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TAME AND WILD AUTOMORPHISMS
OF DIFFERENTIAL POLYNOMIAL ALGEBRAS OF RANK 2

B. A. Duisengaliyeva, A. S. Naurazbekova, and U. U. Umirbaev UDC 512.5

Abstract. It is proved that the tame automorphism group of a differential polynomial algebra k{x, y}
over a field k of characteristic 0 in two variables x, y with m commuting derivations δ1, . . . , δm is a free
product with amalgamation. An example of a wild automorphism of the algebra k{x, y} in the case of
m ≥ 2 derivations is constructed.

1. Introduction

It is well known [3,4,8,12] that every automorphism of a polynomial algebra k[x, y] and a free associa-
tive algebra k〈x, y〉 in two variables over an arbitrary field k is tame. Moreover [3,12], the automorphism
groups of algebras k[x, y] and k〈x, y〉 are isomorphic, i.e.,

Autk k[x, y] ∼= Autk k〈x, y〉.
It is also known that automorphisms of two-generated free Poisson algebras over fields of characteristic

zero [13] and automorphisms of two-generated free right-symmetric algebras over arbitrary fields [7] are
tame. P. Cohn [1] proved that automorphisms of free Lie algebras of finite rank are tame. An analog
of this theorem is true for free algebras of any homogeneous Schreier variety of algebras [10]. We recall
that the varieties of all nonassociative algebras [9], commutative and anticommutative algebras [20], Lie
algebras [19,26], and Lie superalgebras [14,22] are Schreier varieties.

The automorphism groups of polynomial algebras [17, 18, 25] and free associative algebras [23, 24] in
three variables over a field of characteristic zero cannot be generated by all elementary automorphisms,
i.e., there exist wild automorphisms. U. U. Umirbaev proved [23,24] that the Anick automorphism

δ = (x + z(xz − zy), y + (xz − zy)z, z)

of the free associative algebra k〈x, y, z〉 over a field of characteristic 0 is wild.
The main notions of differential algebras can be found in [5,6,16]. We will consider differential algebras

with the set of commuting derivations Δ = {δ1, δ2, . . . , δm}. Let k be a differential field of characteristic 0
and k{x, y} be the differential polynomial algebra over k in two variables x, y. If |Δ| = 0, then k{x, y}
becomes the usual polynomial algebra k[x, y] over the field k. W. van der Kulk [8] and M. Nagata [15]
proved that the group Aut(k[x, y]) can be represented as an amalgamated free product

Aut(k[x, y]) = A ∗C B,

where A is the affine automorphism subgroup, B is the triangular automorphism subgroup, and C = A∩B.
In this paper, we prove that the tame automorphism group of the algebra k{x, y} admits a similar

structure of an amalgamated free product for any set of derivations Δ. Moreover, using this structure
we construct an example of a wild automorphism of the algebra k{x, y} for |Δ| ≥ 2. This example is an
analog of the well-known Anick automorphism [2, p. 398].

Thus, the automorphisms of the algebra k{x, y} are tame for |Δ| = 0 and k{x, y} has wild automor-
phisms for |Δ| ≥ 2. The problem of tame and wild automorphisms of the algebra k{x, y} remains open
for |Δ| = 1.
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The paper is organized as follows. In Sec. 2, some necessary definitions are given and some well-known
statements are formulated. Section 3 is devoted to the representation of the tame automorphism group
of the algebra k{x, y} in the form of an amalgamated free product. In Sec. 4, we prove the reducibility of
any non-affine tame automorphism of the algebra k{x, y}. An example of a wild automorphism is given
in Sec. 5.

2. Definitions and Preliminary Facts

Let R be an arbitrary commutative ring with unity. A mapping d : R → R is called a derivation if

d(s + t) = d(s) + d(t), d(st) = d(s)t + sd(t)

holds for all s, t ∈ R.
Let Δ = {δ1, . . . , δm} be a basic set of derivation operators.
A ring R is called a differential ring or Δ-ring if δ1, . . . , δm are commuting derivations of the ring R,

i.e., the derivations δi : R → R are defined for all i and δiδj = δjδi for all i and j.
Let Θ be the free commutative monoid on the set Δ = {δ1, . . . , δm} of derivation operators. The

elements
θ = δi1

1 . . . δim
m

of the monoid Θ are called derivative operators. The order of θ is defined as |θ| = i1 + · · · + im. We also
put γ(θ) = (i1, . . . , im) ∈ Z

m
+ , where Z+ is the set of all non-negative integers.

