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Abstract: The aim of this paper is to study the effect of variation in the component ratio of (1−x)Si3N4-
xAl2O3 ceramics on the phase composition, strength and thermal properties of ceramics. To obtain
ceramics and their further study, the solid-phase synthesis method combined with thermal annealing
of samples at a temperature of 1500 ◦C typical for the initialization of phase transformation processes
was used. The relevance and novelty of this study lies in obtaining new data on the processes of
phase transformations with a variation in the composition of ceramics, as well as determining the
effect of the phase composition on the resistance of ceramics to external influences. According to
X-ray phase analysis data, it was found that an increase in the Si3N4 concentration in the composition
of ceramics leads to a partial displacement of the tetragonal phase of SiO2 and Al2(SiO4)O and an
increase in the contribution of Si3N4. Evaluation of the optical properties of the synthesized ceramics
depending on the ratio of the components showed that the formation of the Si3N4 phase leads to an
increase in the band gap and the absorbing ability of the ceramics due to the formation of additional
absorption bands from 3.7–3.8 eV. Analysis of the strength dependences showed that an increase
in the contribution of the Si3N4 phase with subsequent displacement of the oxide phases leads to a
strengthening of the ceramic by more than 15–20%. At the same time, it was found that a change in
the phase ratio leads to the hardening of ceramics, as well as an increase in crack resistance.

Keywords: ceramics; dispersed nuclear fuel; phase composition; hardening; inert matrices

1. Introduction

One of the most promising solutions in the field of energy, in particular, nuclear energy,
is the creation of new types of nuclear reactors capable of operating at high temperatures,
as well as having an increased resource of nuclear fuel burnup [1–3]. The most effective
way to increase the service life is to use new types of nuclear fuel based on technologies for
reprocessing weapons-grade plutonium or increasing the fissile material burnup degree. To
achieve these goals, the concept of using dispersed nuclear fuel was previously proposed [4,5].
This fuel consists of fissile nuclear material based on plutonium or uranium dioxide, placed
in an inert matrix, which serves not only to absorb and remove heat, but also to protect the
fissile material from radiation swelling [6–8].

As a rule, to create inert matrices of dispersed nuclear fuel, it is proposed to use oxide
or nitride ceramics based on refractory compounds, as well as various composites based on
them [9–11]. Among all compounds, silicon nitride (Si3N4) and aluminum oxide (Al2O3)
can be especially distinguished, which have high resistance to mechanical stress, crack
resistance and corrosion resistance to aggressive media, good thermal conductivity and
insulating properties [12–15]. At the same time, as shown by a number of experimental
studies, ceramics based on aluminum oxide [16] and silicon nitride [17,18] have good
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resistance to radiation damage and their accumulation, as well as maintaining the stability
of properties during long-term irradiation with heavy ions, comparable to fission fragments
of nuclear fuel. This is an important factor for candidate materials for inert matrices of
dispersed nuclear fuel. It should also be noted that in recent years more and more attention
has been paid to research aimed at finding ways to obtain two- or three-component ceramics
that combine the properties of each component, which contributes to the creation of
unique materials with improved properties [19–22]. For example, it was shown in [23] that
Al2O3-ZrO2 ceramics have an increased resistance to helium swelling under high-dose
irradiation, and also that the formation of two phases leads to a decrease in the amount of
swelling under high-temperature irradiation. The paper [24] shows the results of a study
of thermoluminescence of Al2O3-BeO ceramics subjected to high-dose irradiation. In [25],
the authors studied in detail the properties of MgO-Al2O3 ceramics under irradiation with
fast neutrons. In [26], the results of studies of Y2O3-Al2O3-SiO2 composites are presented,
according to which the proposed compositions have an increased resistance to external
influences. Interest in this area of research does not decrease despite the sufficient number
of various works, as well as the results obtained, which indicates a high level of prospects
for these materials not only in the energy sector, but also in mechanical engineering,
engine building, etc.

The choice of a composite based on Al2O3 and Si3N4 compounds for consideration
as candidate materials for creating inert matrices of dispersed nuclear fuel is due to the
following factors. Firstly, both Al2O3 and Si3N4 compounds have very high melting
points of 2072 ◦C for Al2O3 and 1900 ◦C for Si3N4, which makes them very promising
materials for use in operating conditions at elevated temperatures [27–30]. Secondly, these
compounds are characterized by high wear resistance and hardness, which is actively used
in the creation of refractory materials with high heat resistance, resistance to cracking and
aggressive media, acids, melts, etc. [31–35]. Thirdly, both Al2O3 and Si3N4 compounds
have a good reputation for use as structural materials for nuclear power engineering due
to their high radiation resistance as well as resistance to external influences. However, in a
number of works [36,37], it was shown that under certain types of radiation exposure in
ceramics based on silicon nitride, extended defects can form in the form of latent tracks,
at a high concentration of which partial amorphization of the damaged near-surface layer
can occur [38]. A number of authors attribute the appearance of such effects to the energy
losses of interacting particles, as well as the possibility of initializing the polymorphic
transformation processes in silicon nitride, due to its phase composition and the presence
of several structural modifications [38–40]. In turn, ceramics and aluminum oxide powders
are in some cases used as protectors to increase resistance to external influences, including
radiation damage [41–43]. Also, ceramics based on aluminum oxide are good insulators
and also have antifriction properties [44]. In this regard, the use of a combination of these
Al2O3 and Si3N4 compounds opens up opportunities for creating ceramics that have the
positive properties of both compound types, which can later be considered as promising
candidates for creating dispersed nuclear fuel.

