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Despite the significant accomplishments of general r elativity, numerous unr esolved issues 
persist in our understanding of the cosmos. One of the most perplexing challenges is the 
ongoing accelerated expansion of the Universe, which continues to elude a complete ex- 
planation. Consequently, scientists have proposed various alternati v e theories to general 
relativity in pursuit of a deeper understanding. In our analysis, we delve into the recently 

proposed modified f( Q ) gravity, where Q r epr esents the nonmetricity scalar responsible for 
gravita tional ef fects. Specifically, we investiga te a cosmological model characterized by the 
functional form f( Q ) = Q + αQ 

n , where α (with α � = 0) and n serve as free parameters. Utiliz- 
ing this functional form, we construct our Hubble r ate, incorpor ating a specific equation of 
state to describe the cosmic fluid. Furthermore, we le v erage a dataset consisting of 31 data 

points from Hubble measurements and an additional 1048 data points from the Pantheon 

da taset. These da ta serve as crucial constraints for our model parameters, and we employ 

the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and de- 
ri v e meaningful results. With our parameter values constrained, our analysis yields se v eral 
noteworthy findings. The deceler ation par ameter suggests a recent accelerated phase in the 
cosmic expansion. In addition, the EoS parameter paints a portrait of dark energy exhibit- 
ing phantom-like characteristics. Furthermore, we delve into the application of cosmolog- 
ical diagnostic tools, specifically the statefinder and the Om ( z ) diagnostics. Both of these 
tools align with our previous conclusions, confirming the phantom-like behavior exhibited 

by our cosmological model. These results collecti v ely contribute to our understanding of 
the dynamic interplay between gravity, dark energy, and the expanding cosmos. 
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1. Introduction 

Recent observations in modern cosmology, including the type Ia supernova (SN Ia) [ 1 , 2 ],
large scale structure (LSS) [ 3 , 4 ], the Wilkinson Microwave Anisotropy Probe (WMAP)
experiment [ 5–7 ], cosmic microwave background (CMB) [ 8 , 9 ], and baryonic acoustic oscil-
lations (BAOs) [ 10 , 11 ], have conclusively shown that our Uni v erse is undergoing accelerated
expansion. Furthermore, these cosmological observa tions indica te tha t the visible ma tter we
observe constitutes only 5% of the total content of the Uni v erse, with the remaining 95% ex-
isting in the form of unknown components r eferr ed to as dark energy (DE) and dark matter.
Howe v er, these findings are at odds with general relativity (GR), particularly the well-known
Friedmann equations, which are deri v ed from the application of GR to a homogeneous and
isotropic Uni v erse described by the Friedmann–Lemaître–Robertson–Walker (FLRW) space- 
time. Consequently, it is evident that GR cannot serve as the ultimate theory of gravity and
may instead r epr esent a special case within a more comprehensi v e theory. 

To address the observations regarding the accelerated expansion of the Universe, several al-
ternati v es hav e been proposed. One such alternati v e within the frame wor k of GR is the inclu-
sion of a new energy component, known as DE, characterized by a large negati v e pr essur e.
The cosmological constant ( �) introduced by Einstein in his field equations is currently the
leading candidate for DE, as it aligns well with observations. The prevailing idea is that the
source of � is vacuum energy predicted by quantum theory [ 12 ]. Howe v er, this idea faces two
main challenges. The first is the fine-tuning problem, which arises due to the substantial dif-
fer ence between theor etical and experimental values. The second challenge is the coincidence
problem, which questions why the energy density of � remains constant despite cosmological 
observa tions indica ting tha t the sources of DE vary slowly with cosmic time. The latter issue
can be resolved by introducing a time-variable cosmological constant through the inclusion of 
a scalar field with kinetic and potential terms, as seen in the quintessence DE model [ 13 ]. Other
dynamical models of DE, such as phantom DE [ 14 ], k-essence [ 15 ], chameleon [ 16 ], tachyon
[ 17 ], Cha pl ygin gas [ 18 , 19 ], and little sib ling of the big rip [ 20 , 21 ], hav e also been proposed. 

The second alternati v e involv es modifying Einstein’s theory of GR. In GR, curvature is de-
scribed by the Ricci scalar R , based on Riemannian geometry. Modified f( R ) gravity replaces
the Ricci scalar with general functions of R [ 22 ]. Additionally, ther e ar e other alternati v es to
GR, such as f( T ) gravity, where gravitational effects are described by the concept of torsion
T [ 23 ]. Recently, a new gravity theory based on Weyl geometry, which is more general than
Riemannian geometry, has been proposed. This theory, known as f( Q ) gravity, describes gravi-
ta tional ef fects in terms of nonmetricity, which r epr esents the variation of vector length during
par allel tr ansport [ 24 , 25 ]. In Weyl geometry, the cov ariant deriv ative of the metric tensor is not
zero but ma thema tically determined by the nonmetricity tensor, denoted as Q γμν = −∇ γ g μν

[ 26 ]. Energy conditions and cosmo gra phy in f( Q ) gra vity ha v e been e xplored by Mandal et al.
[ 27 , 28 ], whereas Harko et al. investigated matter coupling in modified Q gravity assuming a
power-law function [ 29 ]. Dimakis et al. discussed quantum cosmology for a polynomial f( Q )
model [ 30 ], and other related works include Refs. [ 31–33 ]. 