Let R be an arbitrary differential ring and let X = {x1, . . . , xn} be a set of symbols. Consider the set
of symbols XΘ = {xθ

i | 1 ≤ i ≤ n, θ ∈ Θ} and the polynomial algebra R[XΘ] on the set of symbols XΘ.
We turn R[XΘ] into a differential algebra by

δi(xθ
j) = xθδi

j

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, θ ∈ Θ. The differential algebra R[XΘ] is denoted by R{X} and is called the
differential polynomial algebra over R on the set of variables X [5].

Let M be the free commutative monoid on the set of variables xθ
i , where 1 ≤ i ≤ n and θ ∈ Θ. The

elements of M are called monomials of the algebra R{x1, x2, . . . , xn}. Every element a ∈ R{x1, x2, . . . , xn}
can be uniquely written in the form

a =
∑

m∈M

rmm

with a finite number of nonzero rm ∈ R.
For any xθ

i ∈ XΘ we put α(xθ
i ) =

(
εi, γ(θ)

) ∈ Z
n+m
+ , where ε1, . . . , εn is the standard basis of Zn

+.
If m = a1 . . . as ∈ M , where a1, . . . , as ∈ XΘ, then put α(m) = α(a1) + · · · + α(as). Then α(m) is the
vector of multilinear degree of the monomial m with respect to the variables x1, . . . , xn and the derivation
operators δ1, . . . , δm. The sum of the components of the vector α(m) is called the degree of the monomial
m and is denoted by deg(m).

Moreover, for any w ∈ Z
n+m we can define a w-degree function degw as degw(m) = w · α(m), where

· denotes the usual scalar product. Obviously, degw coincides with deg if all components of w are equal
to 1. If the first n components of w are equal to 1 and the other components are equal to 0, then degw is
a general degree of w in the variables x1, . . . , xn. Any w ∈ Z

n+m defines a graduation

C =
⊕

i∈Z
Ci

of algebra C = R{x1, x2, . . . , xn}, where Ci is the R-span of monomials of w-degree i. Each nonzero
element c ∈ C is uniquely represented in the form

c = ci1 + ci2 + · · · + cis , i1 < i2 < · · · < is, 0 �= cij ∈ Cij .

The element cis is called the highest homogeneous part of the element c with respect to the w-degree degw.
We denote by c̄ the highest homogeneous part of c with respect to the degree function deg.

815



Let k be an arbitrary differential field of characteristic 0 and B = k{X} = k{x1, . . . , xn} the differ-
ential polynomial algebra over k on the set of variables X. For any 0 �= f, g ∈ B, we have

α(fg) = α(f) + α(g), deg(fg) = deg(f) + deg(g), fg = f̄ ḡ.

An element f ∈ B is called differentially algebraic over k if there exists a nonzero element g ∈
k{z} such that g(f) = 0. Otherwise f ∈ B is called differentially-transcendental over k. Elements
f1, f2, . . . , fs ∈ B are called differentially algebraically dependent over k if there exists a nonzero element
g ∈ k{z1, . . . , zs} such that g(f1, f2, . . . , fs) = 0. If f1, f2, . . . , fs are differentially algebraically indepen-
dent, then the homomorphism k{z1, . . . , zs} → k{f1, . . . , fs} defined by zi → fi is an isomorphism.

Lemma 1. Every element of the algebra B = k{x1, . . . , xn} that does not belong to the field k is differen-
tially transcendental over k.

Proof. The statement of the lemma is an easy consequence of the well-known theorems on the differential
transcendence degree [5, Chap. 2]. Here we propose a direct proof, using the usual algebraic dependence
of the elements.

For any u, v ∈ XΘ, we put u < v if deg(u) < deg(v) or deg(u) = deg(v) and α(u) < α(v) with respect
to the lexicographic order in Z

n+m
+ .

Let 0 �= f ∈ B. Let u be the largest element of XΘ that present in f . Such an element u is called
the leader of f with respect to the order ≤ on XΘ [5, Chap. 1]. It is easy to understand that the leader
of the element fθ is uθ, i.e., uΘ is the set of leaders of the set of elements of fΘ.