The relevance and novelty of this study consists in a detailed study of the effect of
component variation in (1−x)Si3N4-xAl2O3 ceramics on their structural, strength, and
dielectric properties, as well as the choice of the most optimal compositions for further
research related to determining the resistance to radiation damage during irradiation
with heavy ions. The choice of (1−x)Si3N4-xAl2O3 ceramics with different variations of
components as objects of study is due to their prospects for use as a basis for materials of
inert matrices of dispersed nuclear fuel, which consist in increased resistance to radiation
damage, as well as to destruction processes under external mechanical influences.

2. Experimental Part

The synthesis of (1−x)Si3N4-xAl2O3 ceramics was carried out using the method of
solid-phase grinding of initial powders in specified molar ratios with variation of the
components, followed by thermal annealing. Al2O3 and Si3N4 powders with a grain size
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of 1–3 µm and a chemical purity of 99.95% were used as initial components. These powders
were purchased from Sigma Aldrich (Sigma Aldrich, Burlington, MA, USA). Solid state
grinding was carried out using a PULVERISETTE 6 classic line planetary mill (Fritsch,
Berlin, Germany). Grinding conditions: grinding speed—400 rpm, grinding time—30 min,
tungsten carbide balls with a diameter of 8 mm were used as grinding media. After grinding,
the obtained samples were subjected to thermal annealing in a SNOL muffle furnace
(SNOL-term, Tver, Russia) at a temperature of 1500 ◦C for 5 h, the heating rate was
20 ◦C/min, and the samples were cooled for 24 h after annealing. Thermal annealing of the
samples was carried out on uncompressed powders placed in alundum crucibles. Before
and after thermal annealing, the powders were weighed using an analytical balance to
determine the change in mass of the samples as a result of thermal sintering. According to
the data obtained, after thermal annealing, a decrease in the mass of powders in crucibles
by 5–10% was observed, depending on the ratio of the components. Such a change indicates
the initialization of phase transformation processes as a result of thermal annealing. The
annealing itself was carried out in an air atmosphere. The choice of annealing temperature
(1500 ◦C) is due to the possibility of changing the phase composition of ceramics not only
due to the variation of the components used for synthesis, but also the phase transformation
processes, which are initiated when a barrier of 0.3–0.5 Tmelting is reached.

The analysis of the phase composition of composite ceramics was carried out using
the method of X-ray phase analysis implemented on a D8 Advance ECO powder diffrac-
tometer (Bruker, Berlin, Germany). Registration of diffraction patterns was carried out in
the Bragg-Brentano geometry in the angular range of 2θ = 20◦–90◦, with a step of 0.05◦

and a spectrum acquisition time of 1 s at a point. X-ray diffraction was taken on annealed
loose powders, which were not subjected to additional polishing or grinding to avoid intro-
ducing mechanical deformations into the annealed ceramic samples. To identify the phase
composition, the PDF-2 database (2016) was used, the phases were refined by the method
of comparative analysis of the positions of experimentally obtained diffraction reflections
and the positions of lines from the database. Determination of the phase composition
and their ratio was carried out using the Rietveld method. To analyze the obtained X-ray
diffraction patterns using the Rietveld method, the program code TOPAS v.4.0 (Bruker,
Berlin, Germany) was used. Verification of phase determination was more than 95%. The
refinement of the crystal lattice parameters was carried out taking into account deformation
distortions and substitution effects.

The morphological features and elemental composition of ceramics depending on
composition variation were studied using scanning electron microscopy and energy disper-
sive analysis, implemented on a Hitachi TM3030 microscope (Hitachi, Tokyo, Japan). SEM
images and mapping data were taken on loose powders preliminarily dispersed on target
holders to obtain a uniform powder layer on the holder surface.

