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Abstract: This paper introduces the results of hydrolytic stability tests and radiation resistance
tests of phosphate molybdates and phosphate tungstates Na1−xZr2(PO4)3−x(XO4)x, X = Mo, W
(0 ≤ x ≤ 0.5). The ceramics characterized by relatively high density (more than 97.5%) were produced
by spark plasma sintering (SPS) of submicron powders obtained by sol–gel synthesis. The study
focused on hydrolytic resistance of the ceramics in static mode at room temperature. After 28 days
of testing in distilled water, the normalized leaching rate was determined. It was found that the
ceramics demonstrated high hydrolytic resistance in static mode: the normalized leaching rates
for Mo- and W-containing ceramics were 31·10−6 and 3.36·10−6 g·cm−2·day−1, respectively. The
ceramics demonstrated high resistance to irradiation with 167 MeV Xe+26 multiple-charged ions at
fluences ranging from 1·1012 to 6·1013 cm−2. The Mo-containing Na0.5Zr2(PO4)2.5(XO4)0.5 ceramics
were shown to have higher radiation resistance than phosphate tungstates. Radiation was shown to
trigger an increase in leaching rates for W and Mo in the crystal structure of NZP ceramics.

Keywords: NASICON; NZP; ceramics; spark plasma sintering; hydrolytic stability; radiation resistance

1. Introduction

The NaZr2(PO4)3 compounds (NZP type) are among the most promising materials that
can be used as matrices to immobilize highly active components of high-level radioactive
waste (HLW). As noted in Part I hereof, such compounds meet requirements as to radiation
resistance and hydrolytic stability [1–15]. Ceramics with an NZP structure can be quite
effective at binding W and Mo into stable crystalline compounds where W and Mo can
partially replace P. NZP ceramics may be used to immobilize Mo- and W-containing
fractions of HLW [1,16–24].

One of the most promising methods for obtaining specimens of mineral-like ceramics
is Spark Plasma Sintering (SPS), a new method of rapid hot pressing [25–37]. Ceramics
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are sintered in graphite dyes and heated by passing a high-powered millisecond pulsed
current through them [25]. During sintering, specimens are subjected to uniaxial pres-
sure, which allows for the high relative density of ceramics [4,25–37], without any fusible
additives that are often added to powders to accelerate sintering (see [38]). A literature
review shows that ceramics obtained by SPS are characterized by higher relative den-
sity and a fine-grained microstructure compared to ceramics obtained by conventional
sintering of pre-pressed powders [4,28]. High heating rates, low sintering temperatures,
and a short process time help minimize, if necessary, the dissociation of hazardous el-
ements from the ceramic surface. Ceramics obtained by SPS have high radiation resis-
tance and hydrolytic stability [4,39–52]. The efficiency of using SPS to obtain promis-
ing materials for nuclear power engineering was described in many key papers (see for
example [46,53–74]). Currently, there are research papers on the process of obtaining NZP
ceramics by SPS [4,49,75–77]. This allows for SPS to be considered a promising method of
obtaining ceramic matrices to immobilize HLW [4,39–52,76,77].

Part I herein describes the crystal structure, microstructure, phase composition, and
properties of phosphate molybdates and phosphate tungstates Na1−xZr2(PO4)3−x(XO4)x
(NZP type) and Ca1−xZr2(PO4)3−x(XO4)x (CZP type). Part II herein studies the hydrolytic
and radiation resistances of NZP ceramics containing various concentrations of Mo and W
in their crystal structures. Particular attention is paid to compounds with a high content of
Mo and W (x = 0.4, 0.5).

2. Materials and Methods

The Na1−xZr2(PO4)3−x(XO4)x solid solutions, having X = Mo, W, and x = 0.1, 0.2, 0.3,
0.4, 0.5 were the targets of this research. The compounds were synthesized using the sol–gel
method. The ceramics were sintered from powders obtained by SPS using Dr. Sinter™
SPS-625 (SPS SYNTEX®, Kanagawa, Japan). A detailed description of the synthesis and
sintering modes can be found in Part I.

