35; 5.28; 4.2 2.05 eV emission is excited [29]

Vk center
(
Br−2 ) 3.4 [3]

? 2.725 After γ-irradiation at RT [52]

? 2.58 After γ-irradiation at RT [52]

F(F−)
2.50 [53]
2.65 X-ray at RT, Tmeas = 10 K [49]
2.72 Ad. colored, Tmeas = 290 K [28]

F(Br−)

2.15 [53]
2.14 γ-ray at RT, Tmeas = 290 K [52]
2.15 X-ray at RT, Tmeas = 10 K [49]
2.18 X-ray at RT, Tmeas = 290 K [28]

R1 1.89 X-ray at RT, Tmea = 290 K [28]

R2 1.59 X-ray at RT, Tmea = 290 K [28]

? 1.53 After γ-irradiation at RT [52]

M 1.36 X-ray at RT, Tmea = 290 K [28]

Vk center
(
Br−2 ) 1.28 [3]

N1 1.10 X-ray at RT, Tmea = 290 K [28]

N2 0.93 X-ray at RT, Tmea = 290 K [28]

Eu2+ 4.36; 4.49; 4.67 Tmeas = 10 K [49]

? 3.4 X-ray at RT, Tmeas = 10 K [49]

? 5.2 X-ray at RT, Tmeas = 10 K [49]

It is well known that, in irradiated-by-X-ray crystals of BaFBr, F(Br) centers disappear
when stored in the dark at room temperature and the 1.35 eV absorption band associated
with the F2 center increases significantly, and a slight increase in F(F) was also observed [27].
Understanding the thermal instability of F-type centers at room temperature is always
important for the correct measurement and processing of images obtained with image plate
detectors. The corresponding fading analysis and recipe were proposed and performed
more than once for different types of irradiation [54–56]. It is important to note that, in
contrast to the conventional irradiation conditions, in the case of ion irradiation at the
accelerator, we observed the sharp suppression of defect formation above a fluence of
1011–1012 ions/cm2, which is certainly due to an increase in competing recombination
processes and aggregation processes. Therefore, from a 2.2 eV to 1.1 eV spectral range,
there is a continuous broad band, which, according to works [27,28], can be assigned to M,
R1, R2, N1, and N2 color centers.

On the other hand, the absorption bands of the aggregate point defects associated
with F(F) may also show up here. If, for example, we consider the well-studied LiF, then we
can conclude the following, which makes the picture difficult. For example, the absorption
band of M (F2) centers (457.8 nm, 2.71 eV) in LiF crystals coincides with the absorption of
F+

3 centers. It should be highlighted that the M band includes the absorption contributions
of F2 and F+

3 defects. For the most colored LiF crystals, the contributions of F3(R1) at around
316 nm (3.92 eV), F3(R2) at around 374 nm 3.32 eV, and the F4(N) band contributions at
517 nm 2.39 eV and 547 nm 2.27 eV are also relevant [57–60].
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In parallel to the electron point defects of F-type, complementary hole defects are
also produced. In our case, these are aggregate hole centers. The spectral range 3.5–6.5 eV
(Figure 6) was chosen purposefully. It is in this region of the spectrum that the so-called
V-type absorption bands of KBr crystals are found [61]. The similar absorption of fluorine
aggregates in alkali and alkaline earth fluorides is known to be situated in the VUV region of
the spectrum [62–65]; therefore, in this work, only the Raman spectra of bromine aggregates
are discussed.

Crystals 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

In parallel to the electron point defects of F-type, complementary hole defects are also 
produced. In our case, these are aggregate hole centers. The spectral range 3.5–6.5 eV (Fig-
ure 6) was chosen purposefully. It is in this region of the spectrum that the so-called V-
type absorption bands of KBr crystals are found [61]. The similar absorption of fluorine 
aggregates in alkali and alkaline earth fluorides is known to be situated in the VUV region 
of the spectrum [62–65]; therefore, in this work, only the Raman spectra of bromine ag-
gregates are discussed. 

6 5.5 5 4.5
0

0.4

0.8

Photon energy (eV)

O
pt

ic
al

 d
en

si
ty

 (a
.u

.)

1.0

0.6

0.2

4 3.5 3.0

 
Figure 6. Absorption spectra of BaFBr irradiated with 147 MeV 84Kr ions. Fluence range (1 × 1010–1 
× 1014) ion/cm2. 