The study of the optical properties of the synthesized ceramics depending on the
component variation was carried out using the UV-Vis spectroscopy method implemented
using a Specord-250 UV spectrophotometer (Jena Analytic, Berlin, Germany). Recording
of UV-Vis spectra was carried out on free-flowing powders using an integrated sphere for
collecting spectra. In order to use a small volume of synthesized powders for measurements,
we used BaSO4, which is an optically transparent powder over the entire measured range.
Before measurements, a small volume (less than 0.01 g) of the powder under study was
mixed with BaSO4 and placed in a special chamber in an integrated measurement sphere. In
this case, the reference measurement was performed with placed BaSO4 without a sample
to avoid the influence of the environment on the measurements. The spectra were recorded in
the range from 300 to 1000 nm with a step of 1 nm. The determination of the band gap (Eg)
for the corresponding edge of fundamental absorption was performed by constructing
Tauc’ plots with subsequent interpretation using Expression (1):

α = A(hν− Eg)
1/2 (1)
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where A is a constant and hν is the photon energy. The calculation of the linear refractive
index (noptical) was carried out using Formula (2):[(

noptical
)2
− 1
]

[(
noptical

)2
+ 2
] = 1−

√
Eg

20
(2)

The calculation of optical transmission (Toptical) and refraction loss (Rloss) was per-
formed using Formulas (3) and (4):

Toptical =
2
(

noptical
)

(
noptical

)2
+ 1

(3)

Rloss =


(

noptical
)
− 1(

noptical
)
+ 1

2

(4)

To calculate the value of molar refraction (Rmolar), Expression (5) was applied:

Rmolar =


(

noptical
)2
− 1(

noptical
)2

+ 2

Vmolar (5)

The metallization criterion was determined using Equation (6):

M = 1− Rmolar

Vmolar (6)

The metallization criterion characterizes the degree of ordering of ceramic or glassy
ceramics, which, when increased, indicates that the optical properties of the material are
characteristic of ordered structures, and in the case of a decrease in the criterion value, the
properties are characteristic of amorphous glassy structures.

The determination of the static permittivity value was carried out using Formula (7):

εstatic = (noptical)
2

(7)

The dielectric properties of the resulting ceramics were studied by impedance spec-
troscopy. The synthesized powders were mixed with a binder, which was obtained from
an aqueous solution of polyvinyl alcohol. The residual concentration of polyvinyl alcohol
was about 5%. The resulting mixtures (press powders) were pressed into tablets with a
diameter of 11 mm and a thickness of 1 mm. Silver paste was applied to both sides, then
the tablets were dried for ~2 h at 60 ◦C. The frequency spectra were measured on a HIOKI
IM3533-01 RLC meter (Hioki, Tokyo, Japan) in the frequency range of 100–200,000 Hz.

The hardness of the samples, which reflects the strength properties of ceramics with
varying composition, was studied using a LECO LM700 microhardness tester (LECO,
Tokyo, Japan). To determine the resistance to single compression, an LFM-L test machine
(Walter + bai AG, Lohningen, Switzerland) was used. Measurement of hardness, as well
as resistance to single compression, was carried out on pressed samples in the form of
tablets, 1 mm thick and 11 mm in diameter. The samples were pressed using a steel mold,
the maximum pressure at which the samples were pressed into tablets was 300–400 MPa.
The samples were pressed using a cylindrical steel mold. The pressed samples were
held in a mold under pressure for 1 h; the pressing process itself was carried out at
room temperature in an air atmosphere without heating. After pressing, the specimens
were polished to eliminate surface roughness that could affect indentation. The hardness
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measurement was carried out with a load on the indenter of 500 N, the number of points
for measurements was chosen from 25 to 30, in order to collect statistics. A Vickers pyramid
was used as an indenter.

3. Results and Discussion

Interest in ceramic materials based on oxide and nitride compounds applicable as
inert matrices of dispersed nuclear fuel is due to their high strength and thermal parame-
ters. However, despite the large number of different studies, the search for new types of
composites for this area is still relevant in view of the large number of different variations
in ceramic compositions. One of the important criteria for evaluating the applicability
of various composite ceramics is a detailed study of their phase composition, as well as
its changes with varying ceramic components. The most accurate answer to the question
concerning the variation of the phase composition with a change in the composition of the
initial mixtures subjected to thermal annealing at high temperatures can be the use of the
X-ray phase analysis method.