The surface of the specimens, after sintering, contained residual carbon (graphite),
which formed as a result of interaction between the ceramic specimens and a graphite dye
wall and graphite foil. The ceramic specimens had very low crack resistance (see Part 1),
which often led to micro-cracks during mechanical grinding of the specimens. To avoid
cracks and remove carbon, the specimens were annealed in air at 700 ◦C for 2 h. After
annealing, no residual carbon was detected on the surface of the specimens.

The XRD analysis of the irradiated ceramics was performed using a Bruker® D8
Discover™ X-ray diffractometer in the symmetric Bragg–Brentano geometry. The mi-
crostructure of powders and ceramics was analyzed using a Jeol® JSM-6490 scanning
electron microscope (SEM) (Jeol Ltd., Tokyo, Japan) with an Oxford Instruments® INCA
350 EDS microanalyzer (Oxford Instruments pls., Abingdon, UK). The methods used are
described in Part I hereof.

The hydrolytic stability of the ceramic specimens was studied under static conditions,
according to Russian National Standard GOST R 52126-2003 “Radioactive waste. Determi-
nation of chemical resistance”. Tests were performed in distilled water at room temperature
(25–28 ◦C). Samples of the contact solution were taken 1, 3, 7, 10, 14, 21, and 28 days after the
tests started. When testing irradiated ceramics, the non-irradiated sides of the specimens
were covered with a waterproof varnish. Solution samples were analyzed for Mo and W
content with inductively coupled plasma mass spectrometry using an ELEMENT™ 2 high
resolution mass spectrometer (Thermo Scintific®, Bremen, Germany) with external calibra-
tion. Calibration was performed with ICP-MS-68A-B solution (High Purify Standards®,
Charleston, SC, USA) using a Thermo Scientific® ELEMENTTM 2 high-resolution mass
spectrometer (Thermo Scientific, Bremen, Germany).

In order to analyze the near-surface amorphous layer, a number of grazing incidence
geometry (GIXRD) experiments were arranged. The GIXRD setup was equipped with a.
parabolic Göbel mirror. With this geometric setup, the α angle between the specimen plane
and the primary beam remained constant, while 2θ varied in the selected range of angles.
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In a series of experiments, α varied from 1◦ to 8◦ with an increment of 1◦. Scanning in
each experiment was carried out for the 2θ angle in the range from 22◦ to 24◦ using a point
detector with an equatorial Soller slit. The depth of X-ray radiation penetration into the
materials under study was calculated using a material X-ray properties database [78] and
is shown in Figure 1. The α angle ranging from 1◦ to 8◦ corresponded to the penetration
depth of 4–5 µm for the materials under study. The experiment focused on the dependence
of integral intensity of diffraction peaks (211) and (031) for the Na0.5Zr2(PO4)2.5(WO4)0.5
phase and (113) for the Na0.5Zr2(PO4)2.5(MoO4)0.5 phase. The results were analyzed using
the approach described earlier in [45,79].
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Figure 1. Calculating the depth of CuKα X-ray radiation penetration into the Na0.5Zr2(PO4)2.5(MoO4)0.5

(a) and Na0.5Zr2(PO4)2.5(WO4)0.5 (b) specimens depending on α incidence angle. Energy = 8000 eV.

The elemental composition of the ceramic surface layer was studied with secondary ion
mass spectrometry (SIMS). Measurements were taken with the TOF.SIMS-5 setup, equipped
with a time-of-flight mass analyzer with separate functions of probing and sputtering ion
guns, operating in pulsed mode and not intersecting in time. A layer-by-layer analysis of
the near-surface layer was carried out to a depth of about 500 nm with 25 keV Bi3+ cluster
ions. Sputtering was carried out with 1 keV Cs+ ions. Measurements were taken in two
modes of detecting secondary ions of both polarities (+ and −). Elementary and cluster
secondary ions were detected in both modes.