In the literature, the equation of state (EoS) parameter is commonly employed to character-
ize the nature of DE in various models. The EoS parameter r epr esents the relationship between
the pr essur e and the energy density of the Uni v erse. Its v alue v aries depending on the specific
model under consideration. For instance, in a matter-dominated Uni v erse, the EoS parameter
2/17 
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is typically ω = 0, whereas for a radia tion-domina ted Uni v erse, it takes the value ω = 1/3. In
the case of an accelerating expanding Universe, the EoS parameter ω assumes different values:
ω = −1 corresponds to a cosmological constant, −1 < ω < −1/3 corresponds to quintessence
(a type of DE), and ω < −1 corresponds to phantom DE [ 34 , 35 ]. The current value of the
EoS parameter, as reported by the Planck Collaboration, is ω 0 = −1.028 ± 0.032 [ 36 , 37 ]. In
this study, we adopt a model-independent approach [ 38–40 ] and incorporate an effecti v e EoS
parameter to account for the current acceleration of the Uni v erse within the frame wor k of f( Q )
gr avity. To constr ain the model par ameters, we use two recent sets of observa tional da ta: Hub-
ble Hz measurements and the Pantheon datasets. The Hubble datasets consist of 31 data points
obtained through the differential age method [ 41 , 42 ]. In addition, the Pantheon datasets, span-
ning the redshift range 0.01 < z < 2.3, provide 1048 data points [ 43 ]. We employ the Markov
Chain Monte Carlo (MCMC) method [ 44 ] to estimate the model parameters. Moreover, we
employ two diagnostic tools to discern between different DE models. Firstly, we consider the
statefinder parameters ( r , s ) introduced by Sahni et al. [ 45 , 46 ]. For example, in the case of the
statefinder parameters, the Lambda cold dark matter ( �CDM) model corresponds to ( r = 1,
s = 0), the Holo gra phic DE model corresponds to 

(
r = 1 , s = 

2 
3 

)
, the Cha pl ygin gas model cor-

responds to ( r > 1, s < 0), and the quintessence model corresponds to ( r < 1, s > 0). Secondly,
we employ the Om ( z ) diagnostic introduced in Ref. [ 47 ]. The Om ( z ) diagnostic relies on the
slope of the function Om ( z ), where a negati v e slope indicates quintessence behavior, a positi v e
slope indicates phantom behavior, and a zero slope corresponds to �CDM. 

The paper is structured as follows. Section 2 provides a brief ov ervie w of the ma thema tical
formalism of f( Q ) gravity in a flat FLRW Uni v erse. In Sect. 3 , we present a specific f( Q ) cosmo-
logical model and deri v e the Hubb le par ameter by incorpor a ting an ef fecti v e EoS parameter.
The observational constraints on the model parameters are discussed in Sect. 4 , using the Hz
datasets consisting of 31 data points and the Pantheon datasets consisting of 1048 data points.
Additionall y, the behavior of cosmolo gical par ameters, including the deceler ation par ameter
and EoS parameter, is analyzed in this section. Sections 5 and 6 are dedicated to the examina-
tion of geometrical parameters. Section 5 focuses on the statefinder parameters, while Sect. 6
introduces the Om ( z ) diagnostic tool. Finally, Sect. 7 summarizes the conclusions drawn from
the study. 

2. f( Q ) gravity theory 

In the realm of differential geometry, the metric tensor g μν is regarded as a generalization of 
gravitational potentials. Its primary function is to determine angles , distances , and volumes. On
the other hand, the affine connection ϒγ

μν plays a crucial role in parallel transport and covari-
ant deri vati v es. In the conte xt of Weyl geometry, which incorporates the nonmetricity term Q ,
the Weyl connection ϒγ

μν can be decomposed into two distinct components: the Christoffel
symbol 	γ

μν and the disformation tensor L 

γ
μν . This decomposition allows for a better under-

standing of the geometric properties and interactions within Weyl geometry [ 26 ], 

ϒγ
μν = 	γ

μν + L 

γ
μν, (1) 

where the Christoffel symbol is determined in terms of the metric tensor g μν by 

	γ
μν ≡ 1 

g 

γ σ
(
∂ μg σν + ∂ νg σμ − ∂ σ g μν

)
(2) 
2 

3/17 
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and the disformation tensor L 

γ
μν is obtained from the nonmetricity tensor Q γμν as 

L 

γ
μν ≡ 1 

2 

g 

γ σ
(
Q νμσ + Q μνσ − Q γμν

)
. (3) 

The nonmetricity tensor Q γμν is defined as the cov ariant deriv ative of the metric tensor with
respect to the Weyl connection ϒγ

μν , expressed as 

Q γμν = −∇ γ g μν, (4) 

and it can be calculated by 

Q γμν = −∂ γ g μν + g νσϒσ
μγ + g σμϒσ

νγ . (5) 

The theoretical frame wor k employed in this study is symmetric telepar allel gr avity, also
known as f( Q ) gravity, which is equivalent to the well-known theory of gravity (GR) [ 24 ]. The
equivalence between f( Q ) gravity and GR is established in the coincident gauge, where the Weyl
connection is set to zero, ϒγ

μν = 0. In this gauge, the curvature tensor also becomes zero, re-
sulting in a flat space-time geometry. Consequently, the cov ariant deriv ative ∇ γ simplifies to
the partial deri vati v e ∂ γ , leading to the expression Q γμν = −∂ γ g μν . 