Figure 1 shows the data of X-ray phase analysis of the studied (1−x)Si3N4-xAl2O3
composite ceramics depending on the component variation. The general view of the
presented X-ray diffraction patterns indicates the polycrystalline nature of the ceramics. At
the same time, the analysis of the change in the shape of the diffraction lines, as well as
the positions of the maxima of the reflections, depending on the ratio of the components,
showed the absence of the appearance of any new reflections characteristic of new phases.
This indicates that the main processes of phase transformations with variation in the ratio
of the components consist in changing the ratio of the established phases. According to the
phase analysis of the obtained diffraction patterns, in the structure of ceramics, regardless
of the ratio of the components, the presence of three phases is observed: the tetragonal SiO2
phase close to the Cristobalite structure, the hexagonal Si3N4 phase similar to the Nierite
structure, and the orthorhombic Al2(SiO4)O or (Al2O3)(SiO2) phase with the Sillimanite
structural motif. At the same time, no reflections characteristic of the Al2O3 phases were
found, which indicates that during thermal annealing, the Al2O3 phase is transformed
into the Al2(SiO4)O phase by partial replacement of Al ions by Si ions. The appearance
of the SiO2 phase is characteristic of the decomposition of the main Si3N4 phase with
subsequent transformation into the SiO2 phase when Si ions combine with oxygen. At the
same time, the analysis of the weight contributions of various phases showed that in all
cases of variation in the ratio of components, the dominant phase is SiO2 in the composition
of ceramics.

Figure 2a shows the results of estimating the weight contributions in (1−x)Si3N4-
xAl2O3 ceramics depending on the variation of the components obtained from the analysis
of X-ray diffraction patterns. According to the obtained data, a decrease in the content
of Al2O3 in the composition of ceramics first leads to an insignificant increase in the
contribution of the Al2(SiO4)O phase, which can be explained by the fact that during phase
formation a decrease in the SiO2 phase is observed with an increase in the contribution
of the Si3N4 phase. In turn, the increase in the contribution of the Si3N4 phase can be
explained by the fact that in the phase formation process, with an increase in the silicon
nitride concentration in the annealed mixture, incomplete decomposition of Si3N4 occurs,
followed by its transformation into SiO2. These processes of the Si3N4→SiO2 type are
possible in the case of thermal annealing in an oxygen-containing environment or in
an air atmosphere at temperatures above 1000–1300 ◦C. With an increase in the Si3N4
concentration to 0.7 mol and higher, there is a sharp increase in the contribution of the
Nierite phase and a gradual displacement of the Cristobalite phase, the content of which
decreases to less than 50%. Also, the dominance of the Si3N4 phase is accompanied by
the displacement of the Al2(SiO4)O phase, the content of which, in the case of an Al2O3
concentration of 0.2–0.1 mol, is less than 20%.
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Figure 2. (a) Diagram of the phase composition of (1−x)Si3N4-xAl2O3 ceramics depending on the
variation of the components; (b) Graph of the change in the crystallinity degree of xAl2O3-(1−x)Si3N4

ceramics depending on the variation of the components (the values of the degree of crystallinity were
refined using the Rietveld method).

Figure 2b presents data on the change in the crystallinity degree, reflecting the ratio
of contributions from the ordered structure and structurally disordered or amorphous-
like regions. The crystallinity degree was calculated by comparative analysis of the areas
of diffraction reflections and background radiation characteristic of X-ray diffraction in
amorphous or highly disordered inclusions.

An analysis of the data obtained showed that in the case when the SiO2 phase dom-
inates in the ceramic structure, the crystallinity degree is no more than 75–76%, which
indicates the presence of a sufficiently large number of structurally disordered regions
that are formed during the synthesis as a result of phase formation. At the same time, an
increase in the Si3N4 phase contribution leads to an increase in the crystallinity degree
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above 80%, which indicates that the ceramic structure becomes more perfect and ordered.
Such an increase in the crystallinity degree indicates an increase in structural ordering in the
synthesized samples due to recrystallization processes, as well as a decrease in the contri-
butions of deformation distortions and stresses arising in the process of mechanochemical
synthesis. Also, a change in the crystallinity degree can be associated with a change in
the phase ratio, which is characteristic of the displacement of the Cristobalite phase at
concentrations of the Si3N4 component above 0.7 mol. According to the data on the change in
the phase ratio, it was found that the displacement of the SiO2 phase leads to an increase in the
density of ceramics from 2.69 g/cm3 at an Al2O3 concentration of 0.5 mol to 2.81–2.82 g/cm3

at an Al2O3 concentration of 0.2–0.1 mol. At the same time, an increase in the Si3N4 phase
from 12% to 14% at a concentration of 0.4 mol Al2O3 leads to an increase in the density of
1.7% with is 2.74 g/cm3.