The radiation stability of ceramics was assessed with high energy 167 MeV Xe+26 ion
irradiation using an IC-100 FLNR JINR cyclotron (Joint Institute for Nuclear Research,
Dubna, Russia). The specimens were irradiated at room temperature (23–27 ◦C) at fluences
ranging from 1·1012 to 6·1013 cm−2. The average ion flux was about 2·109 cm−2·s−1 to
avoid any significant heating of targets. The temperature of targets during irradiation did
not exceed 30 ◦C. Uniform distribution of the ion beam over the irradiated target surface
was achieved with ion beam scanning. The accuracy of ion flux and fluence measurements
reached 15%.

3. Results and Discussion

The ceramic specimens with high relative densities were obtained from Na-containing
compounds by means of SPS. For research purposes, 10 ceramic specimens, with varying W
content, and 10 specimens with varying Mo content were prepared. These specimens had
no visible macro- and micro-cracks. They were produced in line with the modes specified
in Part I. The average SPS time was 13 min for the Na1−xZr2(PO4)3−x(MoO4)x phosphate
molybdates and 16 min for the Na1−xZr2(PO4)3−x(WO4)x phosphate tungstates. The
ceramic specimen density was consistent with the data presented in Part 1. Densities close
to the theoretical ones were ensured for almost all ceramics. Relative density of the ceramics
with 0.4 and 0.5% Mo was 100.2–100.9% of theoretical density, while relative density of the
ceramics with 0.4 and 0.5% W was 100.1–100.6% of theoretical value. We reckoned that the
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increased relative density of the ceramics stemmed from secondary phase impurities found
in them. The results of XRD analysis presented in Part I indicated the presence of secondary
phases in the ceramics. In W-containing ceramics, the Zr2(WO4)(PO4)2 secondary phase
was identified, and in Mo-containing ceramics the CaCO3 and Al3O0.34Zr5 secondary
phases were found.

Radiation stabilities of phosphate molybdates and phosphate tungstates were com-
pared with the help of 167 MeV Xe ion irradiation at various fluences, ranging from 1·1012 to
6·1013 cm–2. The dose dependence of XRD curves registered in the Na0.5Zr2(PO4)2.5(XO4)0.5
ceramics is shown in Figure 2. The results of XRD analysis proved that the initial
Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics (Figure 2a) were amorphized when exposed to ion
irradiation at a minimum dose of 3·1012 cm−2. Dose increase resulted in further amor-
phization and phase decomposition in Na0.5Zr2(PO4)2.5(WO4)0.5 accompanied by the ZrO2
phase formation. When exposed to 3·1013 cm−2 irradiation, no XRD peaks were observed
in the Na0.5Zr2(PO4)2.5(WO4)0.5 on an XRD curve, only peaks in the crystalline ZrO2 phase
and a wide halo of an amorphous component in the specimen remained.
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Figure 2. XRD curves of the phosphate tungstates specimens (a) and the phosphate molybdates
specimens (b) with x = 0.5 after irradiation at the following fluences (cm−2). Initial state and when
exposed to different Xe ion doses (in cm−2): (a): W1—3·1012; W2—1013; W3—3·1013; (b): M1—1012;
M2 –3·1012; M3—6·1012; M4—8·1012; M5—1013; M6—3·1013; M7—6·1013.
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As for the Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics (Figure 2b), XRD results showed a weak
impact of ion irradiation on crystallinity of these ceramics. Diffraction peaks were seen
clearly, even at irradiation doses of up to 6·1013 cm−2. Changes caused by ion irradiation in
this series concerned the coherent scattering region sizes of the Na0.5Zr2(PO4)2.5(MoO4)0.5
phase slightly. However, ion irradiation did not result in critical degradation of crystallinity,
as in the case of the Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics. Intensity of XRD peaks reduced
4 times with an increase in the irradiation dose of the Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics
(Figure 2b).

