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Abstract: The creep of concrete is one of the main problems threatening concrete structural develop-
ment and the stability and safety of structures. However, the nonlinear theory is the key to solving
the problem of taking into account the physical and mechanical properties of concrete creep in shell
structures. To create such a theory, the original shell is replaced by a continuous equivalent elastic
shell. To determine the stress–strain state of the structure, the equations of nonlinear creep and
crack growth are derived, and a deformation model of the section is created. The behavior of the
structure at all stages of the life cycle is investigated by solving the solving systems of differential
equations of equilibrium, motion, and perturbation of the equivalent shell. The values of the ratios
of dependence of long-term and short-term critical loads on deformations, forces, cracks, etc., are
given. The accuracy of the solution of the developed nonlinear theory is compared with the linear
theory of concrete creep as well as experimental data. The results show that, according to the linear
theory, for the values for the short term and long term, up to 56% and up to 39% of critical loads are
overestimated, respectively. The creep process in practical engineering can be effectively controlled
by the results of the proposed theory.

Keywords: theory of cracks; concrete creep; nonlinear theory of calculation of structures;
building codes

1. Introduction

The phenomenon of metal creep at high temperatures is one of the reasons for the
destruction of the Twin Towers in New York (USA) [1]. Due to the creep of materials,
the structures of Basmanny Market in Moscow (Russia) and a bridge in Genoa (Italy)
collapsed [2].

The development of creep increases the stress loss in the concrete structure and
redistributes the internal force of statically indeterminate structures. In turn, excessive
deformation of the structure significantly reduces the overall strength and even causes
loss of bearing capacity. With the modern, wide range, high-quality, and common use
of concrete materials, concrete creep has become one of the main problems threatening
structural composition, the quality characteristics of concrete, as well as the safety and
long-term stability of concrete structures [3–5].

The creep of concrete elements can weaken the greatest tensile stress, which reduces
the risk of the early cracking of concrete [6–12]. Evaluation of the crack resistance of
concrete should take into account the creep of concrete [13].

Taking into account the creep of concrete under axial compression in calculations
within the framework of the classical theoretical approach was first proposed by A.R.
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Rzhanitsyn and subsequently developed by Y.N. Rabanov, S.A. Shestikov, L.B. Bunyatyan,
V.B. Kolmanovsky, I.E. Prokopovich, E.A. Yatsenko, and I.I. Ulitsky for linear creep prob-
lems of concrete [14–22]. Distefano I.N., Prokopovich I.E., and Linnik V.S. applied this
method using the nonlinear creep equation of Harutyunyan N.H. and two significantly
simplified assumptions: an idealized section in the form of two thin strips; in the function
of the nonlinear creep of concrete, the stress was considered to be the same for both bands
(when bending the section) [20,23,24]. Such a simplified model in a narrow range allows us
to obtain in the final form qualitative nonlinear estimates of the limit of long-term stability.

Creep deformation has a linear dependence on the applied stress in the case of a
low stress level (compressive strength less than 30%). However, creep is an unstable
phenomenon, since time and stress increase in the case of a high stress level (from 30% to
80% compressive strength); that is, it is a nonlinear dependence that is found in specific
creep theories and experimental research data [25–29].

A review of the literature shows that the development of effective unified computa-
tional algorithms for solving physically nonlinear problems of the dynamics of short-term
and long-term deformation of shells and plates made of composite materials is an urgent
problem today [30,31].

The value of long-term resistance Ri is established on the basis of local experiments
and depends on the choice of empirical correction coefficients:

Rl =
π2·E·I

L2(1 + ϕ∞)
, (1)

where Rl is long-term resistance (by Rzhanitsin) [14], E is a modulus of the deformation
of construction materials, I is the moment of inertia of the section of the structure, L
is the length of the column for the core elements, and ϕ∞ is the standard normalised
dimensionless creep characteristic of concrete.

The value of long-term resistance contains deviations from the results. With the pro-
longed action of the load, the empirical method dangerously overestimates the conditional
critical force by several times concerning the value of the limiting elasticity of concrete.
Formula (2) shows the modulus of deformation of concrete and the numerical values of the
ultimate creep characteristic ϕb,cr:

