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Abstract. In this paper, we present integrable surfaces associated with generalized Landau-
Lifshitz equation with self-consistent potential. We obtained the first and second fundamental
forms. The first fundamental form allow us to calculate the curvature and metric properties of a
surface, particularly, length and area of related space. The second fundamental form determines
the external geometry of the surface in the vicinity of this point. Together they permit to define
extrinsic invariants of the surface and its principal curvatures. The results can be used to
describe spin waves in magnets and ferromagnets.

1. Introduction
The growing interest in the physics of magnetic phenomena is due to the difference in the
interaction between the local magnetic moments of ions. They can diverse in their nature and
have a wide range of energy scales; also, due to the characteristics of the crystal structure,
they differ greatly between magnetic ions neighboring in different directions. The anisotropy
property can lead to the formation of ferro- or antiferromagnetic states, as well as unusual
magnetic structures spin waves or magnons.

In this work, we consider generalized Landau-Lifshitz equation (GLLE) with self-consistent
potential. GLLE is a well-known equation describing magnetization waves in magnets, or simply,
spin waves [1]-[7]. We present integrable surfaces associated with GLLE with self-consistent
potential. The first and the second fundamental forms were obtained. The first fundamental
form is used to calculate the curvature and metric properties of a surface, particularly, length
and area of related space. The second fundamental form determines the external geometry of
the surface in the vicinity of this point. Together they permit to define extrinsic invariants of the
surface and its principal curvatures. The results can be used to describe spin waves in magnets
and ferromagnets.

2. Landau-Lifshitz equation with self-consistent potential
The generalized Landau-Lifshitz equation with self-consistent potential is one of the
generalizations of Landau-Lifshitz equation. It reads as

St +
1

2
S ∧ Sxx +

2

a
S ∧W = 0, (1)
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Wx + 2aS ∧W = 0, (2)

where ∧ denotes a vector product, S = (S1, S2, S3), W = (W1,W2,W3) are vectors with
lengths S2 = S2

1 + S2
2 + S2

3 = 1, W2 = W 2
1 + W 2

2 + W 2
3 = b and a, b are const. Also it would

be important to note that in case of W = 0 system of equations (1)-(2) reduced to Classical
Heisenberg Model. In most cases, it is convenient to work with the matrix form of this equation,
which has the form

iSt +
1

2
[S, Sxx] +

1

a
[S,W ] = 0, (3)

iWx + a[S,W ] = 0, (4)

where a = const, S = Σ3
j=1Sj(x, y, t)σj is a matrix analogue of the spin vector, W - potential

with the matrix form W = Σ3
j=1Wj(x, y, t)σj ,

S(x, t) =

(
S3 S−

S+ −S3

)
, W (x, t) =

(
W3 W−

W+ −W3

)
, (5)

and σj are Pauli matrices. The GLLE with self-consistent potential is gauge equivalent to
Schrödinger-Maxwell-Bloch equation and corresponding investigations were made in works [8]-
[11].

In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent
matrices or operators that satisfy a corresponding differential equation are called the Lax
equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media
[12]. The inverse scattering transform makes use of the Lax equations to solve such systems.

The LLE equation with self-consistent potential is integrable and its Lax representation can
be written in the form

Φx = UΦ, (6)

Φt = V Φ, (7)

where the matrix operators U and V have the form

U = −iλS, (8)

V = λ2V2 + λV1 +

(
i

λ+ a
− i

a

)
W. (9)

Here

V2 = −2iS, V1 = SSx. (10)

The compatibility condition of equations (6)-(7) give us

Ut − Vx + [U, V ] = 0, (11)

which is the zero curvature condition. Substituting U and V operators (8)-(10) in equation (11)
we obtain the GLLE with self-consistent potential in matrix form (3)-(4).
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3. The fundamental forms for the GLLE with self-consistent potential
In general, the first and second fundamental forms (FF) are

I = gijdx
idxj , (12)

II = bijdx
idxj , (13)

here gij , bij are matrices

gij =

(
E F
F G

)
, (14)

bij =

(
L M
M N

)
. (15)

The FF can be presented through position and normal vectors:

I = dr · dr = r2xdx
2 + 2rxrtdxdt+ r2tdt

2, (16)

or
I = Edx2 + 2Fdxdt+Gdt2 (17)

and
II = −dn · dr = (n · rxx) dx2 + 2 (n · rxt) dxdt+ (n · rtt) dt2 (18)

or
II = Ldx2 + 2Mdxdt+Ndt2. (19)

The position vector is
r = (r1, r2, r3) (20)

and normal to the surface is
n = (n1, n2, n3), n2 = 1. (21)

Using Sym-Tafel formula [13]
r = Φ−1Φλ, (22)

we can obtain this vectors in matrix forms

rx = Φ−1UλΦ, rt = Φ−1VλΦ. (23)

Relations between derivations of vector and matrix form of r with respect to x and t:

r2x =
1

2
tr
(
r2x

)
, (24)

r2t =
1

2
tr
(
r2t

)
, (25)

rxrt =
1

2
tr (rxrt) . (26)

Now, we obtain the necessary quantities

r2x = Φ−1U2
λΦ, (27)

r2t = Φ−1V 2
λΦ, (28)

rxrt = Φ−1UλVλΦ. (29)
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The first fundamental form for the GLLE with self-consistent potential can be obtained by
collecting and putting into (17) and necessary coefficients

I = dx2 +

(
8λ− 1

(λ+ a)2
Tr{S,W}

)
dxdt+

(
16λ2 − 1

2
Tr((SSx)

2)