From the preceding discussion, the Le vi-Ci vita connection 	γ
μν can be expressed in terms of 

the disformation tensor L 

γ
μν as 	γ

μν = −L 

γ
μν . 

The action for symmetric teleparallel gravity is defined as [ 24 , 25 ] 

S = 

∫ √ −g d 

4 x 

[
−1 

2 

f(Q ) + L m 

]
, (6) 

where f( Q ) is an arbitrary function of the nonmetricity scalar Q , g r epr esents the determinant of 
the metric tensor g μν , and L m 

is the Lagrangian density for matter. The trace of the nonmetricity
tensor Q γμν can be expressed as 

Q γ = Q γ
μ

μ
, ˜ Q γ = Q 

μ
γμ . (7) 

It is also useful to introduce the superpotential tensor (the conjugate of nonmetricity) defined
by 

4 P 

γ
μν = −Q 

γ
μν + 2 Q 

γ

(μ ν) + Q 

γ g μν − ˜ Q 

γ g μν − δ
γ

(μQ ν) , (8) 

where the trace of the nonmetricity tensor can be obtained as 

Q = −Q γμνP 

γμν . (9) 

The field equations of symmetric teleparallel gravity are deri v ed b y v arying the action S with
respect to the metric tensor g μν , resulting in the following equations: 

2 √ −g 

∇ γ

(√ −g f Q 

P 

γ
μν

) + 

1 

2 

f g μν + f Q 

(
P νρσ Q μ

ρσ − 2 P ρσμQ 

ρσ
ν

) = T μν , (10) 

where the energy-momentum tensor is gi v en by 

T μν = − 2 √ −g 

δ
(√ −g L m 

)
δg 

μν
. (11) 

Here f Q 

= df/ dQ and ∇ μ represents the covariant deri vati v e operator. By varying the action
with respect to the connection, we obtain the following equation, 

∇ 

μ∇ 

ν
(√ −g f Q 

P 

γ
μν

) = 0 . (12) 

The cosmological principle sta tes tha t our Uni v erse is homogeneous and isotropic on large
scales. The ma thema tical description of a homogeneous and isotropic Uni v erse is gi v en by the
flat FLRW metric, which can be expressed as 

d s 2 = −d t 2 + a 

2 (t) 
[
d x 

2 + d y 

2 + d z 2 
]
, (13) 
4/17 
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where a ( t ) is the scale factor that r epr esents the size of the expanding Universe. The nonmetric-
ity scalar corresponding to the FLRW metric is obtained as 

Q = 6 H 

2 , (14) 

where H is the Hubble parameter, which r epr esents the rate of expansion of the Uni v erse. To
obtain the modified Friedmann equa tions tha t govern the Universe when described by the spa-
tially flat FLRW metric, we consider the stress-energy momentum tensor of a perfect fluid,
gi v en by 

T μν = (p + ρ ) u μu ν + pg μν, (15) 

where p represents the isotropic pressure, ρ is the energy density, and u 

μ = (1, 0, 0, 0) denotes
the four-velocity components of the perfect fluid. 

In view of Eq. ( 15 ) for the spa tially fla t FLRW metric, the field equations of symmetric
telepar allel gr avity ( 10 ) yield the following modified Friedmann equations, 

3 H 

2 = 

1 

2 f Q 

(
ρ + 

f 
2 

)
, (16) 

˙ H + 3 H 

2 + 

˙ f Q 

f Q 

H = 

1 

2 f Q 

(
−p + 

f 
2 

)
, (17) 

where the dot ( ̇ ) denotes the deri vati v e with respect to cosmic time t . If we choose the function
f( Q ) to be f( Q ) = Q , we obtain the standard Friedmann equations [ 25 ]. This result is expected
because, as mentioned earlier, this particular choice of f( Q ) corresponds to the theory’s limit
equivalent to GR. When we instead use f( Q ) = Q + F( Q ), the field Eqs. ( 16 ) and ( 17 ) can be
expressed as 

3 H 

2 = ρ + 

F 

2 

− QF Q 

, (18) 

(
2 QF QQ 

+ F Q 

+ 1 

)
˙ H + 

1 

4 

(
Q + 2 QF Q 

− F 

) = −2 p , (19) 

where F Q 

= 

dF 
dQ 

and F QQ 

= 

d 2 F 
dQ 

2 . 
In Eq. ( 18 ), we can express the energy density ( ρ) as the sum of two components, namely,

ρ = ρm 

+ ρr , where ρm 

and ρr r epr esent the energy densities associated with dark matter and
radiation, respecti v ely. Like wise, we can decompose the pr essur e ( p ) as p = p r + p m 

. The con-
serva tion equa tion for standard ma tter follows as 

dρ

dt 
+ 3 H (1 + ω) ρ = 0 . (20) 

The EoS parameter denoted as ω assumes distinct values depending on the specific matter
sources, such as baryonic matter and radiation. In the context of isotropic and homogeneous
spa tially fla t FLRW cosmologies tha t include radia tion, nonrela tivistic ma tter, and an exotic
fluid characterized by an EoS p de = ω de ρde , the Friedmann Eqs. ( 18 ) and ( 19 ) take on the fol-
lowing form: 