Eb,τ =
Eb

1 + ϕb,cr
, (2)

where ϕb,cr is the concrete creep coefficient.
The principles of the general nonlinear theory of the calculation of structures are the

basis of European standards [29,32]. Figure 1 shows that according to this concept, on
the top line of the diagram, the design is considered to be fully compliant with safety
requirements until the load E, increasing continuously from a point 0, will not reach a
certain level E0, beyond which the design does not meet the safety requirements.
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Figure 1. Theories for calculating the limit state of the bearing capacity of structures: Ue is the elastic
behavior of the structure, U0 is the limit state of the structure, Uh is a plastic hinge in the design,
and Uch is the corrected plastic hinge.
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The theory of limit equilibrium excludes the indicator U0 from the design scheme of
the limit state of a compressed reinforced concrete structure [33]. This concept is contrary
to the principles of the nonlinear theory of the calculation of structures and is shown
on the bottom line of the diagram. The limiting state of the structure is assigned by a
volitional method at a point Uh > U0 and corresponds to the formation of a plastic hinge
(U = U h). The value Uh may be several times greater than the value U0. The process of
continuous static loading of the structure is carried out only on the interval (0, Ue) of the
elastic operation of the structure. At the point Ue, either the first crack in the concrete is
formed or plastic deformation begins. From point Ue in norms, there is an instantaneous
jump to the point Uh, bypassing the point U0, or to the point Uch, corresponding to the
plastic hinge.

Contradictions between the limit state of the structure, established by the nonlinear
theory of the calculation of structures, and the limit state are presented in the building codes:

1. Point U0—there is a real point completing the process of static loading of a compressed
reinforced concrete structure; point Uh—there is an unreal point, but it is used in
the building codes and has nothing to do with the process of static loading of any
compressed reinforced concrete structure;

2. The nonlinear theory of the calculation of structures recognizes the unsatisfactory
state of the structure, corresponding to the site (U0, Uh); building codes recognize the
same deformation site (U0, Uh) satisfactory condition for construction;

3. The nonlinear theory of the calculation of structures establishes the rules for calculat-
ing the value U0 and characterizes the limiting state of the structure;

4. The nonlinear theory of calculating structures naturally rejects the existence of a
deflection at the column, with it having no length; the building codes give deflection
to the column, with it having no length. This deflection reaches infinite values in
absolute magnitude;

5. Numerical values U0 and Uh differ from each other up to 100%.

The review shows that the existing theories of the reinforced concrete shell have
significant shortcomings.

The nonlinear theory of concrete creep within the framework of instantly elastic
models has been developed in scientific works [34–36].

The nonlinear creep equation for concrete, which describes the biaxial stress state, has
the form [34]:

ε11(t) =
σ11(0)−v·σ22(0)

E(0) · [1 + f (σi) · ϕ(t)]

+
∫ t

0

{ d
dτ
[σ11(τ)− v · σ22(τ)]·
·
(

1
E(τ) +

ϕ(t)−ϕ(τ)
E(0) · f [σi(τ)]

) } · dτ;

ε22(t) =
σ22(0)−v·σ11(0)

E(0) · [1 + f (σi) · ϕ(t)]

+
∫ t

0

{
d

dτ
[σ22(τ)− v · σ11(τ)] ·

(
1

E(τ) +
ϕ(t)−ϕ(τ)

E(0) · f [σi(τ)]
)}
· dτ;

γ12(t) =
2·(1+v)

E(0) · τ12(0) · [1 + f (σi) · ϕ(t)]

+
∫ t

τ1
2(1 + v) ·

{
dτ12(τ)

dτ
·
(

1
E(τ) +

ϕ(t)−ϕ(τ)
E(0) · f [σi(τ)]

)}
· dτ.

(3)

where ϕ(t) is the current value of the creep characteristic, E(0) is the modulus of deforma-
tions at the initial moment of time, and f (σi) is the nonlinearity function, which is selected
based on the experimental data depending on the grade of the concrete and other factors.

The equation of the nonlinear creep of concrete has the form [35]:

ε(t, t0) = S0[σ(t)] ·
{

σ(t)
[

1
EM(t)

+ C∗0 (t, t0)−
∫ t

t0

σ(τ) · ∂

∂τ
C∗0 (t, τ) · dτ

]}
(4)
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where ε(t, t0) is the total deformation of concrete under the action of constant stress
applied at time t0, S0[dσ′(t)] is the nonlinearity function of instantaneous deformation, σ(t)
is alternating stress, and EM(t) is the modulus of instantaneous deformation. Deformations
at time t, C∗0 (t, t0) и C∗0 (t, t) (Equation (6)) are creep measures at the time of loading and
observation in the form of N. Harutyunyan’s record [37]. C∗0 (t, τ) is a creep measure in
the form proposed by S. Alexandrovsky [38].