Figures 3–7 show the results of the morphological features of the studied ceramics
depending on the variation of the components, as well as the data on the uniformity of
the distribution of elements in the composition of samples, performed using the energy
dispersive analysis method. According to the data of energy dispersive analysis, the
main elements in the samples under study are oxygen, silicon, aluminum, and nitrogen
is contained to a lesser extent, and the distribution of nitrogen and aluminum has a
pronounced grain structure. The data in Figures 3–7 are presented in order to reflect
changes in the distribution of elements in the structure of the obtained samples and to
indicate that when the ratio of the components changes, the formation of particles of
two types containing different elements is observed. In turn, this may indicate that different
phases can be present in the structure of the synthesized ceramics.
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In the case of a variation of the Al2O3 component equal to 0.5–0.4 mol, the presence of
a large number of grains (approximately 20–25% of the total amount) containing aluminum,
silicon, and oxygen in their composition is observed in the ceramic structure, which is
typical for the Al2(SiO4)O phase. Also, in the composition of ceramics, a small content of
grains containing only nitrogen and silicon is observed, which is typical for the Si3N4 phase.
Thus, analyzing the morphological features of the obtained structures, we can conclude that
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the obtained ceramics are the main matrix of SiO2 with inclusions in the form of Al2(SiO4)O
and Si3N4 grains. At the same time, the structure and shape of grains containing a high
content of aluminum, silicon and oxygen corresponds to the shape of grains characteristic
of Cristobalite.
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Figure 6. Results of morphological studies and mapping of a ceramic sample with an Al2O3 content 
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minum distribution results; (e) nitrogen distribution results. 
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distribution results; (e) nitrogen distribution results.
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distribution results; (e) nitrogen distribution results.

An increase in the content of Si3N4 in ceramics leads to an increase in the concentration
of grains characteristic of this phase, as well as a slight change in their shape and size, due
to the formation of dendrite-like inclusions in the structure of ceramics.

Summarizing the obtained data of morphological studies of synthesized ceramics,
we can draw the following conclusions. Firstly, a change in the ratio of the Al2O3 and
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Si3N4 components leads to minor changes in the shape of the grains, as well as their sizes.
Secondly, the data obtained from the mapping results indicate that the studied ceramics are
a mixture of grains of different phases, including formations in the form of agglomerates
or dendrites containing grains of different phases interconnected. At the same time, the
dendritic form of inclusions becomes more pronounced with a decrease in the content of
the Al2O3 component.

Figure 8 shows the results of the evaluation of the optical properties of the synthesized
(1−x)Si3N4-xAl2O3 ceramics obtained using UV-Vis spectroscopy methods. The data are
presented as dependences of changes in the transmission spectra and absorption spectra of
the samples under study, reflecting the effect of the phase ratio on the optical properties
of ceramics. The general view of the presented transmission spectra (see Figure 8a) is
characterized by a fundamental absorption edge in the region of 320–350 nm, as well as an
almost constant transmission value within 35–50% in the visible (400–700 nm) and near-IR
range (700–1000 nm). In this case, a change in the concentration of the components leads to
a shift in the fundamental absorption edge, a change in which indicates a change in the
electron density, band gap, and linear refractive index.

Materials 2023, 16, 1961 11 of 19 
 

 

400 500 600 700 800 900 1000
20

25

30

35

40

45

50

55

60

Tr
an

sm
itt

an
ce

, %

Wavelength, nm

 0.5Al2O3 − 0.5Si3N4

 0.4Al2O3 − 0.6Si3N4

 0.3Al2O3 − 0.7Si3N4

 0.2Al2O3 − 0.8Si3N4

 0.1Al2O3 − 0.9Si3N4

 

200 300 400 500 600 700 800 900 1000

Wavelength, nm

 0.5Al2O3 − 0.5Si3N4

 0.4Al2O3 − 0.6Si3N4

 0.3Al2O3 − 0.7Si3N4

 0.2Al2O3 − 0.8Si3N4

 0.1Al2O3 − 0.9Si3N4

Ab
so

rb
an

ce
absorption band

3.7−3.8 eV

 
(a) (b) 

Figure 8. (a) Results of UV-Vis transmission spectra of (1−x)Si3N4-xAl2O3 ceramics versus compo-
nent variation; (b) Results of UV-Vis absorption spectra of (1−x)Si3N4-xAl2O3 ceramics depending 
on component variation. 
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Figures 9 and 10 show the SEM images of the synthesized ceramics after pressing 
them into tablets for examination in the Secondary electron image (SE) and Backscattered 
electron image (BSE) modes, which reflect the change in the morphology of the ceramic 
topography. 

Figure 8. (a) Results of UV-Vis transmission spectra of (1−x)Si3N4-xAl2O3 ceramics versus compo-
nent variation; (b) Results of UV-Vis absorption spectra of (1−x)Si3N4-xAl2O3 ceramics depending
on component variation.

An analysis of the absorption spectra showed that a change in the phase ratio in the
composition of ceramics leads to the appearance of an additional absorption band in the
region of 3.7–3.8 eV, the intensity of which increases with an increase in the contribution of
the Si3N4 phase in the composition of ceramics. The formation of additional absorption
bands is due to the formation of absorbing centers in the structure, the appearance of which
is associated with a change in the electron density due to a change in the phase composition.
The change in the fundamental absorption edge, which also characterizes the change in
the band gap, also indicates a change in the electron density. The shift of the fundamental
absorption edge to the long-wavelength side indicates a change in interband transitions,
which is also reflected in the formation of additional absorption bands.