3 H 

2 = ρr + ρm 

+ ρde , (21) 

2 

˙ H + 3 H 

2 = −p r − p m 

− p de . (22) 

In this context, ρr , ρm 

, p m 

, and p r r epr esent the energy densities of the radiation and mat-
ter components, with p m 

, p r indicating the pr essur e associated with matter and radiation. In
5/17 
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addition, we have ρde and p de , which r epr esent the density and pr essur e contributions of DE
arising from the geometry, as described by 

ρde = 

F 

2 

− QF Q 

, (23) 

p de = 2 

˙ H (2 QF QQ 

+ F Q 

) − ρde . (24) 

Furthermore, the EoS parameter due to the DE component is 

ω de = 

p de 

ρde 
= −1 + 

4 

˙ H (2 QF QQ 

+ F Q 

) 
F − 2 QF Q 

. (25) 

In the following discussion, we make the assumption that the matter pr essur e, whether it is
associated with baryonic matter or dark matter, can be safely disregarded. When there are no
interactions between these three distinct fluid components (radia tion, nonrela tivistic ma tter,
and DE), the energy densities obey the following set of differential equations: 

˙ ρr + 4 H ρr = 0 , (26) 

˙ ρm 

+ 3 H ρm 

= 0 , (27) 

˙ ρde + 3 H (1 + ω de ) ρde = 0 . (28) 

Using Eqs. ( 26 ) and ( 27 ), it is straightforward to derive the evolution behaviors of pr essur eless
ma tter and radia tion. Specifically, we find tha t ρm 

= ρm 0 (1 + z ) 3 , and ρr = ρr 0 (1 + z ) 4 , where
z = 

1 
a (t) − 1 r epr esents the cosmological r edshift, and the subscript “0” signifies the value of the

respecti v e quantity at the present day or current time. 

3. Cosmological model 
For our analysis, we consider a specific functional form of symmetric teleparallel gravity, char-
acterized by the following expression, 

F ( Q ) = αQ 

n , (29) 

where α � = 0 and n are free parameters of the model. 1 Solanki et al. [ 48 ] investigated the linear
model, i.e. n = 1, in the presence of a viscous fluid. Furthermore, the authors of Refs. [ 32 , 49 ]
explored this form of gravity within the frame wor k of an anisotropic Uni v erse. When n = 2, the
quadr atic form of f( Q ) gr avity is obtained, and it has been e xtensi v ely discussed by Koussour
et al. [ 33 ] using a hybrid expansion law. 

For this general form of F( Q ), the modified Friedmann equations, Eqs. ( 23 ) and ( 24 ), can be
expressed as 

ρde = α6 

n 
(

1 

2 

− n 

)
H 

2 n , (30) 

p de = −α6 

n −1 
(

1 

2 

− n 

)
H 

2(n −1) (3 H 

2 + 2 n 

˙ H 

)
. (31) 

Using Eqs. ( 30 ) and ( 31 ), we can express the DE EoS parameter as follows: 

ω de = −1 − 2 n 

3 

( . 

H 

H 

2 

) 

. (32) 
1 For dimensional consistency, α has the dimensions of H 

2(1 − n ) . 

6/17 
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The time deri vati v e of the Hubb le parameter can be e xpressed in terms of the cosmological
redshift as 

. 

H = 

dH 

dt 
= − ( 1 + z ) H ( z ) 

dH 

dz 
. (33) 

It is evident that Eqs. ( 30 ) and ( 31 ) form a system of two equations with three unknowns:
H , ρde , and p de . Ther efor e, to solve Eq. ( 32 ) for H ( z ), an additional equation is r equir ed. In
the literature, an equation for the Hubble parameter is typically employed. Howe v er, in this
study, we adopt the opposite approach by imposing a constraint on the EoS parameter. This
approach is known as the model-independent approach. To investigate DE cosmological mod-
els, it is customary to employ a parametrization for relevant variables such as the Hubble or
EoS par ameters. This par ametrization enables us to obtain the necessary equation to solve the
field equations. In this study, we consider the Barboza–Alcaniz (B A) par ametrization of the
DE EoS parameter, which is gi v en by Ref. [ 50 ] as 

ω de (z ) = ω 0 + ω 1 
z (1 + z ) 
(1 + z 2 ) 

, (34) 

wher e ω 0 r epr esents the EoS value at the present time, while ω 1 quantifies the time dependence
of the DE EoS. The B A par ametrization exhibits a linear behavior in z at low redshifts, similar
to other parametrizations discussed in the literature [ 50 ]. One advantage of this parametriza-
tion is its bounded nature, ensuring it remains well-behaved throughout the entire history of 
the Uni v erse. Furthermore, it demonstrates behavior similar to quintessence and phantom DE
models at small redshifts, making it a viable choice for studying the EoS. This parametrization
has been e xtensi v ely discussed in previous studies, including Refs. [ 51 , 52 ]. By using Eq. ( 34 ), we
can analyze the behavior of the EoS parameter at different redshift values z as follows: 

� ω de = ω 0 , as z = 0, 
� ω de = ω 0 + ω 1 , for z → ∞ , 
� ω de = ω 0 , for z → −1. 