Figure 3 shows the dependence of the intensity of an XRD peak (113) on X-ray inci-
dence angle in Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics in the initial state and after irradiation
at a dose of 6·1013 cm−2. The intensity for all experimental points of the irradiated specimen
was multiplied by a factor of 4 for easier data comparison. Figure 3 shows a calculated
curve plotted with due regard for material constants, and the geometry of the experiment
as if crystalline quality and phase composition of the material were uniform over the entire
depth of analysis. It was apparent that dependences were the same for the initial and
irradiated specimens. It could be assumed that, within the depth of analysis of 5 µm, the
degree of amorphization of the near-surface layer was the same and approximated 75% for
M7 ceramics (irradiation dose of 6·1013 cm−2).
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Figure 3. Dependence of integral intensity of a XRD peak (113) in Na0.5Zr2(PO4)2.5(MoO4)0.5 phase
on α incidence angle for Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics before and after irradiation. Irradiation
intensity is multiplied by a factor of 4. The calculated curve is plotted with due regard for material
constants and the geometry of the experiment as if crystalline quality and phase composition of the
material were uniform over the entire depth of analysis.

To assess how thick the damaged layer was, the depth of Xe ions penetration into the
surface layers of the materials was simulated using SRIM-2013 software [80], in accordance
with the method proposed in [81]. The results of simulating the distribution of vacancies
depth for both materials under study are shown in Figure 4. It was apparent that the depth
of the damaged layer significantly exceeded the depth of analysis in the GIXRD method for
these materials and ion beam parameters. The assumption about uniform amorphization of
the near-surface layer, about 5 µm thick, was confirmed by the simulation results. It could
be seen that, in W-containing ceramics, the depth of defect formation was somewhat less,
and the concentration of defects in the near-surface layer was slightly greater. We could
assume that the energy of the ions was more efficiently transferred to the W-containing
material, which led to its amorphization at lower doses. Probable explanations might
involve differences in W and Mo chemical bonds with the environment and also in the
atomic mass of W and Mo. This assumption agreed with the results of XRD analysis in
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the symmetric Bragg–Brentano geometry and was previously observed in other W- and
Mo-containing ceramics [79].
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Figure 4. Results of SRIM simulation of vacancies depth distribution caused by 167 MeV Xe ions in
M- and W-series specimens.

Figures 5 and 6 show the results of SIMS studies of the surface layers of
Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics. Concentration depth profiles for the specimens in
the initial state, and when exposed to irradiation at a dose of 3·1013 cm−2, are shown in
negative secondary ion detection mode.

Materials 2023, 16, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 4. Results of SRIM simulation of vacancies depth distribution caused by 167 MeV Xe ions in 

M- and W-series specimens. 

Figures 5 and 6 show the results of SIMS studies of the surface layers of 

Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics. Concentration depth profiles for the specimens in the 

initial state, and when exposed to irradiation at a dose of 3·1013 cm-2, are shown in negative 

secondary ion detection mode. 

0 100 200 300 400 500

10
0

10
1

10
2

10
3

10
4

10
5

W1 back side, Cs sputtering, Negative mode

In
te

n
s
it
y
, 
c
p

s

Depth, nm

 O

 PO_2

 ^90ZrO_2

 ZrPO_4

 WO_3

 

0 100 200 300 400 500

10
0

10
1

10
2

10
3

10
4

10
5

W1 back side, Cs sputtering, Negative mode

In
te

n
s
it
y
, 
c
p

s

Depth, nm

 H

 Si

 C_4

 

(a) (b) 

Figure 5. Profiles of main (a) and doping (b) elements on the surface of the Na0.5Zr2(PO4)2.5(WO4)0.5 

ceramics in negative secondary ion detection mode. 
Figure 5. Profiles of main (a) and doping (b) elements on the surface of the Na0.5Zr2(PO4)2.5(WO4)0.5

ceramics in negative secondary ion detection mode.

The analysis of results presented in Figures 5 and 6 allows for a conclusion that the
surface of all the specimens contained P, Zr, W oxides. The studies also indicated that the
surface of the specimens was partially contaminated with Si. Irradiation led to increased
contributions of P and Zr oxides. The changes observed might stem from changes in
the phase composition of the specimens after irradiation, which led to a change in the
probabilities of formation and the release of various cluster secondary ions.