In the Raman spectra of X-irradiated KBr crystals, the part induced by V-centers was 
determined. It consists of bands at 175 cm−1, 265 cm−1, and 349 cm−1 (the first overtone of 
the 175 cm−1 mode) [66]. Thus, for bromide compounds, Raman modes were observed 
with frequencies of about 175 cm−1 for Brଷି  (valence vibration) and 265 cm−1 for Br2 type 
centers that encompass any poly-halide ion such as Br5 or even higher poly-ions. In the 
Raman spectra of BaFBr irradiated with 147 MeV 84Kr ions, we see all these vibrational 
modes; Figure 7a–c. 

Compared with the results on the study of aggregate hole centers in KBr, we can 
assume that the absorption band with a maximum of 4.5 eV is associated with Brଷି  centers 
and 5.5 eV with di-H centers [61]. 

In the following work, we will show how luminescent impurities, namely Eu2+, affect 
the efficiency of defect formation, which determines the detection efficiency. In the case of 
scintillation crystals CsI-Tl, it is known that low concentrations of the Tl+ impurity increase 
the efficiency of the formation of stable defects under swift heavy ion irradiation, while 
high concentrations completely suppress it [67]. The relevant principles of luminescent 
protection against defect creation due to the recombination of hot or relaxed electrons and 
holes were clearly formulated in [68]. We note that, in order to study primary pairs of 
Frenkel defects in BaFX crystals (X = Cl, Br, I) and their corresponding thermal stability, it 
is necessary to carry out the necessary irradiations at liquid helium temperatures. Such 
methods are well developed for alkali metal halides [69–73], but have not yet been applied 
to BaFX compounds, so such experiments have already begun.  

Figure 6. Absorption spectra of BaFBr irradiated with 147 MeV 84Kr ions. Fluence range
(1 × 1010–1 × 1014) ion/cm2.

In the Raman spectra of X-irradiated KBr crystals, the part induced by V-centers was
determined. It consists of bands at 175 cm−1, 265 cm−1, and 349 cm−1 (the first overtone
of the 175 cm−1 mode) [66]. Thus, for bromide compounds, Raman modes were observed
with frequencies of about 175 cm−1 for Br−3 (valence vibration) and 265 cm−1 for Br2 type
centers that encompass any poly-halide ion such as Br5 or even higher poly-ions. In the
Raman spectra of BaFBr irradiated with 147 MeV 84Kr ions, we see all these vibrational
modes; Figure 7a–c.

Compared with the results on the study of aggregate hole centers in KBr, we can
assume that the absorption band with a maximum of 4.5 eV is associated with Br−3 centers
and 5.5 eV with di-H centers [61].

In the following work, we will show how luminescent impurities, namely Eu2+, affect
the efficiency of defect formation, which determines the detection efficiency. In the case of
scintillation crystals CsI-Tl, it is known that low concentrations of the Tl+ impurity increase
the efficiency of the formation of stable defects under swift heavy ion irradiation, while
high concentrations completely suppress it [67]. The relevant principles of luminescent
protection against defect creation due to the recombination of hot or relaxed electrons and
holes were clearly formulated in [68]. We note that, in order to study primary pairs of
Frenkel defects in BaFX crystals (X = Cl, Br, I) and their corresponding thermal stability, it
is necessary to carry out the necessary irradiations at liquid helium temperatures. Such
methods are well developed for alkali metal halides [69–73], but have not yet been applied
to BaFX compounds, so such experiments have already begun.
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4. Conclusions

For the studied BaFBr crystals, both unirradiated and irradiated with Kr ions with
an energy of 147 MeV and stored for a long time in the dark, the presence of an oxygen
impurity was found. A broad complex emission band from 1.5 to 3.5 eV was observed
in the PL spectrum, which is also found in an unirradiated crystal, but with a lower
intensity. This PL band includes the luminescence of two oxygen-related centers with
different structures. Then, in unirradiated crystals, the luminescence of centers of the
second type dominates with a maximum of 2.5 eV. This means that the oxygen is located
mainly in the usual bromine site. As the fluence increases to 1011 ions/cm2, an increase
in the luminescence intensity of oxygen-vacancy defects of both the first (2.05 eV) and
second (2.5 eV) types is observed. At a fluence of 1012 ion/cm2, luminescence suppression
begins. At a fluence of 1014 ion/cm2, the shape of the luminescence band develops without
pronounced maxima, which indicates a significant modification of the luminescence centers.
The irradiation with SHI leads to the sharp suppression of defect formation above a fluence
of 1011–1012 ions/cm2. This is due to an increase in competing recombination processes and
aggregation processes. The analysis of the absorption and Raman spectra of the samples
irradiated with Kr swift ions showed the creation of electronic and hole aggregate of point
defects. Compared with the results of the previous study of aggregate hole point defects in
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KBr, we can assume that the absorption band with a maximum of 4.5 eV is associated with
Br−3 enters and 5.5 eV with di-H centers.
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