Using Eqs. ( 32 ), ( 33 ), and ( 34 ), we obtain the Hubble parameter in terms of the cosmological
redshift as 

H 

2 ( z ) = H 0 (1 + z ) 
3(ω 0 +1) 

n 
(
1 + z 2 

) 3 ω 1 
2 n , (35) 

wher e H 0 r epr esents the pr esent value of the Hubble parameter at z = 0. It is important to note
that the form of the Hubble parameter derived in our study is in agreement with several works
in the literature [ 53 , 54 ]. 

By substituting Eq. ( 35 ) into Eq. ( 30 ), we deri v e the expression for the DE density ρde as 

ρde (z ) = α6 

n 
(

1 

2 

− n 

)
H 

2 n 
0 (z + 1) 3(ω 0 +1) (z 2 + 1 

) 3 ω 1 
2 . (36) 

Thus, the Friedmann Eq. ( 21 ) can be expressed as follows: 

H 

2 (z ) 
H 

2 
0 

= �r 0 (1 + z ) 4 + �m 0 (1 + z ) 3 + �de 0 (z + 1) 3(ω 0 +1) (z 2 + 1 

) 3 ω 1 
2 , (37) 

where we have defined, for this particular model of f( Q ), 

�de 0 ≡ α6 

n 

3 

(1 / 2 − n ) H 

2(n −1) 
0 . (38) 

Furthermore, we have �r 0 and �m 0 representing the present-day values of the radiation and
matter density parameters, defined as �r 0 = 

ρr 0 
3 H0 2 and �m 0 = 

ρm 0 
3 H0 2 , respecti v ely. 
7/17 
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4. Observ ational constr aints 
In this section, we proceed to constrain our model parameters by comparing them with the
Hubble ( Hz ) and Pantheon datasets. The best values of the parameters, along with their uncer-
tainties, are determined through the utilization of the MCMC method [ 44 ] and by minimizing
the chi-square function χ2 . To assess the goodness of fit, we calculate the total χ2 by combining
the contributions from both the Hz and Pantheon samples. The expression for the total χ2 is
gi v en by, 

χ2 
tot = χ2 

Hz + χ2 
Pantheon , (39) 

wher e χ2 
Hz r epr esents the chi-squar e value associated with the Hz measurements, and χ2 

Pantheon 

corresponds to the chi-square value of the Pantheon dataset. 

4.1. Hz dataset 
To begin, we use a standard compilation of 31 Hz data measurements acquired via the differ-
ential age method [ 41 , 42 ]. This method allows for the estimation of the Uni v erse’s e xpansion
ra te a t a gi v en redshift z . Specifically, H ( z ) can be calculated as H (z ) = − d z/d t 

(1+ z ) . The χ2 
H 

function
is defined as 

χ2 
Hz = 

31 ∑ 

i=1 

[ H (z i , P ) − H obs (z i ) ] 
2 

σ (z i ) 2 
, (40) 

where H (z i , P ) represents the theoretical value of the model at redshifts z i , and P denotes
the parameter space, namely H 0 , �m 0 , α, ω 0 , ω 1 , n . On the other hand, H obs ( z i ) and σ ( z i ) 2 

correspond to the observed value and the error, respecti v ely. 

4.2. Pantheon dataset 
Secondly, we use a dataset comprising 1048 data points from the Pantheon compilation, which
consists of SN Ia observations. These data points span the redshift range 0.01 ≤ z ≤ 2.3 [ 43 ].
The Pantheon sample combines data from different supernova surveys such as the Sloan Digital
Sky Survey (SDSS), Supernova Legacy Survey (SNLS), various low- z samples, and high- z sam-
ples from the Hubble Space Telescope. The corresponding chi-square χ2 

Pantheon for the Pantheon 

dataset is defined as 

χ2 
Pantheon = 

1048 ∑ 

i, j=1 

�μi 
(
C 

−1 
Pantheon 

)
i j �μ j , (41) 

where μ = μobs (z i ) − μth (P, z i ) . Here, μobs ( z i ) is the observational distance modulus, μth (P, z i )
is the theoretical value defined as 

μth (P, z i ) = 5 log 10 

(
d L 

(z ) 
1 M pc 

)
+ 25 , (42) 

and C 

−1 
Pantheon is the inverse covariance matrix. In addition, the luminosity distance d L 

( z ) in
Eq. ( 42 ) is defined as 

d L 

(z ) = c (1 + z ) 
∫ z 

0 

dz ′ 

H (z ′ , P ) 
, (43) 

where c is the speed of light. 
The 1 − σ and 2 − σ contours on the model parameters H 0 , �m 0 , α, ω 0 , ω 1 , n ar e pr esented

in Fig. 1 , and the corresponding numerical r esults ar e summarized in Table 1 . Figures 2 and
3 show a comparison between our cosmological model and the standard �CDM model. For
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Fig. 1. The 1 − σ and 2 − σ contours for the model parameters H 0 , �m 0 , α, ω 0 , ω 1 , n using the Hz + Pan- 
theon dataset. 