It is noteworthy that the surface layer contained P, Zr, and W oxides, as well as a
high concentration of C. Contamination of ceramics surface layers during SPS is one of
the known drawbacks of this method, which has been described in a variety of research
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articles [45,82–91]. Carburization of surface layers during SPS occurs because the sintered
material interacts with a graphite dye or graphite foil used to improve contact between the
specimen surface and the inner wall of a graphite dye.
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Figures 7 and 8 show elemental profiles of the initial and irradiated Na0.5Zr2(PO4)2.5(WO4)0.5
ceramic specimens in positive secondary ion detection mode.
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Figures 7 and 8 show the results of studies in positive secondary ion detection mode.
These results suggested that Na, K, Zr were present in all the specimens, and after irradia-
tion, Na and K contributions increased. Doping elements or impurities in the specimens
were mostly Al and hydrocarbon contaminants (C2H5 cluster line). After irradiation, the
contribution of hydrocarbons decreased.
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The hydrolytic stabilities of the specimens with high Mo and W contents (x = 0.4 and
0.5) were studied. According to XRD data, no crystal structure damage was observed
during the hydrolytic tests. Unit cell parameters of Na1–xZr2(PO4)3–x(XO4)x were identical
before and after the hydrolytic tests. Normalized release rates per unit surface area (R) for
particular components were determined according to the formulae:

R = NL/t, (1)

NL = m/(ω·S), (2)

where m [g] is the mass of a component leached for a given time, t [days] is the test
duration, S [cm2] is the open surface area, and ω is the mass fraction of the component in
the initial specimen.

The normalized weight loss values NL and the normalized leaching rates R after
28 days of testing are presented in Table 1. Time dependencies of the above values are shown
in Figure 9. The normalized leaching rates after 28 days of testing (Rmin) were 31.6·10−6

g·cm−2·day−1 for Mo-containing compounds (x = 0.5) and 3.36·10−6 g·cm−2·day−1 for
W-containing ones (x = 0.5). After 28 days of testing, the normalized leaching rate for Mo
from the Na1−xZr2(PO4)3−x(XO4)x ceramics at x = 0.4 and 0.5 was by an order of magnitude
greater than that of W. This was a very low normalized leaching rate after 28 days of testing
of NZP ceramics suggesting their having high chemical resistance. We reckoned that
this result indicated that inorganic compounds of the NZP family could have advanced
applications as binders for W- and Mo-containing fractions of HLW.

As follows from Table 1 and Figure 9, the normalized leaching rates R decreased while
W and Mo contents increased. At the moment, we have no clear explanation of this effect.
In our opinion, it might be specific to a stationary mode of testing phosphate tungstates
and phosphate molybdates i.e., metal atoms that are leached react with oxygen diluted in
water, which results in thin oxide films that form on ceramics surfaces and prevent further
leaching of heavy metals. The surface area covered with an oxide film grows along with an
increase in W and/or Mo contents in ceramics.

Figure 10 shows the results of hydrolytic testing of the Na0.5Zr2(PO4)2.5(MoO4)0.5 (a,
b) and Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics after irradiation at different doses. NL(t) and R(t)
data were interpolated with a power function. The analysis of Ri(t) and NLi(t) dependencies
showed that higher doses increased W and Mo leaching rates. The Mo leaching rate turned
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out to be significantly higher than that of W. After irradiation at a fluence of 3·1012 cm−2,
the Mo leaching rate after 28 days of testing was RMo = 1.6·10−3 g·cm−2·d−1, while the W
leaching rate was RW = 8.2·10−5 g·cm−2·d−1. After irradiation at a dose of 3·1013 cm−2,
the Mo leaching rate increased to 2.3·10−3 g·cm−2·d−1, while the W leaching rate reached
5.0·10−5 g·cm−2·d−1. Comparison of these results with the data presented in Table 1 shows
that the hydrolytic stability of the irradiated ceramics decreased, but remained high for the
W-containing ceramics.