The equation of nonlinear creep of concrete [36] for the first time takes into account
the nonlinearity of the instantaneous deformation of concrete in the framework of hered-
ity hypotheses:

ε(t) =
σ(t)
E(t)

· FM[σ(τ)]−
∫ t

t0

σ(τ) · Fn[σ(τ)] ·
∂

∂τ
C∗0 (t, τ) · dτ. (5)

where ε(t) is the relative creep deformation of the material at time t, E(t) is the modu-
lus of elastic-instantaneous deformations, FM is a nonlinear stress function for elastic-
instantaneous deformations, σ(τ) is an alternating stress, and Fn is a nonlinear stress
function for creep deformations.

The nonlinear creep of concrete [36] is written as follows:

ε(t, t0) = S0[σ(t)] ·
{

σ(t) ·
[

σ(t) · 1
EM(t)

+ C∗0 (t, t)−
∫ t

t0

σ(τ) · ∂

∂τ
C∗0 (t, τ) · dτ

]}
. (6)

The equation of the nonlinear creep of concrete takes into account the nonlinearity of
the instantaneous deformation of concrete and has the form [39]:

.
εb(t) = 1

Eb(t)

[
∂Φ[σb ,t]
∂σb(t)

.
σb(t) +

∂Φ[σb ,t]
∂t

]
+ ∂ f [Φ(σb ,t)]

∂Φ ϕΦ
t αΦ·[

∂Φ[σb ,t]
∂σb(t)

.
σb(t) +

∂Φ[σb ,t]
∂t

]
+ 1

Eb0
· .

ϕ
Φ
t f [Φ(σb, t)].

(7)

where
.
εb(t) is the creep deformation rate of concrete at time t, Eb(t) is the concrete defor-

mation modulus for the current time,
.
σb(t) is the rate of stress change in concrete at time t,

ϕΦ
t is the creep characteristic of concrete in the form of a Sanzharovsky [34] notation, αΦ is

a constant in the form of a Sanzharovsky notation, and Eb0 is the modulus of elasticity.
A general theory of calculation of composite physically and geometrically nonlinear

thin-walled systems is proposed, extending to a fairly wide class of smooth and reinforced
shell and plate structures, including during their reconstruction, operating in a complex
stress state at real loading levels, as well as under conditions of nonlinear creep of the
material and the presence of cracks.

A mathematical model of the behavior of the mentioned structures at all stages of
loading is constructed within the framework of unified systems of differential equations
and an algorithm for their solution at different points in time.

A new method for calculating inelastic shell structures with cracks is proposed, and
relations for equivalent elasticity parameters are given, which implement quite strictly
the problem of taking into account plasticity, half-strength, and cracks in stretched and
compressed cross-section zones. The main idea is to replace an inelastic shell with cracks—a
solid equivalent elastic shell structure with equivalent elasticity parameters determined by
comparing its deformations with similar deformations of a nonlinear model.

2. Methods

Building codes ensure that the general criteria and design methods comply with the
requirements of the nonlinear theory of structural analysis.

Practical adaptation requires overcoming existing inconsistencies in the building codes,
the calculated position of which is based on an erroneous model of a plastic hinge [40–42].
In the nonlinear theory of structures, the calculation of structures is presented in a simple
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and convenient form; it corresponds to the deformation model of the section. This measure
will allow finding alternative solutions in the design of various structures.

The construction of a nonlinear theory for the calculation of reinforced concrete shells
and plates based on generally accepted assumptions is shown. The well-known models of
concrete deformation under short-term and long-term loading are considered, disobedient
to Hooke’s law σ = E·ε.

The nonlinear relationship between stresses and deformations was first considered by
G. Bulfinger and F. Gerstner. The power law at k 6= 1 is a nonlinear dependence, which is
written in the following form (8):

σ = A·εk, (8)

where A is a constant with the dimension of the stresses and k is an exponent (dimensionless
quantity).

The following equations are also used to describe the nonlinear relationship between
stresses and strains.

F. Gerstner describes the nonlinearity of materials by parabolic dependence:

σb = A1·ε− A2·ε2. (9)

The functional relationship between stress intensity and strain intensity in the material
deformation diagram σε is approximated by a cubic dependence [43] in the form:

σi = E0 · εi − A3 · ε3
i . (10)

The polynomial function is taken as:

σb = A1·εb + A2·ε2
b + A3·ε3

b + A4·ε4
b + A5·ε5

b. (11)

Within the framework of the hypothesis of the linear creep of concrete, the creep of
particular importance is in the form of:

σ(t)
E(t)

= ε(t) +
∫ t

t0

ε(τ) · R(t, τ) · dτ. (12)

The simplified Maxwell–Kachanov concrete creep formula is taken in differential form:

.
ε = B1(t) · σm +

1
E
· .

σ. (13)

Next, the problems of constructing a nonlinear theory for the calculation of reinforced
concrete shells and plates are considered.