Table 1. The best-fit values of the model parameters using the Hz + Pantheon dataset. Also shown are 
the present values of the cosmological parameters. 

datasets H 0 �m 0 α ω 0 ω 1 n 

Priors (60,80) (0,1) ( − 1, 1) ( − 2, 2) ( − 2, 2) ( − 10, 10) 
Hz + Pantheon 68 . 0 

+10 
−8 0 . 23 

+0 . 20 
−0 . 22 −0 . 59 

+0 . 39 
−0 . 40 −1 . 01 

+0 . 39 
−0 . 48 0 . 48 

+0 . 23 
−0 . 23 1 . 028 

+0 . 082 
−0 . 071 
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this comparison, we adopted the values �m 0 = 0.315 and H 0 = 67.4 ± 0.5 km/s/Mpc, which
were obtained from recent measurements by the Planck satellite [ 37 ]. The figures display the
data points of the Hubble parameter (31 data points) and the Pantheon compilation (1048 data
points) along with their corresponding error bars. We can observe that our model provides
a good fit for the data. By minimizing the χ2 function with respect to the mode parameters
( H 0 , �m 0 , α, ω 0 , ω 1 , n ), we obtain the best-fit values �m 0 = 0 . 23 

+0 . 20 
−0 . 22 , α = −0 . 59 

+0 . 39 
−0 . 40 , ω 0 =

−1 . 01 

+0 . 39 
−0 . 48 , ω 1 = 0 . 48 

+0 . 23 
−0 . 23 , and n = 1 . 028 

+0 . 082 
−0 . 071 for the Hz + Pantheon dataset (see Table 1 ).

These parameter values result in a best-fit value for the present Hubble parameter of H 0 =
68 . 0 

+10 
−8 . Remar kab ly, our model reduces the Hubble tension compared to the value obtained

by the SH0ES project, H 0 = 73.2 ± 1.3 km/s/Mpc at 68% confidence le v el [ 55 ]. In our model,
9/17 
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Fig. 2. The evolution of the Hubble parameter H ( z ) with redshift z : Comparison between our f( Q ) cosmo- 
logical model (red line) and the �CDM model (black dashed line) alongside observed H ( z ) data points 
(green dots) with error bars. 

Fig. 3. The evolution of the distance modulus μ( z ) with redshift z : Comparison between our f( Q ) cos- 
mological model (red line) and the �CDM model (black dashed line) alongside observed Pantheon data 

points (green dots) with error bars. 
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we have selected the f( Q ) function as f( Q ) = Q + F( Q ), where F( Q ) = αQ 

n . It is essential to
note that to achie v e what is r eferr ed to as the Symmetric Teleparallel Equivalent to GR, we
set F( Q ) = 0, which implies α = 0. Howe v er, it is not equivalent to the �CDM model, as the
cosmological constant is not present in this case. To obtain the �CDM model, we set n = 0 and
α = 2 � [ 56 ]. The deviations from n = 0 introduce modifications to the model that go beyond the
GR frame wor k and gi v e rise to the DE component within the f( Q ) model and, consequently, the
differences observed in our analysis. Specifically, it leads to variations in the cosmic expansion
scenario and provides a frame wor k for e xploring alternati v e cosmological dynamics. Also, it
is very important to note that we have omitted the radiation density parameter, �r 0 , due to its
negligible contribution in comparison to other dominant components, and its omission does 
not significantly impact the results of the MCMC analysis or the conclusions of this study. 

4.3. The deceleration parameter 
The deceleration parameter, a fundamental concept in cosmology, is pivotal for understanding 

the dynamics of the Uni v erse’s e xpansion. It is defined ma thema tically in rela tion to the Hubble
10/17 
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Fig. 4. The evolution of the deceler ation par ameter with redshift z using constraints from the Hz + Pan- 
theon dataset. 
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parameter as follows: 

q = −1 −
. 

H 

H 

2 
. (44) 

This parameter plays a central role in cosmological models, as it characterizes whether the
Uni v erse’s e xpansion is acceler ating or deceler a ting. W hen q is nega ti v e ( q < 0), it signifies an
accelerating expansion, as observed in the case of DE-dominated Uni v erses. Conv ersel y, w hen
q is positi v e ( q > 0), it indicates a decelerating expansion, as typically seen in matter-dominated
Uni v erses. Understanding q is crucial to gain insight into the past, present, and future evo-
lution of our Uni v erse. The observational data employed in this study provide evidence that
our present Uni v erse has entered an accelerating phase, with the deceleration parameter lying
within the range of −1 ≤ q < 0. In our analysis, we can express the deceleration parameter in
terms of the cosmological parameters employed as 

q (z ) = �r (z ) + 

1 

2 

�m 

(z ) + 

1 + 3 ω de 

2 

�de (z ) . (45) 

From the analysis presented in Fig. 4 , it is clear that the deceler ation par ameter captures
the two distinct phases of the Uni v erse: the deceleration phase and the subsequent acceleration
phase, which have been observed in various studies [ 57 , 58 ]. In our model, the transition between
these phases occurs at a redshift value of z tr = 0 . 64 

+0 . 07 
−0 . 07 [ 59 , 60 ], determined using the Hz + Pan-

theon dataset. Moreover, the present value of the deceleration parameter is q 0 = −0 . 69 

+0 . 59 
−0 . 66 

[ 61 , 62 ]. This negati v e value aligns with the observed acceleration phase of the Uni v erse, fur-
ther supporting the validity of our model. 