Based on the obtained UV-Vis spectra using the Tauc plotting technique, the values
of the band gap, as well as the linear refractive indices, were determined. The results are
presented in Table 1, also using the calculation Formulas (1)–(7), the main optical charac-
teristics were calculated, the values of which reflect the change in the optical properties
of ceramics.

As can be seen from the analysis of the data obtained, the formation of the stable Si3N4
phase in the structure and the subsequent increase in its contribution leads to an increase
in the band gap and a decrease in the refractive index, which indicates a change in the
optical density and electronic structure of the ceramics. Reducing the refractive index leads
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to an increase in throughput in the entire visible and IR range, as well as a decrease in
reflection losses.

Table 1. Data on changes in optical characteristics.

Parameter
Concentration of Al2O3, mol

0.5 0.4 0.3 0.2 0.1

Band gap, eV 2.109 2.211 2.814 3.034 3.637

Linear refractive index 2.691 2.650 2.449 2.387 2.243

Rloss 0.209 0.204 0.184 0.168 0.147

Toptical transmission 0.653 0.661 0.689 0.712 0.743

Static dielectric constants 7.241 7.022 6.245 5.698 5.031

Rmolar 69.79 69.15 66.74 65.81 62.41

Metallization criterion 0.324 0.332 0.375 0.389 0.426

Figures 9 and 10 show the SEM images of the synthesized ceramics after pressing
them into tablets for examination in the Secondary electron image (SE) and Backscat-
tered electron image (BSE) modes, which reflect the change in the morphology of the
ceramic topography.
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Figure 9. SEM images of synthesized ceramics in Secondary electron image mode: (a) 0.5Al2O3–
0.5Si3N4; (b) 0.4Al2O3–0.6Si3N4; (c) 0.3Al2O3–0.7Si3N4; (d) 0.2Al2O3–0.8Si3N4; (e) 0.1Al2O3–0.9Si3N4. 
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Figure 10. SEM images of synthesized ceramics in the Backscattered electron image mode: (a) 
0.5Al2O3–0.5Si3N4; (b) 0.4Al2O3–0.6Si3N4; (c) 0.3Al2O3–0.7Si3N4; (d) 0.2Al2O3–0.8Si3N4; (e) 0.1Al2O3–
0.9Si3N4. 

As can be seen from the presented data on the morphological features of the samples 
after pressing to measure the mechanical strength and resistance to cracking, with a 

Figure 9. SEM images of synthesized ceramics in Secondary electron image mode: (a) 0.5Al2O3–0.5Si3N4;
(b) 0.4Al2O3–0.6Si3N4; (c) 0.3Al2O3–0.7Si3N4; (d) 0.2Al2O3–0.8Si3N4; (e) 0.1Al2O3–0.9Si3N4.

As can be seen from the presented data on the morphological features of the samples
after pressing to measure the mechanical strength and resistance to cracking, with a change
in the concentration of the components, a significant change in the relief of the grains, as
well as their sizes, is observed, with the formation of large agglomerates.

Figure 11 shows the data on changes in the density of ceramics calculated using the
X-ray phase analysis method, as well as the standard method of Archimedes, which was
applied to ceramics pressed into tablets.
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Figure 10. SEM images of synthesized ceramics in the Backscattered electron image mode:
(a) 0.5Al2O3–0.5Si3N4; (b) 0.4Al2O3–0.6Si3N4; (c) 0.3Al2O3–0.7Si3N4; (d) 0.2Al2O3–0.8Si3N4;
(e) 0.1Al2O3–0.9Si3N4.
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Figure 11. These changes in the density of ceramics, depending on the variation of the components.

According to the obtained data on the change in density values obtained using
two methods, a significant difference is seen in the values at high concentrations of Al2O3
(more than 8–10%). This difference in absolute density (XRD data) and relative den-
sity (data obtained using the Archimedes method) is due to the presence of pores and
a large number of grain boundaries associated with fine grains. In this case, the change
in the phase composition, as well as, as can be seen from these morphological features,
leads to a decrease in the difference in the values of the density values obtained using
various methods.

Figure 12 shows the results of changes in strength characteristics, reflecting the re-
sistance of ceramics to external influences and cracking during indentation and single
compression, depending on the variation of the components in the composition. The general
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trend in the change in the strength properties of ceramics shows that a change in the ratio
of components, followed by displacement of the SiO2 and Al2(SiO4)O phases, leads to an
increase in the hardness of ceramics and crack resistance. At the same time, the highest
indicators of the strength properties of ceramics are typical for samples in which the con-
tent of the Al2(SiO4)O phase is less than 20%, which gives an increase in hardness and
strength by more than 20%. At the same time, these changes are most pronounced when
determining the resistance to cracking of ceramics under a single compression.
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Figure 12. (a) Dependence of the change in the strength characteristics of (1−x)Si3N4-xAl2O3 ce-
ramics with variation of the components; (b) Dependence of the change in hardening characteris-
tics on the criterion of metallization of ceramics. 
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Figure 13. (a) Results of evaluation of the change in crack resistance depending on the variation of 
components in the composition of ceramics; (b) Results of the change in crystallite sizes and dis-
location density depending on the variation of the components in the composition of ceramics. 
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Figure 12. (a) Dependence of the change in the strength characteristics of (1−x)Si3N4-xAl2O3 ceramics
with variation of the components; (b) Dependence of the change in hardening characteristics on the
criterion of metallization of ceramics.