We put W = XΘ \ uΘ. Then the set of all elements of uΘ is algebraically independent over k[W ],
since uΘ and W define a partition of the set XΘ, which is algebraically independent over k.

Note that f is differentially algebraic over k if and only if the set of elements of fΘ is algebraically
dependent over k. Any algebraic dependence of elements of fΘ over k leads to an algebraic dependence
of uΘ over k[W ], but it is impossible.

If f1, f2, . . . , fr ∈ B, then we denote by k{f1, f2, . . . , fr} the subalgebra of B generated by the elements
f1, f2, . . . , fr. Note that this type of designation does not mean the differentially algebraic independence of
the elements f1, f2, . . . , fr, i.e., k{f1, f2, . . . , fr} is not necessarily isomorphic to a differential polynomial
algebra. A similar designation is often used to denote the subalgebras of polynomial algebras in affine
algebraic geometry. The statement of the following lemma is true for any homogeneous free algebras (see,
for example, [21]).

Lemma 2. Let f1, f2, . . . , fr ∈ B and u ∈ k{f1, f2, . . . , fr}. If f̄1, f̄2, . . . , f̄r are differentially algebraically
independent, then ū ∈ k{f̄1, f̄2, . . . , f̄r}.
Proof. Let u = u(z1, . . . , zr) ∈ k{z1, . . . , zr} and let also deg(fi) = ni, where 1 ≤ i ≤ r. Put w =
(n1, n2, . . . , nr, 1, . . . , 1) and consider the degree function degw in the algebra k{z1, . . . , zr}. Then u =
u′ + ũ, where ũ is the highest homogeneous part of u with respect to degw and degw(u′) < degw(ũ). Let
degw(u) = k. Note that fi = f ′

i + f̄i for all i. Then

u(f1, . . . , fr) = u′(f1, . . . , fr) + ũ(f1, . . . , fr) = w′ + ũ(f̄1, f̄2, . . . , f̄r),

where deg(w′) < k. Since f̄1, f̄2, . . . , f̄r are differentially algebraically independent, it follows that
ũ(f̄1, f̄2, . . . , f̄r) is not zero and has degree k by the choice of w. Consequently, ū = ũ(f̄1, f̄2, . . . , f̄r) ∈
k{f̄1, f̄2, . . . , f̄r}.
Corollary 1. Let 0 �= f ∈ B. If a ∈ k{f}, then ā ∈ k{f̄}.
Proof. It follows immediately from Lemmas 1 and 2.
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3. Amalgamated Free Product

Let A = k{x, y} be the differential polynomial algebra in two variables x, y and let Aut(A) be the
group of automorphisms of the algebra A. We denote by ϕ = (f1, f2) the automorphism of A such that
ϕ(x) = f1, ϕ(y) = f2. Automorphisms of the form

σ(1, a, f) = (ax + f(y), y), σ(2, a, g) =
(
x, ay + g(x)

)
,

where 0 �= a ∈ k, f(y) ∈ k{y}, g(x) ∈ k{x}, are called elementary. The subgroup T (A) of the group
Aut(A) generated by all elementary automorphisms is called the tame automorphism subgroup. Non tame
automorphisms are called wild.

We define a degree of an automorphism θ = (f1, f2) ∈ Aut(A) by

deg(θ) = deg(f1) + deg(f2).

If

θ = (f1, f2), ϕ = (g1, g2),

then the product in Aut(A) is defined by

θ ◦ ϕ =
(
g1(f1, f2), g2(f1, f2)

)
.

Let Af2(A) be the affine automorphism group of the algebra A, i.e., the group of automorphisms
of the form (a1x + b1y + c1, a2x + b2y + c2), where ai, bi, ci ∈ k, a1b2 �= a2b1; Tr2(A) be the triangular
automorphism group of the algebra A, i.e., the group of automorphisms of the form (ax + f(y), by + c),
where 0 �= a, b ∈ k, c ∈ k, f(y) ∈ k{y}; and let C = Af2(A) ∩ Tr2(A).

Let G be an arbitrary group, G0, G1, and G2 be subgroups of the group G, and G0 = G1 ∩ G2. The
group G is called the free product of the subgroups G1 and G2 with the amalgamated subgroup G0 and is
denoted by G = G1 ∗G0 G2 if

(a) G is generated by the subgroups G1 and G2;
(b) the defining relations of the group G consist only of the defining relations of the subgroups G1

and G2.