Table 1. Normalized weight loss (NL) and normalized leaching rates (R) after 28 days of testing for
Mo and W in the Na1−xZr2(PO4)3−x(XO4)x ceramics.

x t, Days
m·104, g NL·102, g·cm−2 R·105, g·cm−2·d−1

Mo W Mo W Mo W

0.4

1 5.917 8.333 0.453 0.352 60.000 12.300
3 1.417 0.417 0.561 0.369 23.583 4.289
7 0.958 0.275 0.634 0.381 11.477 1.903

10 0.375 0.133 0.663 0.387 8.475 1.352
14 0.375 0.125 0.692 0.392 6.367 0.979
21 0.458 0.167 0.727 0.399 4.511 0.664
28 0.375 0.125 0.755 0.404 3.532 0.504

0.5

1 7.250 7.500 0.427 0.246 55.600 8.200
3 1.833 0.392 0.535 0.259 21.591 2.859
7 0.958 0.208 0.591 0.266 10.410 1.269

10 0.433 0.125 0.617 0.270 7.657 0.901
14 0.400 0.108 0.640 0.274 5.731 0.653
21 0.442 0.167 0.666 0.279 4.042 0.442
28 0.408 0.167 0.690 0.285 3.156 0.336
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Figure 9. Time dependences of normalized weight loss NL (a) and normalized leaching rates for
certain components per unit surface area R (b) in the Na1−xZr2(PO4)3−x(XO4)x ceramics.

Let us compare the leaching rate R estimates with literature data. It was noted that
key data on resistance of NZP ceramics obtained by conventional methods are presented
in many works (see, for example, [2,6,92–98], etc.). Here we shall point out only some
data that is crucial in order to analyze the results obtained. NZP ceramics demonstrated
high chemical resistance, including after irradiation. It is known that NZP ceramics do
not decompose even after 2 years of exposure to hydrothermal conditions at 400 ◦C, in-
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cluding after irradiation with 60Co [99,100]. According to [101], the Ca leaching rate R for
Ca0.75Zr2(PO4)2.5(SiO4)0.5, obtained by cold pressing (P = 200 MPa) followed by sintering
(900 ◦C, 10 h), was ~1·10-8 g·cm−2·day−1. Tests were carried out under static conditions at
room temperature for 21 days. As shown in [92], the Zr leaching rate for La1/3Zr2(PO4)3 un-
der static conditions was less than 10−5 g·m−2·day−1, while the La leaching rate depended
on the ratio of the ceramic surface area to the solution volume and was ~10−6 g·m−2·day−1

after 14 days of testing. According to [102], the Pu leaching rate in Pu1/3Zr2(PO4)3 after test-
ing for 14 days at room temperature under static conditions was ~9.9·10−6 g·cm−2·day−1.
Pu1/3Zr2(PO4)3 ceramics was produced by cold pressing of powders (P = 200 MPa) and
sintering at 950 ◦C (7 h). Low Sr leaching rates (less than 10−6 g·m−2·day−1) at room
temperature in deionized water were measured for ceramics obtained by thermal treatment
of HZr2(PO4)3 + Sr(NO3)2 [103]. The same high chemical stability of NZP ceramics was
found during tests based on the Soxhlet method [104], as well as during tests of multicom-
ponent compounds with an NZP structure that simulated the composition of various RAW
fractions [105]. The Cs leaching rate in CsMgPO4, CsZr2(PO4)3, and Cs2Mg0.5Zr1.5(PO4)3
specimens obtained by SPS varied between 3·10−4 and 4·10−6 g·m−2·day−1 [106,107]. As
shown in [44], in NaRe2(PO4)3 ceramics with relative density of 85% obtained by SPS under
static conditions at room temperature, the Re leaching rate was 1.3·10−5 g·cm−1·day−1.
Higher Re leaching rates were explained in [44] by the low density of ceramics and, as a
result, the large specific surface area. Given high leaching rates of Mo and W from the
structure of phosphates (see, for example, [108]), it could be assumed that the ceramics
obtained had high chemical stability.
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Figure 10. Dependence of normalized weight loss (NL) (a,c) and leaching rate (R) (b,d) on testing
time t for the Na0.5Zr2(PO4)2.5(MoO4)0.5 (a,b) and Na0.5Zr2(PO4)2.5(WO4)0.5 (c,d) ceramic specimens.
Fluence: 1–3·1012 cm−2, 2–1·1013 cm−2, 3–3·1013 cm−2.
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Figure 11 shows the XRD results in the symmetric Bragg–Brentano geometry of the
surface of the irradiated Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics after the hydrolytic tests.
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Figure 11. XRD patterns for the Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramic specimen: initial state, irradiated
with Xe ions at a dose of 6·1013 cm−2, and after hydrolytic tests.