3. Results and Discussion
3.1. Establishing a Functional Relationship between Stresses and Strains

In the first stage, a deformed thin-walled element and its cross-section of unit length
are considered, receiving displacements with these U, V, W rotation angles, this ω1, ω2, ω3,
elongation strain, and these ε1, ε2, longitudinal γ and transverse γ1, γ2 shifts [44].

The hypotheses of the theory of plasticity are accepted, and specific equations of
fiber deformation in the differential form are obtained with increasing load for the case of
short-term loading in the form:

.
σ11(t) = E∗1 ·

.
ε11(t) + E∗2 ·

.
ε22(t) + E∗3 ·

.
γ12(t) + E∗4 ·

.
γ13(t) + E∗5 ·

.
γ23(t); . . . ;

.
τ12(t) = E∗11 ·

.
ε11(t) + E∗12 ·

.
ε22(t) + E∗13 ·

.
γ12(t) + E∗14 ·

.
γ13(t) + E∗15 ·

.
γ23(t); . . . ;

(14)

where E∗j
[
σij(t)

]
are variable modules of deformations, Ec

[
σij(t)

]
are secant modules, and

Ek
[
σij(t)

]
are tangent modules of deformations from the concrete deformation diagram

σij ∼ εij.
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For research on the processes of the creep of materials in structures, any of the equa-
tions of creep theories are used; exactly, equations of the theory of ageing in differential
form, which have the form:

.
εjj(t) = 1

E(t) ·
[ .
σjj(t) + ϑ

.·σ(3−j)(3−j)(t)
]
+ 1

E(0) ·
[
σjj(t) + ϑ · σ(3−j)(3−J)(t)

]
· f [σi(t)]

· .
ϕ(t);

.
γ12(t) =

2·(1+ϑ)
E(t) ·

.
τ12(t) + 1

E(0) · τ12(t) · f [σi(t)] ·
.
ϕ(t);

.
γj3(t) =

2·(1+ϑ)
E(t) ·

.
τ j3(t) + 1

E(0) · τj3(t) · f [σi(t)] ·
.
ϕ(t),

(15)

where E(τ) = Ec(τ)
[1+g(τ)] ; g(τ) = Ec(τ)·(0.5−ϑ0)

1.5E0
; f [σi(τ)] is the nonlinearity function; and ϕ(t)

is a creep characteristic.
The combination of these two laws of short-term and long-term deformation is appli-

cable at all stages of the structure’s existence.
Geometric relations are obtained based on a Timoshenko-type shift model:

ε jj = ε j + z · ∂ψj
∂j ; γ12 = γ + 2z ·

(
∂ψ1
∂y + ∂ψ2

∂x

)
;

γj3 = γj · f (z); γj = ψj +
∂W
∂j −

U
Rj

; j = x, y; U ↔ V.
(16)

Transverse shear stresses are distributed according to the parabola law in the follow-
ing form:

τj3 = −
QBH

j
zmj(t)+zoj(t)

· f (z);

f (z) = − 6
[zmj(t)+zoj(t)]

2 ·
[
z + zoj(t)

][
z− zmj(t)

]
.

(17)

In this case, the following conditions are met:

∫ zmj(t)

−zoj(t)
f (z) · dz =

[
zmj(t) + zoj(t)

]
;

1
zmj(t) + zoj(t)

∫ zmj(t)

−zoj(t)
f 2(z) · dz =

1
ksh

, (18)

where ksh is the shape coefficient at shift and zoj(t), zmj(t) are the upper and lower limits
of integration within the solid part of the section, depending on the presence or absence
of cracks.

The shape coefficient at shift is derived to obtain shear stresses at the center of gravity
of the shell cross-section with cracks, depending on the shape of the section.