If S1 is a complete system of representatives of the left cosets of G0 in G1 and S2 is a complete system
of representatives of the left cosets of G0 in G2, then the group G is a free product of the subgroups G1

and G2 with the amalgamated G0 (see, for example, [11]) if and only if each g ∈ G is uniquely represented
in the form

g = g1 . . . gkc,

where gi ∈ S1 ∪ S2, i = 1, . . . , k, gi and gi+1 are neither both in S1, nor both in S2, and c ∈ G0.
The notation hi(y) in the proofs of the following several lemmas means that hi(y) ∈ k{y} is a ho-

mogeneous differential polynomial of degree i with respect to the degree function deg in k{y}. It is clear
that h0(y) ∈ k.

Lemma 3.

(a) The system of elements

A0 = {id = (x, y), γ = (y, x + ay) | a ∈ k}
is a left coset representative system for Af2(A) modulo C.

(b) The system of elements

B0 = {β = (x + q(y), y) | q(y) = hn(y) + · · · + h2(y)}
is a left coset representative system for Tr2(A) modulo C.
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Proof. We verify the condition (a). Let l ∈ Af2(A). We must show that for any l there exist γ ∈ A0,
η ∈ C such that l = γ ◦ η.

If l = (a1x + b1y + c1, a2x + b2y + c2), where a2 �= 0, then we put

γ =
(

y, x +
b2

a2
y

)
, η =

((
b1 − a1b2

a2

)
x + a1y + c1, a2y + c2

)
.

Then l is represented in the form

l =
(

y, x +
b2

a2
y

)
◦

((
b1 − a1b2

a2

)
x + a1y + c1, a2y + c2

)
= γ ◦ η.

If a2 = 0, then γ = id, η = l, i.e., l = id ◦ l.
Assume that γ1 = (y, x + a1y), γ2 = (y, x + a2y), and γ1C = γ2C. Then

γ−1
1 ◦ γ2 = (−a1x + y, x) ◦ (y, x + a2y) = (x, (−a1 + a2)x + y).

Hence it follows that γ−1
1 ◦ γ2 ∈ C if and only if a1 = a2. Consequently, γ1 = γ2.

Now we verify the condition (b). Let ψ = (ax + h(y), by + c) ∈ Tr2(A) and let h(y) = hn(y) + · · · +
h1(y) + h0(y). We must show that for any ψ there exist β ∈ B0 and μ ∈ C such that ψ = β ◦ μ. Put
β = (x+q(y), y), μ = (ax+h1(y)+h0(y), by+c), where q(y) = hn(y)+ · · ·+h2(y). Then ψ is represented
in form

ψ =
(

x +
1
a

q(y), y
)
◦ (ax + h1(y) + h0(y), by + c) = β ◦ μ.

Assume that β1 = (x + q(y), y), β2 =
(
x + q(1)(y), y

)
, and β1C = β2C. Then we have

β−1
1 ◦ β2 = (x − q(y), y) ◦ (

x + q(1)(y), y
)

=
(
x − q(y) + q(1)(y), y

)
.

Hence, β−1
1 ◦ β2 ∈ C if and only if q(y) = q(1)(y). Consequently, β1 = β2.

Lemma 4. Let A0 and B0 be the sets defined in Lemma 3. Then any tame automorphism ϕ of the
algebra A decomposes into a product of the form

ϕ = γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk ◦ γk+1 ◦ λ, (1)

where γi ∈ A0, γ2, . . . , γk �= id, βi ∈ B0, β1, . . . , βk �= id, and λ ∈ C.

Proof. We have

(ax + h(y), y) =
(

x +
1
a

q(y), y
)
◦ (ax + h1(y) + h0(y), y),

where h(y) = hn(y) + · · · + h2(y) + h1(y) + h0(y), q(y) = hn(y) + · · · + h2(y), and
(
x, by + h(1)(x)

)
= (y, x) ◦

(
x +

1
b

q(1)(y), y
)
◦ (

y, bx + h
(1)
1 (y) + h

(1)
0 (y)

)
,

where h(1)(y) = h
(1)
m (y) + · · · + h

(1)
2 (y) + h

(1)
1 (y) + h

(1)
0 (y), q(1)(y) = h

(1)
m (y) + · · · + h

(1)
2 (y). Consequently,

every elementary automorphism has the form

l1 ◦ β ◦ l2,

where β ∈ B0, l1, l2 ∈ Af2(A).
Any tame automorphism ϕ is represented as a composition of elementary automorphisms

ϕ1, ϕ2, . . . , ϕn, i.e.,
ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn.