)
dt2

+

(
2λ

(λ+ a)2
Tr{S,W}+ iλ

2(λ+ a)2
Tr{SSx,W}+ 1

2(λ+ a)2
Tr(W 2)

)
dt2, (30)

where {S,W} = SW +WS - anticommutator. When λ = λ0 = 0 then we can rewrite the first
fundamental form as

I = dx2 − 1

a2
Tr(SW )dxdt+

+
1

2

(
Tr((SSx)

2)− i

a2
Tr{SSx,W} − 4

a2
Tr(W 2)

)
dt2, (31)

To obtain the second fundamental form, let us find the following

rxx = Φ−1 [Uλ, U ] Φ, (32)

rxt = Φ−1 [Uλ, V ] Φ, (33)

rtt = Φ−1 [Vλ, V ] Φ. (34)

And a normal to surface can be calculated by

n =
rx ∧ rt
|rx ∧ rt|

, (35)

or

n =
Φ−1 [Uλ, Vλ] Φ√
1
2 tr
(
[Uλ, Vλ]

2
) . (36)

Traces are determined as

tr (n · rxx) =
tr ([Uλ, Vλ] [Uλ, U ])√

1
2 tr

(
[Uλ, Vλ]

2
) , (37)

tr (n · rxt) =
tr ([Uλ, Vλ] [Uλ, V ])√

1
2 tr
(
[Uλ, Vλ]

2
) , (38)

tr (n · rtt) =
tr ([Uλ, Vλ] [Vλ, V ])√

1
2 tr

(
[Uλ, Vλ]

2
) . (39)

Here we came to interesting results normal vector to surface is equal to zero, cause trace
of commutator Tr[Uλ, Vλ] = 0. Consequently, construction of the second fundamental form
for considered model by this approach is impossible. It means that GLLE with self-consistent
potential associated only with trivial soliton surface which proved by the existence of the first
fundamental form only. For some equations soliton surfaces does not the same as integrable
surface.
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4. Integrable surfaces induced by GLLE with self-consistent potential
In this section we want to present integrable surfase induced by GLLE with self-consistent
potential. In a purpose of this lets make the following transformation rx ≡ S. Then we can
rewrite rt as

rt =
i

2
rx ∧ rxx +

1

a2
W. (40)

In this case, the first fundamental form denotes as

I = dx2 +
2

a2
SWdxdt+

+

(
1

4
(S ∧ SSx)

2 − 1

a2
(S ∧ Sx)W+

1

a4
W2

)
dt2, (41)

Now using (35) we can define normal to surface

n =
1
2rxx −

1
a3
Wx

|12rxx −
1
a3
Wx|

, (42)

or

n =
Sx − 1

a3
Wx

|Sx − 1
a3
Wx|

. (43)

Then determine coefficients of the 2nd fundamental form

L = n · rxx, (44)

M = n ·
(
1

2
(rx ∧ rxx)x +

1

a2
Wx

)
, (45)

N = n ·
(
1

2
(rx ∧ rxx)t

)
, (46)

or in term of S will look like

L =
(Sx − 1

a3
Wx) · Sx

|Sx − 1
a3
Wx|

, (47)

M =
Sx − 1

a3
Wx

|Sx − 1
a3
Wx|

·
(

1

a2
Wx −

1

2
(S ∧ Sx)x

)
, (48)

N = −1

2

Sx − 1
a3
Wx

|Sx − 1
a3
Wx|

· (S ∧ Sx)t. (49)

The second fundamental form can be written as

II =
(Sx − 1

a3
Wx) · Sx

|Sx − 1
a3
Wx|

dx2 +

2
Sx − 1

a3
Wx

|Sx − 1
a3
Wx|

·
(

1

a2
Wx −

1

2
(S ∧ Sx)x

)
dxdt+

− 1

2

Sx − 1
a3
Wx

|Sx − 1
a3
Wx|

· (S ∧ Sx)tdt
2. (50)
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5. Area of surface for the GLLE with self-consistent potential
Surface’s area is given in the form

S =

∫ √
gdxdt =

∫ ∫
|rx ∧ rt| dxdt. (51)

Then our required surface area S will look like

S =

∫ ∣∣∣∣ ia3W− 1

2
rx

∣∣∣∣ dt, (52)

or

S =

∫ ∣∣∣∣ ia3W− 1

2
S

∣∣∣∣ dt. (53)

The Gaussian curvature of the surface is given by

K =
LN −M2

EG− F 2
. (54)

Which is for our model will be

K = −

[
1
2(Sx − 1

a3
Wx) · Sx

] [
Sx − 1

a3
Wx · (S ∧ Sx)t

]
+
[
Sx − 1

a3
Wx ·

(
1
a2
Wx − 1

2(S ∧ Sx)x
)]2

[
|Sx − 1

a3
Wx|

2
] [

1
4(S ∧ SSx)

2 − 1
a2
(S ∧ Sx)W+ 1

a4
W2 −

(
1
a2
SW

)2] ,

(55)
and finally we found Gaussian curvature in terms of S.

6. CONCLUSIONS
In this paper, using the Sym-Tafel formula, we obtained the first fundamental form of GLLE
with self-consistent potential. Proved that for considered equation soliton surface does not
equal to integrable surface induced by them. Then to construct integrable surface induced by
GLLE with self-consistent potential we found the first and the second fundamental forms,area
of surface and a Gaussian curvature. The results can be used to describe spin waves in magnets
and ferromagnets. According to the results of this work, research in this direction is entering
a new step, which will allow a more detailed study of the construction of different integrable
surfaces associated with soliton equations.
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