Figure 12b shows the change in hardening characteristics, expressed as a percentage,
depending on the criterion for metallization of ceramics, calculated based on the change
in optical characteristics. According to the dependences obtained, it can be seen that the
greatest hardening is observed in the case of an increase in the metallization criterion by
more than 0.37, which leads to an increase in crack resistance by more than 10–25%. In the
case of the value of the metallization criterion, which is less than 0.37, the strengthening of
ceramics is no more than 3–5%. Such hardening of samples, depending on the metallization
criterion, can be explained by the fact that a change in the phase ratio in ceramics leads
to the displacement of disordered regions in the composition of ceramics, which is also
evidenced by data on the crystallinity degree of the samples. At the same time, these
changes are most pronounced in the case when the displacement of the Al2(SiO4)O phase
is observed in the composition of ceramics and its content is less than 20%.

Based on changes in hardness values and evaluation of indenter prints, the parameters
of ceramic crack resistance were determined depending on the variation in the composition
of the components, the results of which are presented in Figure 13a. As can be seen from
the presented data, the displacement of the SiO2 phase and a decrease in the content of
the Al2(SiO4)O phase leads to an increase in resistance to cracking and an increase in the
strength properties of ceramics. At the same time, these changes are non-linear, and the
maximum increase is observed for samples in which the content of the SiO2 and Si3N4
phases is close to the equilibrium value, with a low content of the Al2(SiO4)O phase.

As is known, one of the most common hardening criteria is a change in the dislocation
density in samples, an increase in which at small crystallite sizes leads to a significant
increase in the resistance of ceramics or alloys to external influences. At the same time, the
variation of the phase composition can also affect the change in the strength and stability
of ceramics. Figure 13b shows the results of the change in the dislocation density of the
samples under study, obtained on the basis of data on changes in the grain size of ceramics.
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The dislocation density (δ) was calculated using the expression: δ = 1
D2 , where D is the

grain size of the samples under study. The use of this formula is primarily due to the fact
that the crystallite size obtained from the analysis of X-ray diffraction patterns is used to
calculate the dislocation density. This makes it possible to determine the dislocation density
in the entire volume of the structure, and not only in the near surface, as is done when
using optical methods for estimating the dislocation density. As can be seen from the data
presented, the variation in the composition of ceramics leads to insignificant changes in
the crystallite size, which in turn affects the dislocation density. However, these changes
in the dislocation density do not have a significant effect on the hardening of ceramics.
Thus, we can conclude that in the case of (1−x)Si3N4-xAl2O3 ceramics, the main effect in
hardening is exerted by a change in the phase ratio, as well as the metallization factor and
the crystallinity degree, while a change in the dislocation density does not affect hardening.
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An important parameter for polycrystalline ceramics is the permittivity ε, the value
of which largely determines the interaction of ceramics with radiation. Usually, ma-
terials are characterized by dielectric permittivity ε and dielectric loss tangent tan δ,
which shows what part of the energy of the electric alternating field is converted into
thermal [45]. The dielectric permittivity of ceramics depends on many factors: microstructure
(grain size, morphology and porosity), phase composition, defects, substitutions. Since
X-ray studies and optical measurements have shown that the obtained polycrystalline pow-
ders have a high crystallinity degree, the dielectric properties of the synthesized powders
will be mainly determined by the microstructural characteristics and phase composition.
During the synthesis of ceramics, as mentioned earlier, phase transformations occur, as
a result of which silicon oxide SiO2 is the dominant phase. The results of changing the
dielectric characteristics are shown in Figure 14. It is reported that SiO2 with a tetrag-
onal lattice (Crystobalite) has excellent dielectric parameters with a rather low value of
ε ≈ 3.70–4.43 depending on the crystalline state (single crystal, amorphous substance) [46–48].
Polycrystalline ceramics based on Si3N4 are characterized by a higher dielectric constant,
the value of which for nonporous samples is in the range of 7.0–8.5 [49–51]. The data
of dielectric parameters measured for Al2(SiO4)O with rhombic crystal lattice show that
the dielectric constant has a value of 4.71–4.80. For all the above compositions, the value
of the dielectric loss tangent is 2 × 10−3–15 × 10−3, which causes the use of SiO2, Si3N4
ceramics as radio-transparent ceramics. As can be seen from the figure, the curves do not
show pronounced frequency dependence, which is typical for Si3N4 and SiO2 ceramics.
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Figure 14b shows the frequency dependences of the dielectric loss tangent of the samples
under study.
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In contrast to the frequency dependences of ε, the frequency spectra of tan δ exhibit
pronounced frequency dispersion except for the 0.1 mol Al2O3 sample. Table 2 shows the
measurement results of the dielectric parameters of the samples.

