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Abstract. The coupled integrable dispersionless equations have a significant interest because
of structure, integrability, and the possibility of obtaining a soliton solution. In this paper,
we construct soliton surfaces for integrable dispersionless equation with self-consistent sources
in Riemann space. The surfaces, arising from M-XXXII equation and their reduction in
R3, are studied. We obtain Gaussian and mean curvatures and also evaluate the area of
surface parametrically defined with the Riemannian metric. Using the scale transformation and
transformation of dependent and independent variables of the coupled dispersionless equations
we obtain the equation that describes a current-fed string interacting with an external magnetic
field in three-dimensional Euclidean space.

1. Introduction
Surface theory in three dimensional Euclidean space is widely used in different branches of
science, particularly mathematics (differential geometry, topology, Partial Differential Equations
(PDEs)), theoretical physics (string theory, general theory of relativity), and biology [1]-
[3]. There are some special subclasses of 2-surfaces which arise in the branches of science
aforementioned. For the classification of surfaces in three dimensional Euclidean space,
particular conditions are imposed on the Gaussian and mean curvatures. These conditions are
sometimes given as algebraic relations between curvatures and sometimes given as differential
equations for these two curvatures.

The soliton surfaces approach is very useful in construction of the so called integrable
geometries. Indeed, any class of soliton surfaces is integrable. Geometrical objects associated
with soliton surfaces (tangent vectors, normal vectors, foliations by curves etc.) usually can
be identified with solutions to some nonlinear models (spins, chiral models, strings, vortices
etc.) The classical action of the boson string (Nambu-Goto action) depends from the geometric
point of view only on the internal geometry of the worldsheet (through the metric) and does
not depend on the method of embedding the worldsheet in the enclosing D-dimensional space-
time. The method of embedding a two-dimensional surface in D-dimensional space (D ≥ 3) is
characterized in differential geometry by a second fundamental form.

2. M-XXXII equation and its reductions
The M-XXXII equation reads as [4]

qxt − 4aq + 2px = 0, (1)
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rxt − 4ar − 2nx = 0, (2)

ax − 0.5(rq)t + qn− rp = 0, (3)

ηx + rp− qn = 0, (4)

px + 2iωp+ 2ηq = 0, (5)

nx − 2iωn− 2ηr = 0. (6)

where q, p are complex functions, r, n are conjugate complex functions of q and p, respectively;
a, η are real functions, ω is a constant.

The M-XXXII equation (1)-(6) is integrable and its Lax representation (LR) is

Φx = U1Φ,

Φt = V1Φ.

Here

U1 = −iλσ3 +Q, V1 =
i

λ
F +

i

λ− ω
G,

where

Q =

(
0 q
r 0

)
, F =

(
a −0.5qt − p

0.5rt − n −a

)
, G =

(
η p
n −η

)
.

Note that from Eqs. (4)-(6) we get the following important formula

η2 + np = const,

or, for simplicity,

η2 + np = 1.

2.1. Case r = σq̄, n = −σp̄
We consider the case when

r = σq̄, n = −σp̄. (7)

Here σ = ±1.We take the case σ = −1. Then we have

qxt − 4aq + 2px = 0,

−qxt + 4aq + 2px = 0,

ax + 0.5(|q|2)t + qp+ qp = 0,

ηx − qp− qp = 0,

px + 2iωp+ 2ηq = 0,

px − 2iωp+ 2ηq = 0.

This reduction of the M-XXXII equation is integrable with the following LR

Φx = U2Φ,

Φt = V2Φ.

Here

U2 = −iλσ3 +Q, V2 =
i

λ
F +

i

λ− ω
G, (8)

where

Q =

(
0 q
−q 0

)
, F =

(
a −0.5qt − p

−0.5qt − p −a

)
, G =

(
η p
p −η

)
.
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2.2. Case p = n = η = 0
In the case when

p = n = η = 0,

the M-XXXII equation reduces to the generalized Konno-Oono equation [5]

qxt − 4aq = 0,

ax + 0.5(q̄q)t = 0.

Its LR is

Φx = U3Φ,

Φt = V3Φ,

where

U3 = −iλσ3 +Q, V3 =
i

λ
F, (9)

Q =

(
0 q
−q̄ 0

)
, F =

(
a −0.5qt

−0.5q̄t −a

)
.

3. Soliton surfaces induced by M-XXXII equation
In this section we study the surfaces arising from M-XXXII equations in R3.

The square of the interval between two infinitely close events in the case of a curved surface
is given by

ds2 = g11dx
2 + 2g12dxdy + g22dy

2 = gijdx
idxj ,

where gij is the metric tensor.
In our case, the interval between two infinite events is an integral

S =

∫ √
gijdxidxj =

∫
ds.

