Indirect study of the ¹⁶O+¹⁶O fusion reaction toward stellar energies by the Trojan Horse Method

S. HAYAKAWA¹, C. SPITALERI^{2,3}, N. BURTEBAYEV⁴,
A. AIMAGANBETOV⁵, P. FIGUERA² M. FISICHELLA² G.L. GUARDO²,
S. IGAMOV⁶, I. INDELICATO², G. KISS⁷, S. KLICZEWSKI⁸,
M. LA COGNATA², L. LAMIA³, M. LATTUADA², E. PIASECKI⁹,
G.G. RAPISARDA², S. ROMANO^{2,3}, S.B. SAKUTA¹⁰, R. SIUDAK⁸,
A. TRZCIŃSKA⁹, A. TUMINO^{2,11} and A. URKINBAYEV⁵

¹ Center for Nuclear Study, University of Tokyo, Wako, Japan
² INFN - Laboratori Nazionali del Sud, Catania, Italy

³ Department of Physics and Astronomy, University of Catania, Catania, Italy

⁴ Institute of Nuclear Physics of National Nuclear Center, Almaty Kazakhstan

 5 Gumilyov Eurasian National University, Astana, Kazakhstan

⁶ Uzbek. Acad. Sci., Inst. Nucl. Phys., Tashkent, Uzbekistan ⁷ MTA-Atomiki, Debrecen, Hungary

 8 The H. Niewodniczański Institute of Nuclear Physics PAN, Kraków, Poland

⁹ Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

¹⁰ National Research Center "Kurchatov Institute", Moscow, Russia ¹¹ Kore University of Enna, Enna, Italy

Abstract

The $^{16}\mathrm{O}+^{16}\mathrm{O}$ fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, $\alpha+^{28}\mathrm{Si}$ and $p+^{31}\mathrm{P}$, toward stellar energies indirectly by the Trojan Horse Method via the $^{16}\mathrm{O}(^{20}\mathrm{Ne},\alpha^{28}\mathrm{Si})\alpha$ and $^{16}\mathrm{O}(^{20}\mathrm{Ne},p^{31}\mathrm{P})\alpha$ three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of $\alpha-^{16}\mathrm{O}$ intercluster motion in the projectile $^{20}\mathrm{Ne}$ nucleus.

The ¹⁶O+¹⁶O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of heavy-ion fusion reactions at low energies. The astrophysical S-factor of such a heavy-ion fusion strongly depends on energy at corresponding stellar temperatures far below the Coulomb barrier. There are large discrepancies among different experiments [1–4], and among theoretical predictions [5,6], and is a lack of data below $E_{\rm cm} = 7$ MeV. We aim to determined the excitation function of the most major products, $\alpha + {}^{28}\text{Si}$ and $p + {}^{31}\text{P}$, of the ${}^{16}\text{O} + {}^{16}\text{O}$ reaction at stellar energies by the Trojan Horse Method (THM) [7].

We have performed THM measurements via the ${}^{16}\text{O}({}^{20}\text{Ne}, \alpha^{28}\text{Si})\alpha$ and ${}^{16}\text{O}({}^{20}\text{Ne}, p^{31}\text{P})\alpha$ three-body reactions at $E_{20\text{Ne}} = 45$ MeV at the Heavy Ion Laboratory, Warsaw, Poland, covering center-of-mass energy ranges of 8–15 MeV. In these three-body reactions, the α particles in the exit channels may act as the "spectator" through the quasi-free mechanism, where the momentum transfer of α decaying from the possible α cluster state in the projectile ${}^{20}\text{Ne}$ is sufficiently small. The momentum of the spectator is defined by masses and momenta of α and ${}^{20}\text{Ne}$; $\mathbf{p}_s \equiv \mathbf{p}_\alpha - m_\alpha/m_{20\text{Ne}} \times \mathbf{p}_{20\text{Ne}}$. To guarantee quasi-free mechanism, the two-cluster α -16 O system in the nucleus ${}^{20}\text{Ne}$ should preferably be in *s* state, so that the momentum distribution of the spectator α is single-peaked at $p_s = 0$. Here we report preliminary p_s distribution investigated for the first time, which is crucial to determine the two-body reaction cross section by THM.

The experimental setup is illustrated in Fig. 1.