3.2. Creation of a Deformation Model of a Section with Cracks and the Inelastic Properties
of Materials

The main vector and the main moment of the stress diagram in a linear section are
compiled in the form:

NBH
j (t) =

∫ zmj(t)
−zoj(t)

σjj(t) · dz−
n′

∑
k=1

σ′akj(t) · F
′
akj +

n

∑
k=1

σakj(t) · Fakj . . . ;

QBH
j (t) =

∫ zmj(t)
−zoj(t)

τj3(t) · dz +
n′

∑
k=1

τ′akj3(t) · F
′
akj +

n

∑
k=1

σakj3(t) · Fakj;

MBH
j (t) =

∫ zmj(t)
−zoj(t)

σjj(t) · z · dz +
n′

∑
k=1

σ′akj(t) · F
′
akj · h′akj

+
n

∑
k=1

σakj(t) · Fakj · hakj; zmj(t) =
hmj ·(εpj−ε j)

εmj−ε j
;

zoj · (t) =
hoj ·(εrj−ε j)

εoj−ε j
; . . . ; zm(t) =

hm ·(εrj−γ)
γ0−γ ,

(19)

where εoj, εmj(j = 1, 2), γ0, γm are fiber deformations of the cross-section; σjj, τ12, τj3, are
the linear stresses in the concrete matrix; σ′aj, . . . , σaj, . . . uF′aj, Faj are, stresses and total areas
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j upper and lower reinforcing bars, respectively; h′aj, haj are coordinates of the reinforcing
bars of the location relative to the center of reduction of the internal forces of the section’
and a′aj, aaj is the thickness of the upper and lower protective layers of concrete. To simplify
the epure of the distribution of stresses and strains k, there is an amount of upper and lower
layers of reinforcement. To represent the distribution of stresses and strains, Figure 2 shows
the location and number of top and bottom reinforcing bars in the structure section.
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Figure 2 shows the diagrams of the distribution of deformation and stress in the
section of the element: (a) if there are cracks in the section and (b) if there are no cracks in
the section.

The fixed ultimate deformations in the section are taken subject to the strength condi-
tion in the form:

ε l j =


εkj providedncond 6= 0orncond = 0;

ε∗kj, ε∗jj ≤ ε∗j(3−j) ≤ ε∗(3−j)(3−j) < 0;
ε∗jj, ε∗jj ≤ ε∗j(3−j) ≤ ε∗(3−j)(3−j) > 0;

[(k), l = r, p, (o, m); j = 1, 2, 1↔ 2],

ε∗(3−j)(3−j) = ε∗(3−j)j(j = 1↔ 2),

(20)

where ε∗jj(j = 1, 2 1↔ 2) are fixed ultimate deformations of the composite matrix in tension
and compression and ncond are conditions for the strength of the Equation (21).

With numerical integration, the boundary of the occurrence of plastic deformations in
the reinforcement corresponds to the achievement of yield strains εm on the reinforcement
deformation diagram σa ∼ εa.

When creating a deformation model of the cross-section, the condition for the appear-
ance of a crack during compression and tension was adopted in the form of a condition
(criterion) of strength by G. Geniev (21) [45]:

σ2
r1 + σ2

r2 + σ3
r3 − (σr1 · σr2 + σr2 · σr3 + σr1 · σr3)− (Rcs − Rts) · (σr1 + σr2 + σr3)

−Rcs · Rts = 0,
(21)

where Rcs and Rts are compressive and tensile strength, respectively.
To relate the stresses and strains in the fibers, there are equations of the forms (14) or (15).

The specific equilibrium equations in the cross-section with cracks are compiled in dif-
ferential form. A linear system of differential equations with time-varying coefficients is
obtained in the form:

[A(x, t)]×
{ .

x
}
=
{

Ap(t, x)
}

, (22)



Materials 2023, 16, 5587 8 of 15

where [A(x, t)] is a square matrix of coefficients with an unknown system, the order of
which depends on the accepted model, and

{ .
x
}

is a vector column of unknown velocities;{
Ap(t, x)

}
; there is a matrix column of free terms.

The solution of Equation (22) makes it possible to find edge deformations with the
help of which all parameters of the stress–strain state of the section are determined.

3.3. Derivation of the Integral Relationship between Deformations and Stresses, and Finding
Equivalent Elasticity Parameters

Equivalent elastic parameters are obtained based on te calculated edge deformations
of the section.

To achieve this, m—the moment relationship between the total deformation of an
arbitrary layer—is expressed with a coordinate z + z0. This is how the equivalent elasticity
parameters are found for different models of a section with cracks and inelastic properties
of materials:

1
2

∫ h
−h εmr

(
1 + 1

h

)
+ εor

(
1− 1

h

)
(z + z0)

mdz =

=
∫ h
−h

[
ε1 · L2 + ε2 · n2 + γ · Ln + z ·

(
∂ψ1
∂x · L

2
k +

∂ψ2
∂y · n

2
k +

(
∂ψ1
∂y + ∂ψ1

∂x

)
Lknk

)]
(z + z0)

mdz,
(23)

where L = sinα; n = cosα; α = tg−1
[

γ
(ε2−ε1)

]
; Lk = sinβ; nk = cosβ; β = tg−1[2χ/(χ2 − χ1 ].