4.4. The EoS parameter 
The EoS parameter is a fundamental quantity that provides insights into the pr operties of pr o-
posed DE models. It is defined as the ratio of the isotropic pr essur e p to the energy density
ρ of the Uni v erse, gi v en by ω = 

p 
ρ

. In or der to e xplain the observ ed cosmic acceleration, it is

necessary for the EoS parameter to satisfy ω < − 1 
3 . This condition ensures that the dominant

component of the Uni v erse’s energy density possesses negati v e pr essur e, which dri v es the accel-
erated expansion. The simplest and most widely studied candidate for DE is the cosmological
constant � in the frame wor k of GR. It has a constant EoS parameter gi v en by ω � = −1.
This value indicates that the cosmological constant behaves like a fluid with negati v e pr essur e,
causing a repulsi v e gravita tional ef fect tha t leads to cosmic accelera tion. Howe v er, ther e ar e
11/17 
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Fig. 5. The evolution of the effective EoS parameter with redshift z using constraints from the Hz + Pan- 
theon dataset. 

Fig. 6. The evolution of the density parameter with redshift z using constraints from the Hz + Pantheon 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/11/113E01/7395006 by L. N

. G
um

ilyov Eurasian N
ational U

niversity user on 21 June 2024
alternati v e dynamical models of DE, such as quintessence, where the EoS parameter lies in the
range −1 < ω de < − 1 

3 . These models introduce a d ynamical scalar field tha t e volv es with time
and can mimic the behavior of DE. Another intriguing possibility is phantom energy, char-
acterized by an EoS parameter ω de < −1. In this case, the energy density increases with time,
leading to a super-accelerated expansion and potential future cosmic singularities. 

The behavior of the effecti v e EoS parameter is depicted in Fig. 5 , where we present the results
obtained from analyzing the Hz + Pantheon datasets. It is evident from the figure that the DE
EoS parameter of our analysis exhibits phantom-like behavior, characterized by ω de < −1.
This indica tes tha t the dominant component responsible for the accelerated expansion of the
Uni v erse behav es in a manner similar to phantom models of DE. Furthermore, we find that
the present value of the DE EoS parameter corresponding to the Hz + Pantheon dataset is
ω 0 = −1 . 01 

+0 . 39 
−0 . 48 (see Table 1 ) [ 63–65 ]. This value suggests that the current cosmic acceleration

is well described by our model. The negati v e value of ω 0 indicates that the Uni v erse is currently
experiencing an accelerated expansion, consistent with the observational data. 

The energy density sources in our Uni v erse e xhibit dynamic e volution ov er time, and they
play a pivotal role in defining cosmic history, its present state, and its future prospects. In Fig. 6 ,
we have provided insightful visualizations of the evolving DE density and matter density. From
this graphical r epr esenta tion, it becomes evident tha t in the early epochs, the ma tter density was
12/17 
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the dominant force shaping the Uni v erse, whereas in the present phase, the DE density holds
sway, e v en contributing to the current acceleration of cosmic expansion. In the context of the
Hz + Pantheon dataset, we have determined the present-day value of the matter density to be
a pproximatel y 0.23, with a 1 − σ error range of + 0.20 and −0.22. Detailed constraint values
for the matter density at the 68% and 95% confidence le v els are also tabulated in Table 1 . Fur-
thermore, a noteworthy observation is that throughout the entire course of their evolution, the
sum of the matter density and DE density remains remar kab ly close to unity ( �m 

+ �de 
 1),
reflecting a critical balance in the cosmic energy budget. These dynamic profiles of the two en-
ergy components strongly suggest that DE is poised to continue its dominance in our Uni v erse’s
for eseeable futur e, further contributing to its intriguing and complex cosmic story. 

5. Statefinder analysis 
The deceleration and EoS parameters are important in characterizing the expansion and na-
ture of the Uni v erse. Howe v er, a challenge arises because many proposed DE models in the
literatur e shar e the same curr ent values for these par ameters. Consequently, these par ameters
are not sufficient to effecti v ely distinguish between the different models under study. To address
this issue, Sahni et al. [ 45 , 46 ] introduced a new pair of dimensionless cosmological parameters
called statefinder parameters ( r , s ), which offer a more discriminating diagnostic for DE models.
The statefinder parameters are defined as 

r = 

... 
a 

aH 

3 
, (46) 

s = 

( r − 1 ) 

3 

(
q − 1 

2 

) . (47) 

The parameter r can be expressed in terms of the deceleration parameter as 

r = 2 q 

2 + q −
. 
q 

H 

. (48) 

The trajectories in the r −s plane are important for classifying different cosmological regions,
and various DE models can be characterized using this diagnostic pair as: 

� the �CDM model corresponds to ( r = 1, s = 0), 
� the holo gra phic DE model corresponds to ( r = 1 , s = 

2 
3 ), 

� the Cha pl ygin gas model corresponds to ( r > 1, s < 0), 
� the quintessence model corresponds to ( r < 1, s > 0). 