To describe the surface in Euclidean space, we consider 2 fundamental forms. The first and
the second fundamental forms (FF) are [6]:

I = gijdx
idxj = dr · dr, (10)

II = bijdx
idxj = −dn · dr, (11)

where x1 = x, x2 = t, i, j = 1, 2 and

gij = ri · rj , bij = rij · n.

The first quadratic form defines the internal geometry, and the second quadratic form defines
the external geometry of the surface. The main purpose of this section is to find the first
and the second fundamental forms of surfaces, also the Gaussian and mean curvatures, area
of surfaces using Lax representations for reductions of the M-XXXII equation. The surface is
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given by position vector r = (r1, r2, r3). We consider the surface M ∈ R3. The position vector
r(x, t) ∈ so(3)↔ r(x, t) ∈ su(2), where r is matrix.

Using the Sym-Tafel formula [7] we write r matrix

r = Φ−1Φλ.

rx = Φ−1UλΦ,

rt = Φ−1VλΦ.

The r matrix refers to algebra su(2) and is given by

r =

(
r3 r−

r+ −r3

)
,

and respectively

r2x =
1

2
tr

(
r2x

)
=

1

2
tr (UλUλ) ,

r2t =
1

2
tr

(
r2t

)
=

1

2
tr (VλVλ) ,

rxrt =
1

2
tr (rxrt) =

1

2
tr (UλVλ) .

The normal vector in R3 is defined as

n =
rx ∧ ry
|rx ∧ ry|

.

Using the isomorphism so(3) ≃ su(2) we rewrite

rx ∧ ry ←→ [rx, ry] = Φ−1 [Uλ, Vλ] Φ,

tr(Φ−1 [Uλ, Vλ] Φ) = tr([Uλ, Vλ]).

So the normal n is defined in following form

n = ± Φ−1 [Uλ, Vλ] Φ√
1
2 tr([Uλ, Vλ]

2)

and

rxxn =
1

2
tr (rxxn) = ±

tr ([UλU ] [UλVλ])

2

√
1
2 tr

(
[UλVλ]

2
) ,

rxtn =
1

2
tr (rxtn) = ±

tr ([UλV ] [UλVλ])

2

√
1
2 tr

(
[UλVλ]

2
) ,

rttn =
1

2
tr (rttn) = ±

tr ([VλV ] [UλVλ])

2

√
1
2 tr

(
[UλVλ]

2
) .

So, rewrite the formulas (10) and (11) in the form

I = r2xdx
2 + 2rxrtdxdt+ r2tdt

2 =

=
1

2

[
tr(rxrx)dx

2 + tr (rxrt + rtrx)dxdt+ tr (rtrt)dt
2
]
,

II = (rxx · n)dx2 + 2(rxt · n)dxdt+ (rtt · n)dt2 =

=
1

2

[
tr(rxxn)dx

2 + 2 tr (rxtn)dxdt+ tr (rttn)dt
2
]
.
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3.1. Reduction r = σq̄, n = −σp̄
The first fundamental form, generated by U2, V2 (8), is

I = −[dx2 + 2

(
a

λ2
+

η

(λ− ω)2

)
dxdt+ (

1

λ4
(a2 + 0.25|qt|2 + 0.5(qtp+ qtp) + |p|2) +

+
1

λ2(λ− ω)2
(2aη − 2|p|2 − 0.5(qtp+ qtp)) +

1

(λ− ω)4
)dt2].

The second fundamental form for U2, V2 is defined as

II =
1

2

[
tr(rxxn)dx

2 + 2 tr (rxtn)dxdt+ tr (rttn)dt
2
]
.

Here

tr(rxxn) =
i√
D

[
(λ− ω)2 (qqt − qqt + 2(pq − qp)) + 2λ2 (qp− pq)

]
,

tr(rxtn) =
1

λ(λ− ω)
√
D

[
λ (λ− ω) (2λ− ω) (pqt + pqt + 2|p|2)− λ3|p|2

− (λ− ω)3(0.25|qt|2 + 0.5(pqt + pqt) + |p|2)
]
,

tr(rttn) =
ω√
D

[
1

λ2

(
a(pqt + pqt + 4|p|2) + η(|qt|2 + 2(pqt + pqt) + 4|p|2)

)
−

− 2

(λ− ω)2

(
(2a|p|2 + η(0.5(qtp+ qtp)) + 2|p|2)

)]
,

where

D = (λ− ω)2 λ2(0.5(pqt + pqt) + 2|p|2)− λ4|p|2 − (λ− ω)4 (0.25|qt|2 + 0.5(pqt + pqt) + |p|2).