Expressions for elongation, shift, and curvature from the elastic calculation are substituted
in the right part of Formula (23), and integration is performed. As a result, equivalent
elasticity parameters are found for different models of a section with cracks and the inelastic
properties of materials, in particular, for a model of the Timoshenko type:

Eeq = Nr1+Mr1−0.5·(Nr2+Mr2−6ksh ·Qr,r)
εmr(h+Vr)−εor(−h+vr)

2h ·F·Sr−
1−2v0

2E0
·(Nr2+Mr2−2ksh ·Qr,r)

;

veq = 1
2 −

(
1
2 − v0

)
· Eeq

E0
.

FSr =

[
(h+z0)

m+1−(−h+z0)
]

m+1 ; vr =
S·Ir
F·Sr

; m

=
1− εm1

ε01
2 ;

SIr =
[
(h + z0)

m+1 + (−h + z0)
m+1

]
· h

m+1 −
[(h+z0)

m+2−(−h+z0)
m+2]

(m+1)·(m+2) ,

(24)

where Nrj,Mrj,Qr,r are the internal forces in the principal axes; Fnj, Inj are the reduced
characteristics of the reinforced concrete section; F · Sr, S · Ir are the integral geometric
characteristics of the section; and m is an indicator of the weight of the influence of the
extreme fibers of the section.

As a result of the integral representation of material properties (24), physical equations
of a nonlinear model with load-dependent parameters E, v can be replaced by physical
relations with equivalent elasticity parameters.

3.4. Description of the Shape of the Deformed Scheme and Nonlinear Analysis of Structures

The shell calculation model is constructed according to a deformed scheme based on
differential equilibrium equations.

The features of deformation and the existence of the shell are accounted for. Func-
tional dependencies of changes in external influences and/or the rheological properties of
materials corresponding to the real process of loading and deformation are set:

∂N1

∂x
+

∂N12

∂y
+ N2

(
∂ωm

∂y

)
+ N12

(
∂ωm

∂x

)
− q1(1 + ε1 + ε2)− q2

(
ωp + ωm

)
= 0; (1↔ 2), (25)
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where ∂M1
∂x + ∂M12

∂y −Q1 = 0; ∂M12
∂x + ∂M2

∂y −Q2 = 0. To trace the entire loading process, the
law of increasing load is presented in the form:

q(t, x, y) = q0(x, y) + ∆q(x, y) · t. (26)

A resolving system of quasi-static equations of shell motion due to changes in external
load or geological processes is constructed. All relations used are differentiated once in time,
including physical relationships with equivalent elasticity parameters, taking into account
variability. As a result, a linear system of differential equations is obtained concerning the
generalized velocities of the deformation parameters:{ .

yJ(t)
}
·
[
ajj(t)

]
= aJP(t), (27)

where
.
yJ(t) is the generalized velocities of the deformation components; aJ J(t) is the

variable coefficients, depending on the condition and age of the structure; and aJP(t) is
variable functions of changing the external load and/or creep parameters of materials.

3.5. Evaluation of the Stability of the Equilibrium under Study and the Establishment of the
Criterion for the Loss of Bearing Capacity

To check the stability of the equilibrium of the structure, its varied state is considered.
A system of linear equations in variations of the desired quantities is derived. As a result,
a homogeneous system of linear equations in variations is obtained with coefficients
recalculated at each calculation step:{

δyJ(t)
}
·
[
aJ J(t)

]
= 0. (28)

The equality of the determinant of this system to zero determines the condition for the
loss of stability of the equilibrium of the structure.

Det
[
aJ J(t)

]
= 0, (29)

where δyJ(t)is the perturbation components and aJ J(t)is the virtual equivalent stiffnesses
when the structure is perturbed.

The proposed mathematical model and algorithm for solving nonlinear problems
are implemented in the form of a compiled set of computer programs. The developed
software systems have been tested on solving test problems, with satisfactory comparison
of shell calculation results with known solutions [46,47] and experimental data [48,49].
They passed the state registration of copyright in the authorized bodies of Kazakhstan [50].

Based on the developed software systems, the operation of structures at all stages of
the life cycle is studied. Various effects of the influence of nonlinearities on the behavior of
structures are revealed. A study established the dependence of the equivalent parameters
of elasticity on the level of loading, the percentage of reinforcement, the cracks formation
scheme, and other factors [44].

Solutions for the development of practical recommendations have been obtained on
the effective calculation of composite shells and plates in a nonlinear formulation in the
concept of European standards.