Consequently, we have
ϕ = l1 ◦ β1 ◦ l2 ◦ β2 ◦ · · · ◦ ln ◦ βn ◦ ln+1, (2)

where βi ∈ B0, li ∈ Af2(A).
We prove by induction on n that ϕ is represented as a product of the form (1), with k ≤ n.
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By Lemma 3, the automorphism l1 is written as γ1 ◦ λ1, where γ1 ∈ A0, λ1 ∈ C. Then

l1 ◦ β1 = γ1 ◦ λ1 ◦ β1.

Let λ1 = (ax + by + c, b1y + c1), β1 = (x + q(y), y). Then

λ1 ◦ β1 ◦ λ−1
1 =

(
x +

1
a

q(b1y + c1), y
)

.

We denote by q<2(b1y + c1) the linear part of the differential polynomial q(b1y + c1). Let

λ =
(

x − 1
a

q<2(b1y + c1), y
)

.

It is clear that λ ∈ C and λ−1
1 ◦ λ ∈ C. We denote λ−1

1 ◦ λ by λ−1
2 . Then

l1 ◦ β1 = γ1 ◦ λ1 ◦ β1 = γ1 ◦ β′
1 ◦ λ2,

where

β′
1 = λ1 ◦ β1 ◦ λ−1

2 =
(

x +
1
a

q(b1y + c1) − 1
a

q<2(b1y + c1), y
)

∈ B0.

We have
ϕ = γ1 ◦ β′

1 ◦ (λ2 ◦ l2) ◦ β2 ◦ · · · ◦ ln ◦ βn ◦ ln+1.

By the induction hypothesis, the product

(λ2 ◦ l2) ◦ β2 ◦ · · · ◦ ln ◦ βn ◦ ln+1

is written as
γ2 ◦ β′

2 ◦ γ3 ◦ · · · ◦ γk ◦ β′
k ◦ γk+1 ◦ λ, k ≤ n.

Consequently,
ϕ = γ1 ◦ β′

1 ◦ γ2 ◦ β′
2 ◦ · · · ◦ γk ◦ β′

k ◦ γk+1 ◦ λ.

If γ2 �= id, then this representation is of the form (1). Now consider the case where γ2 = id. Since
β′

1 ◦ β′
2 = β′′

2 ∈ B0, it follows that

ϕ = γ1 ◦ β′
1 ◦ β′

2 ◦ γ3 ◦ · · · ◦ γk ◦ β′
k ◦ γk+1 ◦ λ = γ1 ◦ β′′

2 ◦ γ3 ◦ · · · ◦ γk ◦ β′
k ◦ γk+1 ◦ λ.

Since k − 1 < n, by the induction hypothesis ϕ is written as (1).

Lemma 5. Let ϕ = (f1, f2) be an automorphism of the algebra A, representable as the product

ϕ = (f1, f2) = β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk,

where id �= γi ∈ A0, id �= βi ∈ B0 for all i. If βi = (x + qi(y), y), deg
(
qi(y)

)
= ni, and si is the function

degree of qi(y) on the variable y for all 1 ≤ i ≤ k, then

deg(f1) = nk + (nk−1 − 1)sk + · · · + (n1 − 1)sksk−1 . . . s2,

deg(f2) = nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2 if k > 1

deg(f2) = 1 if k = 1.

Proof. We prove the lemma by induction on k. If k = 1, then ϕ = β1 and

deg(f1) = deg
(
q1(y)

)
= n1,

deg(f2) = 1.

Suppose that the statement of the lemma holds for k − 1. Assume that

ϕ1 = β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk−1 ◦ βk−1 = (g1, g2).

By the induction hypothesis, we have

deg(g1) = nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2,

deg(g2) = nk−2 + (nk−3 − 1)sk−2 + · · · + (n1 − 1)sk−2sk−3 . . . s2.

819



Then
ϕ = (f1, f2) = β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk = ϕ1 ◦ γk ◦ βk = (g1, g2) ◦ γk ◦ βk.

Applying γk = (y, x + ay) to (g1, g2), we obtain

(u1, u2) = (g1, g2) ◦ γk = (g2, g1 + ag2).