The Gaussian and mean curvatures can be found directly by the first and second fundamental
forms. The Gaussian and mean curvatures of the surface are, respectively, shown by [6]

K = det (g−1)b,

H =
1

2
tr (g−1b),

where g and b denote the matrices (gij) and (bij), respectively, and g−1 stands for the inverse
matrix g.

The area of surface

S =

∫ ∫ √
gdxdt =

∫ ∫
|rx ∧ rt| dxdt,

where

g = det (gij) = det

(
r2x rx · rt

rx · rt r2t

)
.

Thus, the surface area for this case is defined as

S =

∫ ∫ √
1

λ4
(0, 25|qt|2 + 0, 5(qtp̄+ q̄tp) + |p|2)−

1

λ2(λ− ω)2
(2|p|2 + 0, 5(qtp̄+ q̄tp)) +

1− η2

(λ− ω)4
dxdt.
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3.2. Reduction p = n = η = 0
The surface, generated by U3, V3 (9), has the following first and second fundamental forms

I = −
[
dx2 +

2a

λ2
dxdt+

1

λ4
(a2 + 0.25 |qt|2)dt2

]
,

II =
i√
|qt|2

(qq̄t − qtq̄)dx
2 +

√
|qt|2
λ

dxdt.

Since we know the elements of the matrix, we can determine the Gaussian and mean curvature

K = −4λ2,

H =
2√
|qt|2

[
aλ− i(a2 + 0, 25|qt|2)(qq̄t − qtq̄)

|qt|2

]
.

The area of surface for this case is

S =

∫ ∫ √
gdxdt =

∫ ∫ √
1

4λ4
|qt|2dxdt =

1

2λ2

∫ ∫
|qt|dxdt.

In string theory, this integral describes the area of the string worldsheet.

4. The coupled dispersionless equations with self-consistent sources as equations
of the current-fed string
At scale transformation

a→ 0.25ρ, (q, r)→ 0.5(q, r)

the set of equations (1)-(6) takes the form

qxt − ρq + 4px = 0, (12)

rxt − ρr − 4nx = 0, (13)

ρx − 0.5(rq)t + 2(qn− rp) = 0, (14)

ηx + 0.5(rp− qn) = 0, (15)

px + 2iωp+ ηq = 0, (16)

nx − 2iωn− ηr = 0. (17)

In case (7) we rewrite the system of equations (12)-(17) in following form

qxt − ρq + 4px = 0, (18)

−q̄xt + ρq̄ − 4p̄x = 0, (19)

ρx + 0.5(qq̄)t + 2 (qp̄+ q̄p) = 0, (20)

ηx − 0.5(q̄p+ qp̄) = 0, (21)

px + 2iωp+ ηq = 0. (22)

p̄x − 2iωp̄+ ηq̄ = 0. (23)

Equations (18)-(20) become the nonlinear Klein Gordon-type equations

X1ττ −X1σσ = −(Z1τ − Z1σ)X1 − 4(X2τ +X2σ), (24)

Y1ττ − Y1σσ = −(Z1τ − Z1σ)Y1 − 4(Y2τ + Y2σ), (25)

Z1ττ − Z1σσ = (X1(X1τ −X1σ) + Y1(Y1τ − Y1σ))− 4(X1X2 + Y1Y2). (26)
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under the transformation of dependent and independent variables

q = X1 + iY1, q̄ = X1 − iY1 (27)

p = X2 + iY2, p̄ = X2 − iY2 (28)

ρ = ξt, ξ = −Z1, η = Z2 (29)

τ = x+ t, σ = x− t. (30)

The system of equations (24)-(26) can be rewritten in the following vector form

r1ττ − r1σσ = (r1τ − r1σ) ∧ [J ∧ r1]− 4(r2τ + r2σ),

where r1, r2 are position vectors, J is the external electric current defined by

r1 = (X1, Y1, Z1), r2 = (X2, Y2, Z2), J = (0, 0, 1).

From (21)-(23) we get following set of equations under the transformation (27)-(30)

X2τ +X2σ = 2ωY2 − Z2X1,

Y2τ + Y2σ = 2ωX2 − Z2Y1,

Z2τ + Z2σ = (X1X2 + Y1Y2).

5. Conclusion
In this paper we considered the M-XXXII equation and its reductions having the Lax
representation, constructed the 1 and 2 fundamental forms of soliton surfaces for the reductions
of the M-XXXII equation, evaluated the Gaussian and mean curvature, and also found
the surface area that describes the string’s worldsheet. With the scale transformation and
transformation of dependent and independent variables of M-XXXII equation we obtained a
nonlinear Klein-Gordon equation and its vector form, which describes the dynamics of the
current-fed string.
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