Figure 3 shows a graph of the build-up deflection at the center of the plate. The
results of the calculation of the plate according to the linear elastic scheme are presented
without taking into account crack formation, according to the proposed theory and also
according to experimental research. An insignificant discrepancy between the calculation
results according to the proposed theory and experimental data (7–12%) confirms the
reliability of the developed nonlinear calculation theory. Taking into account the physical
nonlinearity gives a significant correction in bearing capacity values for plates with high
content of reinforcement.
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Figure 3. Load–deflection dependence graph for plate P-1.

Short-term ultimate loads for P-1 with the following parameters: a = b = 55 cm,
s = a/b = 1, 2h = 4 cm, ha1 = ha2 = h = 1.8, F′a1 = F′a2 = 0; Fa1 = Fa2 = 0.0707,
E0 = 3.3·104 MPa, Ea = 1.7·105 Mpa, v0 = 0.2, Rcub = 24.3 Mpa, Rcs = 14.5 Mpa,
Rts = 1.45 Mpa, and Ra = 327.6 MPa.

Figure 4 shows the results of the calculation of reinforced concrete shells according
to a linear elastic scheme without taking into account cracks and also taking into account
crack formation and the inelastic properties of materials.
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In Figure 4a, the triangles show the curves of a numerical and experimental study of
the behavior of shells O-1 and O-2 according to a nonlinear elastic scheme. A comparison
of them with the rectangle curve obtained according to the proposed theory shows their
insignificant discrepancy for particularly flat shells and more significant discrepancy for
shells with a large rise. Circles represent curves calculated without taking into account the
nonlinear components of deformations and crack formation. The higher the lift and the load
level, the greater the discrepancy in the values (and other parameters) obtained from the
linear and nonlinear theory of elasticity, taking into account plasticity and crack resistance.

The general figures and explanations for Figure 4b are summarized in a Table 1.
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Table 1. Results of numerical research on the nonlinear calculation of reinforced concrete shallow shells and plates.

Type of Calculation
P-1 S-1 S-2

Critical Load Value,
MPa

Comparati-Ve
Assessment, %

Critical Load Value,
MPa

Comparati-Ve
Assessment, %

Critical Load Value,
MPa

Comparati-Ve
Assessment, %

Short-term

Elastic-linear scheme 0.046 254.9 0.0022 100 0.0087 100
Developed theory 0.02 114.3 0.00175 79.6 0.0058 66.7
Experiment [48] 0.0185 100

Long-term

Method of calculation [47] 0.0027 71.1
Developed theory for linear creep:

excluding cracks 0.00162 100 0.0056 147.4
taking into account cracks formation 0.00151 93.2 0.0047 123.7

The developed theory takes into account
nonlinear creep:

according to the criterion [29] 0.00146 90.1 0.0043 113.2
Experiment [49] 0.0038 100
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The following initial parameters are set: a = b = 100 sm, s = a/b = 1; 2hh = 0.33 sm,
h01 = h02 = h = 0.335 sm, F′a1 = F′a2 = 0; Fa1 = Fa2 = 0.00904 sm, E0 = 2.4·104 MPa,
Ea = 2.1·105 MPa, v0 = 0.2, Rcub = 22.1 MPa, Rcs = 13.2 MPa, Rts = 1.32 MPa,
Ra = 310.0 MPa, σi = εi—cubic dependence, A3 = 1.1753902·1010 MPa, k1 = k2 = 0.55·10−3 sm
at (0–1); k1 = k2 = 1.1·10−3 sm at (0–2); ϕ(t) = ϕ∞

(
1− β1e−γ1·t − β2e−γ2·t

)
. Short-term

critical loads qt = 0.00175 MPa for(S− 2); qt = 0.0058 MPa for(S− 2). Long-term critical
loads ql = 0.0043 MPa for (S− 2) with creep parameters: f (x) = 1 + βσi; σi(t) ≤ η · Rcs;
β = ϑ ·

(
σi(t)
Rпc
− η

)
; σi(t) = Eeq(t) · εi(t); ϕ(t) = ϕ∞

(
1− β1e−γ1·t − β2e−γ2·t

)
;

ϕ(t) = ϕ∞
(
1− β1e−γ1·t − β2e−γ2·t

)
; ϕ∞ = 0.52; β1 = 1; β2 = 0; γ1 = 0.04; ϑ = 0.015;

η = 0.35. As an example, models of flat reinforced concrete shells were calculated, the
characteristics of materials and geometric dimensions of which are taken in accordance
with the data of experimental studies performed by A.A. Oatul and A.P. Novoselov [49]
(shell O-1 at k1 = k2 = 0.55·10−3 cm, O-2 when k1 = k2 = 1.1·10−3 cm and O-2D); I.A.
Suslov [48] (plate P-1), as well as in NIIZHBA under the leadership of G.K. Khaydukov
and V.V. Shugaev [47].