The ²⁰Ne³⁺ beam was provided at 45 MeV from the K = 160 cyclotron with a typical intensity around 20 enA on target, and the production run was performed for about 180 hours in total. For the beam collimator, a ϕ 6-, a ϕ 3- and a ϕ 2-mm hole are laid straight on the beam axis within a distance of 380 mm from the upstream, respectively. We used WO₃ evaporated onto Au backing as solid oxygen target with a typical thickness of 116 mg/cm² for

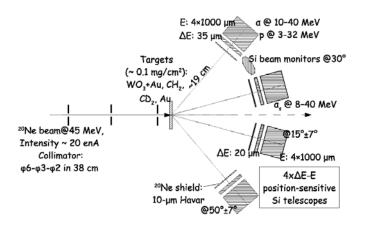


Figure 1: Schematic view of the experimental setup.

WO₃ and 193 mg/cm² for Au. Three silicon beam monitoring detectors were installed at 30°. For the reaction product measurement, four Δ E-E silicon telescopes were mounted symmetrically with respect to the beam axis at 15° and 50°. The thickness of each Δ E layer at 15° was 20 μ m in order

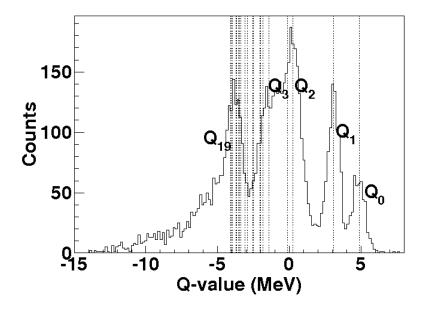


Figure 2: *Q*-value spectrum of the ${}^{16}O({}^{20}Ne, \alpha^{28}Si)\alpha$ channel. The dotted lines corresponds to the excited states of ${}^{28}Si$.

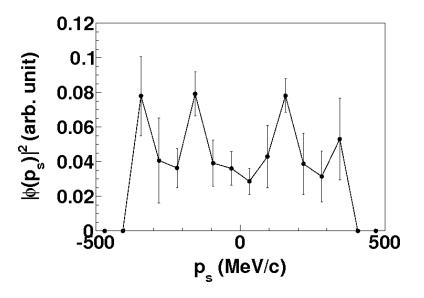


Figure 3: Preliminary momentum distribution of α in ²⁰Ne.

to measure low-energy spectator α , while that at 50° was 35 mm focusing on higher energy up to 40 MeV of α of the coincidence pair. Each E layer consisted of a stack of four 1-mm-thick silicon detectors for high-energy proton up to 32 MeV. The first E layer was position-sensitive by charge division, and the distances from the target were typically 190 mm. We put a 10-mm Havar foil right in front of each ΔE layer in order to prevent the detectors from plenty of beam scattering on W and Au in the target. During the production run with the WO₃ target, we mostly observed protons and α particles in the ΔE -E telescopes.

By selecting only α -particle data, we confirmed that the peaks found in the *Q*-value spectrum which is defined by $Q = E_{28\text{Si}} - E_{20\text{Ne}} + E_{\alpha 1} + E_{\alpha 2}$ correspond well to the excited energy of ²⁸Si nucleus as shown in Fig. 2, which evinces the ¹⁶O(²⁰Ne, α^{28} Si) α reaction.

The preliminary momentum distribution is show in Fig. 3, assuming energy and angular distribution of the differential cross section of the twobody reaction ${}^{16}O({}^{16}O, \alpha)^4$ He. The fact that the momentum distribution does not have the maximum value around $p_s = 0$ suggests that the threebody reactions ${}^{16}O({}^{20}Ne, \alpha^{28}Si)\alpha$ and ${}^{16}O({}^{20}Ne, p^{31}P)\alpha$ might not proceed through the 0⁺ ground state of ${}^{20}Ne$ dominantly but the 2⁺ first excited state. Further data analysis to determine the two-body cross section of interest is ongoing, also for the ${}^{16}O({}^{20}Ne, p^{31}P)\alpha$ channel.

References

- [1] H. Spinka and H. Winkler, Nucl. Phys. 233 (1974) 456.
- [2] G. Hulke *et al.*, Zeitschrift für Physik A, Atoms and Nuclei, 297 (1980) 161.
- [3] S. C. Wu and C. A. Barnes, Nucl. Phys. A, **422** (1984) 373.
- [4] J. Thomas *et al.*, Phys. Rev. C, **33** (1986) 1679.
- [5] C. L. Jiang *et al.*, Phys. Rev. C, **75** (2007) 1.
- [6] A. Diaztorres, L. Gasques, and M. Wiescher, Phys. Lett. B, 652 (2007) 255.
- [7] C. Spitaleri *et al.*, Phys. of Atomic Nuclei, **74** (2011) 1725.
- [8] G. F. Chew and G. C. Wick, Phys. Rev. 85 (1952) 636.