Table 2. Results of measurements of dielectric parameters ε, tan δ of the obtained samples.

Concentration of Al2O3, mol ε
tan δ

1 kHz 10 kHz 100 kHz

0.5 3.03 0.034 0.018 0.012

0.4 5.38 0.032 0.016 0.011

0.3 6.07 0.012 0.010 0.006

0.2 5.62 0.038 0.018 0.011

0.1 5.05 0.016 0.015 0.016

It can be seen that the values of ε do not coincide with the calculated static permittivity.
Moreover, since the dielectric properties of multiphase ceramics depend on the dielectric
properties of individual phases and their concentration, samples with a lower initial concen-
tration of Al2O3 should have higher values of ε. This is expected because the dielectric con-
stant of silicon nitride, the content of which increases, is almost 2 times higher than that of
silicon oxide and Al2(SiO4)O. This dependence of properties is associated with the features
of the microstructure of ceramics (the presence of pores), which can be seen from the results
of scanning electron microscopy. For example, the minimum value of the permittivity for a
sample of 0.5 is explained by high porosity and a large scatter in grain sizes. Higher values
of ε are observed for a more uniform ceramic microstructure for samples of 0.4, 0.3 mol Al2O3.
The increased values of tan δ at low frequencies are associated with a slight influence of
the polymer binder. The values of tan δ at the limiting frequency of measurements corre-
spond in order to the measured values in the microwave region in other works cited above,
since at high frequencies the molecular chains of the polymer do not contribute to the
polarization processes. For samples of 0.1 and 0.2 mol Al2O3, it can also be noted that the
increased value of dielectric losses with the morphology of the samples, in particular, the
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heterogeneity of the grain size distribution. The sample with 0.3 mol Al2O3 is characterized
by the lowest dielectric loss and the highest value of dielectric permittivity. Thus, the
value of the permittivity and dielectric losses in the frequency range 2–100 Hz is largely
determined by the microstructure of the samples and, to a lesser extent, by the composition
of the ceramics.

The obtained results of the study related to the development of the technology for
obtaining (1−x)Si3N4-xAl2O3 depending on the variation of the ceramic components
have very great prospects in practical terms, not only as materials for inert nuclear fuel
matrices, but also as materials for stereolithography or high-strength compounds. Thus,
the compositions of ceramic powders obtained can be used as a basis for expanding 3D
printing and manufacturing ceramic parts [52]. In turn, the results of the strength properties
of the synthesized ceramics are in good agreement with the data of [53], which shows the
prospect of using such ceramics as high-strength cutting tools with high wear resistance.
At the same time, the proposed method for obtaining ceramics, with the possibility of a
controlled phase composition, makes it possible to expand the range of practical application
of these ceramics, and the obtained dependences of the effect of the phase composition on
the strength and dielectric properties will expand the understanding of the properties of
these composite ceramics.

4. Conclusions

The article is devoted to the study of structural, morphological, optical, strength and
dielectric properties of (1−x)Si3N4-xAl2O3 ceramics obtained by solid-phase synthesis
with varying the ratio of components. According to the data of X-ray phase and energy-
dispersive analysis, it was found that the studied samples are a matrix consisting of
SiO2 (Crystobalite) with inclusions in the form of Al2(SiO4)O and Si3N4 grains. During the
studies, it was found that a decrease in the content of Al2O3 in the composition of ceramics
leads to the displacement of Al2(SiO4)O grains from the structure, with the formation of
samples close to the equilibrium composition, which are a matrix of SiO2 with inclusions of
Si3N4 grains. During evaluation of the strength properties of the studied ceramics, it was
found that the increase in crack resistance and hardness is due to a change in the phase
composition, as well as an increase in the contribution of the Si3N4 phase. According to
the results of impedance spectroscopy in the frequency range 100–100,000 Hz, the values
of the dielectric constant of the obtained ceramics were measured. The value of εwas in
the range of 3.03–6.07, while the dielectric loss tangent was in the range of 0.006–0.038.
The value of the permittivity and dielectric losses in the above frequency range is largely
determined by the microstructure of the samples and, to a lesser extent, by the composition
of the ceramics.

Results obtained make it possible to predict the area of practical application of the
synthesized ceramics under conditions of increased mechanical loads, as well as external
influences, including ionizing radiation.
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