A comparison of the values of short-term limit loads for the shell and plate under
consideration, calculated with and without taking into account the nonlinear properties of
concrete, is shown in Table 1.

At the same time, short-term limit loads P-1 have the following parameters: a = b = 55 sm,
s = a/b = 1; 2h = 4 sm, h01 = h02 = h = 1.8 sm, F′a1 = F′a2 = 0; Fa1 = Fa2 = 0.0707 sm,
E0 = 3.3·104 MPa, Ea = 1.7·105 MPa, v0 = 0.2, Rcub = 24.3 MPa, Rcs = 14.5 MPa,
Rts = 1.45 MPa, and Ra = 327.6 MPa.

Numerical studies have shown that according to the linear elastic scheme, the calcula-
tion of the instantaneous critical load qM gives inflated values up to 56%; according to the
linear theory of concrete creep, without taking into account cracking, the calculation of the
long-term critical load q overestimates its value up to 39%. With an increase in the lifting of
the shell, the correction made taking into account the nonlinearity of concrete deformation
is most significantly manifested. The dependence of the ratio of the long-term critical load
to the corresponding short-term α0 = q/qM on: parameters of plasticity, creep, cracking,
geometric characteristics, initial deflection, support conditions, etc., is revealed.

As a result of numerical experiments, the dependences of equivalent elasticity pa-
rameters on the loading level of Eэк(η), υэк (η), the percentage of reinforcement of
Eэк(µ), υэк (µ), schemes of crack formation and development, the redistribution of forces,
changes in stiffness, etc., are established.

4. Conclusions

A deformation model of a section with cracks and inelastic properties of materials
has been created. A new nonlinear theory for calculating a reinforced concrete shell is
proposed based on the replacement of the original shell with a continuous equivalent
elastic shell. The behavior of the shell over the entire range of loading and existence is
investigated by solving resolving systems of differential equations of equilibrium, motion,
and perturbation of an equivalent structure. New scientific results on the work of inelastic
composite shell structures have been obtained, and they are in good agreement with the
known solutions [46,47] and experienced data [48,49]:

• To research the stability of an equilibrium state, it is not enough to use geometrically
and physically nonlinear dependencies, based on the nonlinear theory of elasticity.
Calculation of short-term and long-term critical load according to the linear elastic
and nonlinear elastic scheme in comparison with the developed theory gives an
overestimation of the values qs and ql ;

• The linear elastic calculation scheme overestimates the values qs up to 56%; calculation
according to the linear theory of creep without taking into account crack formation
overestimates the values ql up to 39%;
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• The installed dependency α = ql/qs from the load level, the parameters of plasticity,
creep, reinforcement percentage, the crack formation scheme, geometric characteristics,
initial deflection support conditions of support and other factors;

• Taking into account that physical nonlinearity gives a significant correction in the
values of the ultimate load qu for shells with high lift and reinforcement content, for
very shallow shells, it is essential to take geometric nonlinearity into account.

Numerical studies are given on the basis of the proposed theory, algorithms, and
software package. The results obtained in the course of numerical experimental studies
have an insignificant error of 5–10%, which is in satisfactory agreement with the data of
field experiments on the models of other authors. Consequently, the application of the
theory gives quite acceptable results in solving problems of the theory of concrete creep.

The developed nonlinear theory of calculation of composite physically and geometri-
cally nonlinear thin-walled systems can be applied to the calculation of structures made of
concrete, metal, and other structural materials operating in a complex stress state at real
loading levels, as well as in conditions of nonlinear creep of the material and the presence
of cracks.

Other possible areas of coverage of the proposed theory can be the calculation of
reinforced shells and plates on a nonlinearly deformable base, the calculation of reinforced
concrete prismatic systems, the calculation of shells and plates of through-sections made
of structural materials under conditions of nonlinear deformation and creep, and the
calculation of reinforced shells and plates reinforced with stiffeners.

The circumstances listed above show that the codes of reinforced concrete structures
must be brought into line with the principle general nonlinear theory of the calculation of
structures (European standard), which will require significant material costs and organiza-
tional efforts [51]. However, this is justified, as it facilitates the flow of foreign investment
into the country, improving the quality of manufactured materials and structures and
objects under construction, which means improving the quality of life of people [52–54].
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