Then

deg(u1) = deg(g2) = nk−2 + (nk−3 − 1)sk−2 + · · · + (n1 − 1)sk−2sk−3 . . . s2,

deg(u2) = max{deg(g1), deg(g2)} = nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2.

Further,
ϕ = (f1, f2) = (u1, u2) ◦ βk = (u1, u2) ◦ (x + qk(y), y) = (u1 + qk(u2), u2).

Consequently,

deg(f1) = max
{
deg(u1), deg

(
qk(u2)

)}
,

deg(f2) = deg(u2).

Recall that deg(qk) = nk and

deg(u2) = nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2.

Note that
qk(u2) = q̃k(ū2),

where q̃k is the highest homogeneous part of qk with respect to degw, w = (t, 1, 1, . . . , 1︸ ︷︷ ︸
m

), and t = deg(u2).
Then

deg
(
qk(u2)

)
= deg

(
qk(u2)

)
= deg

(
q̃k(ū2)

)
= degw(qk) = (t, 1, 1, . . . , 1) · α(qk)

= deg(qk) + (t − 1)sk = nk + (nk−1 − 1)sk + (nk−2 − 1)sksk−1 + · · · + (n1 − 1)sksk−1 . . . s2.

Consequently,

deg(f1) = nk + (nk−1 − 1)sk + · · · + (n1 − 1)sksk−1 . . . s2,

deg(f2) = nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2.

Lemma 6. The decomposition (1) of an automorphism ϕ from Lemma 4 is unique.

Proof. It suffices to show that

γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk ◦ γk+1 ◦ λ �= id,

where k ≥ 1, γi ∈ A0, γ2, . . . , γk �= id, βi ∈ B0, β1, . . . , βk �= id, λ ∈ C.
Let us prove this by contradiction. Assume that

γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk ◦ γk+1 ◦ λ = id.

Then
β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk = γ−1

1 ◦ λ−1 ◦ γ−1
k+1. (3)

By Lemma 5, the automorphism

ϕ = (f1, f2) = β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk

has degree

deg(ϕ) = deg(f1) + deg(f2) = nk + (nk−1 − 1)sk + · · · + (n1 − 1)sksk−1 . . . s2

+ nk−1 + (nk−2 − 1)sk−1 + · · · + (n1 − 1)sk−1sk−2 . . . s2.

We denote the right-hand side of the equality (3) by ρ, i.e.,

ρ = γ−1
1 ◦ λ−1 ◦ γ−1

k+1.
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It is clear that ρ ∈ Af2(A) and deg(ρ) = 2. Consequently, deg(ϕ) �= deg(ρ), which contradicts the
equality (3).

Theorem 1. The tame automorphism group of the algebra A = k{x, y} is a free product of the affine
automorphism subgroup Af2(A) and the triangular automorphism subgroup Tr2(A) with an amalgamated
subgroup C = Af2(A) ∩ Tr2(A), i.e.,

T (A) = Af2(A) ∗C Tr2(A).

Proof. Since A0 and B0 are, respectively, left coset representative systems for Af2(A) and Tr2(A) modulo
subgroup C, by Lemma 4 and by Lemma 6 any automorphism is uniquely represented in the form (1).
According to [11],

T (A) = Af2(A) ∗C Tr2(A).

4. Reducibility of Tame Automorphisms

Recall that f̄ is the highest homogeneous part of f with respect to the degree function deg and the
degree of an automorphism θ = (f1, f2) is defined as

deg(θ) = deg(f1) + deg(f2).

A transformation (f1, f2) that changes only one element fi (i = 1, 2) to an element of the form αfi+g,
where 0 �= α ∈ k, g ∈ k{fj | j �= i}, is called elementary.

The notation θ → ϕ means that ϕ is obtained from θ by a single elementary transformation. An
automorphism θ is called elementary reducible if there exists an automorphism ϕ such that θ → ϕ and
deg(ϕ) < deg(θ).

Lemma 7. Let θ = (f1, f2) be a non-affine tame automorphism of the algebra A = k{x, y}. If f̄1 and f̄2

are linearly dependent, then the automorphism π is elementary reducible.

Proof. Let f̄1 = γf̄2. Consider the elementary transformation

θ = (f1, f2) → (f1 − γf2, f2) = σ,

where γ ∈ k∗. We have deg(f1) > deg(f1−γf2). It follows that deg(θ) > deg(σ) and the automorphism π
is elementary reducible.