Figure 7 represents the r −s plane, where the parameters are constrained by the Hz + Pantheon
dataset. The plot provides valuable insights into the behavior of these parameters over cosmic
time. Notably, it becomes evident that, in the early Universe, the parameter values satisfy con-
ditions r < 1 and s > 0. These conditions suggest that the DE candidate in our model exhibits
quintessence-like behavior during these early epochs. Howe v er, as we transition to the present
epoch (at z = 0), the model manifests different characteristics. Furthermore, in the late-time
cosmic regime, as z approaches −1, the model adopts properties akin to the �CDM model.
This intriguing result corroborates our earlier findings concerning the EoS parameter, r einfor c-
ing the notion that the behavior of DE in our model undergoes distinct phases, resembling
quintessence at early times and converging towards �CDM-like behavior in the late Universe. 
13/17 
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Fig. 7. The evolution of the r −s plane using constraints from the Hz + Pantheon dataset. 
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6. Om ( z ) diagnostic 

In this section, we introduce another valuable tool for investigating the dynamic nature of cos-
mological models pertaining to DE, known as the Om diagnostic [ 47 ]. This diagnostic offers a
simpler approach compared to the statefinder diagnostic discussed earlier, as it relies solely on
the Hubble parameter H . In a spatially flat Uni v erse, the Om ( z ) diagnostic is defined as 

Om ( z ) = 

E 

2 ( z ) − 1 

( 1 + z ) 3 − 1 

, (49) 

where E ( z ) = 

H ( z ) 
H 0 

. The behavior of Om ( z ) provides valuable information on the nature of DE
in the cosmological model. A negati v e slope of Om ( z ) indicates quintessence behavior, where
the energy density of DE decreases with time. On the other hand, a positi v e slope r epr esents
a phantom behavior, where the energy density increases with time. A constant value of Om ( z )
corresponds to the standard �CDM model. 

The plot presented in Fig. 8 offers compelling insights into the behavior of the Om ( z ) diag-
nostic as a function of redshift z . Notably, it becomes apparent that for z < 0, Om ( z ) displays
a negati v e slope. This intriguing observa tion suggests tha t in the early Uni v erse, our cosmo-
logical model indeed showcases quintessence-like characteristics for DE. In quintessence, the 
EoS of DE ω de lies between −1 (indicating a cosmological constant) and −1/3 (r epr esenting
matter-like behavior), which is consistent with the negati v e slope of Om ( z ) at these redshifts.
Howe v er, as we e xtend our vie w to late cosmic times, a distinct transformation occurs. In this
late-time regime, when z approaches values close to −1, our model adopts properties akin to
phantom-like DE. Phantom DE corresponds to ω de < −1, and it is associated with an expand-
ing Uni v erse tha t accelera tes a t an increasing ra te. The shift towards phantom-like behavior in
14/17 
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Fig. 8. The evolution of the Om ( z ) diagnostic with redshift z using constraints from the Hz + Pantheon 

dataset. 
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the late Uni v erse is a fascinating feature of our cosmological model, highlighting its capacity
to encompass di v erse phases of DE e volution, from quintessence-lik e to phantom-lik e, as the
cosmic epoch unfolds. 

7. Conclusions 
In this paper, we investigate the la te-time accelera tion of the Uni v erse within the frame wor k
of f( Q ) gravity. In our model, we adopt a parametrization of the EoS to describe the behavior
of DE. By performing an MCMC analysis using observational data from H ( z ) measurements
and the Pantheon dataset, we deri v e the best-fit parameters for our model (see Table 1 ). Our
MCMC analysis yields results that are consistent with the current understanding of the accel-
erated expansion of the Universe. Specifically, we have found that the Universe experiences a
transition from a deceleration phase to an acceleration phase at a redshift of z tr = 0 . 64 

+0 . 07 
−0 . 07 

for the Hz + Pantheon dataset [ 59 , 60 ]. This transition is supported by a negati v e value of the
deceler ation par ameter, i.e. q 0 = −0 . 69 

+0 . 59 
−0 . 66 [ 61 , 62 ], indica ting the onset of cosmic accelera tion.

Furthermore, the EoS parameter exhibits a phantom-like behavior for DE ( ω de < −1). The
presence of phantom DE in a cosmological model leads to some intriguing consequences [ 66 ].
Specifically, it implies that as the Uni v erse e xpands, the rate of cosmic acceleration increases
over time, ultimately leading to a “Big Rip” scenario [ 67 ]. In the Big Rip, the Uni v erse’s e xpan-
sion becomes so rapid that it tears apart not only galaxies , stars , and planets but e v en atoms
themselves, resulting in a catastrophic end to the cosmos. Also, our analysis of the Hz + Pan-
theon dataset re v eals that the present value of the EoS parameter is ω 0 = −1 . 01 

+0 . 39 
−0 . 48 [ 63–65 ].

We also utilized two diagnostic tools, the statefinder and the Om ( z ) diagnostic, to further inves-
tigate the properties of DE in our model. Ultimately, our comprehensi v e anal ysis consistentl y
r einfor ces the notion of a phantom-like behavior for DE as the driving force behind the late-
time acceleration of the Uni v erse. This conclusion finds support across m ultiple cosmolo gical
diagnostics, including the deceleration parameter , EoS parameter , statefinder , and the Om ( z )
diagnostic. Collecti v ely, these diagnostic tools converge to provide a compelling portrait of the
evolving nature of DE, unveiling its phantom-like attributes in the cosmic story’s late chapters.
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