The Na0.5Zr2(PO4)2.5(MoO4)0.5 ceramics after hydrolytic tests showed no change in
peak intensity of the main phase, and no peaks of auxiliary phases could be observed. A
broad peak of a microcrystalline phase in graphite (shown by an arrow in the figure near
26◦ in 2θ) disappeared, which was the only change. Apparently, a side phase of graphite
was washed out from the near-surface layer and from the pores of the specimen as a result
of the hydrolytic tests.

Representative data of an XRD experiment in the symmetric Bragg–Brentano geometry
for the Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics is shown in Figure 12.
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Figure 12. XRD patterns for the Na0.5Zr2(PO4)2.5(WO4)0.5 ceramic specimen: initial state, irradiated
with Xe ions at a dose of 3·1012 cm−2, and after hydrolytic tests.

With the W-containing ceramics, it was apparent that the hydrolytic tests did not lead
to a change in peak intensity of the main phase in Na0.5Zr2(PO4)2.5(WO4)0.5, and no peaks
of auxiliary phases could be observed. There are no intensity changes near 26◦ associated
with the graphite phase. Apparently, a graphite phase was initially absent in the W-series
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specimens since they were less porous or had other preparation-induced features. Carbon
contamination, detected with SIMS, stemmed from an increase in the content of carbon
ions in the Na0.5Zr2(PO4)2.5(WO4)0.5 crystal lattice. As noted earlier, this might be due to
the intense diffusion of carbon from the graphite mold or graphite paper, with which the
specimen surface interacted during SPS.

4. Conclusions

XRD analysis showed that the structure of the compounds Na1−xZr2(PO4)3−x(XO4)x re-
mained unchanged during sintering and hydrolytic stability tests. The normalized leaching rates
after 28 days of testing were 31·10−6 g·cm−2·d−1 for compounds Na0.5Zr2(PO4)2.5(MoO4)0.5
and 3.36·10−6 g·cm−2·d−1 for Na0.5Zr2(PO4)2.5(WO4)0.5 ones.

Irradiation tests proved that the destruction of the NZP crystal lattice was less ex-
pressed in the Mo-containing specimens, as compared to phosphate tungstates irradiated
under similar conditions. The crystal lattice of W-containing ceramic specimens broke
down as a result of irradiation at a fluence of 3·1013 cm−2.

Irradiation led to an increase in the leaching rate of W and Mo from the crystal
structure of the ceramics. The irradiated W-containing ceramics had higher hydrolytic
resistance, compared to the Mo-containing NZP ceramics. The leaching rates observed
on the 28th day of testing for the irradiated Na0.5Zr2(PO4)2.5(MoO4)0.5 specimens were
1.6·10−3 g·cm−2·d−1 at a fluence of 3·1012 cm−2 and 2.3·10−3 g·cm−2·d−1 at a fluence of
3·1013 cm−2. The Na0.5Zr2(PO4)2.5(WO4)0.5 ceramics after irradiation at similar fluences
had the leaching rates of 8.2·10−5 and 5.0·10−5 g·cm−2·d−1, respectively.
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