Theorem 2. Any non-affine tame automorphism of the algebra A = k{x, y} is elementary reducible.

Proof. Let θ = (f1, f2) be non-affine tame automorphism of the algebra A. By Lemma 4 θ is written
as (1). If γk+1 ◦ λ = id, then

θ = γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk = (f1, f2).

Put
τ = γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk = (g1, g2).

If βk = (x + qk(y), y), then
θ = (g1 + qk(g2), g2).

By Lemma 5, we have

deg(τ) = deg(g1) + deg(g2) < deg(θ) = deg
(
g1 + qk(g2)

)
+ deg(g2).

Since θ → τ , it follows that the automorphism θ is elementary reducible. Assume that

γk+1 ◦ λ = (a1x + b1y + c1, a2x + b2y + c2) �= id.

Put
π = γ1 ◦ β1 ◦ γ2 ◦ β2 ◦ · · · ◦ γk ◦ βk = (g1 + qk(g2), g2) = (u1, u2).

By Lemma 5, deg(u1) > deg(u2).
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Consequently,

θ = π ◦ γk+1 ◦ λ = (a1u1 + b1u2 + c1, a2u1 + b2u2 + c2) = (f1, f2).

If a1, a2 �= 0, then f̄1 and f̄2 are linearly dependent and, by Lemma 7, the automorphism θ is
elementary reducible.

If a1 = 0, then f̄1 = ū2 and f̄2 = ū1 = qk(u2). In this case the automorphism θ is elementary reducible
by using the automorphism ψ =

(
f1, f2 − qk(f1)

)
.

The case where a2 = 0 is similar to the previous one.

Corollary 2. Let (f1, f2) be a non-affine tame automorphism of the algebra A = k{x, y}. Then there
exist i and g ∈ k{fj | j �= i} such that f̄i = ḡ.

Proof. By Theorem 2, the automorphism (f1, f2) is elementary reducible. Assume that f1 is a reducible
element of this automorphism. Then there exist g ∈ k{f2} such that deg

(
f1 − g(f2)

)
< deg(f1). This

means that f̄1 = g(f2).

5. An Analog of the Anick Automorphism

Lemma 8. Let |Δ| ≥ 2. The endomorphism δ of the algebra A = k{x, y} given as

δ(x) = x + wδ2 , δ(y) = y + wδ1 ,

where w = xδ1 − yδ2 , is an automorphism.

Proof. Assume that

f1 = x + wδ2 , f2 = y + wδ1 .

We show that k{x, y} = k{f1, f2}. It is obvious that k{f1, f2} ⊆ k{x, y}. We have

x = f1 − wδ2 , y = f2 − wδ1 .

Consequently,

w = xδ1 − yδ2 = (f1 − wδ2)
δ1 − (f2 − wδ1)

δ2 = f δ1
1 − f δ2

2 ∈ k{f1, f2}
and

x = f1 − wδ2 ∈ k{f1, f2}, y = f2 − wδ1 ∈ k{f1, f2}.
This means that k{x, y} ⊆ k{f1, f2}. It follows that δ is a surjective homomorphism.

The linear parts of f1 and f2 are equal to x and y, respectively. Consequently, f1 and f2 are differ-
entially algebraically independent. This shows that δ is injective homomorphism.

Theorem 3. The automorphism δ of the algebra A = k{x, y} is wild.

Proof. We have

f̄1 = x + xδ1δ2 − yδ22 = xδ1δ2 − yδ22 , f̄2 = y + xδ21 − yδ1δ2 = xδ21 − yδ1δ2 .

Consequently, deg(xδ21 − yδ1δ2) = 3 and deg(xδ1δ2 − yδ22 ) = 3. Note that any homogeneous element of
degree 3 of the algebra k{xδ1δ2 −yδ22} has the form a(xδ1δ2 −yδ22 ) for some a ∈ k∗. Therefore, xδ21 −yδ1δ2 /∈
k{xδ1δ2 − yδ22}, since xδ21 − yδ1δ2 = a(xδ1δ2 − yδ22 ) is impossible.

Similarly, xδ1δ2 − yδ22 /∈ k{xδ21 − yδ1δ2}.
Consequently, the automorphism δ does not satisfy the statement of Corollary 2, i.e., it is wild.
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