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A B S T R A C T

In the realm of spatio-temporal fractional dynamics in a predator–prey system, we investigate fractional solitary
wave-like solutions using the conformable space–time fractional coupled diffusion equation. To achieve this
goal, we utilize the fractional derivative wave transformation approach to convert the conformable space–
time fractional coupled nonlinear partial differential equations into equivalent ordinary differential equations.
Subsequently, employing the

(

𝐺′

𝐺

)

expansion technique, we obtain exact solutions for the transformed coupled
ordinary differential equations. With the aid of these solutions and the fractional wave transformation, we
construct three distinct fractional solitary wave-like solutions, namely kink-type, periodic, and rational for
the considered fractional diffusive predator–prey model. Furthermore, we explore the dynamic attributes of
prey and predator population densities by manipulating the space and time fractional-order parameters. Our
findings reveal a significant insight: an increase in the fractional order can lead to system stabilization and
foster the coexistence of both prey and predator species.
1. Introduction

In biology and computational ecology, the significance of interac-
tions between predator and prey species is widely recognized. When it
comes to modeling, numerous factors influence the overall dynamics
of a predator–prey system,1–5 including birth, the predator’s attack po-
tency, death, delayed maturation, and more. In addition, the functional
response is recognized as a crucial factor in elucidating interactions
between prey and predator populations. Over recent decades, various
functional responses have been developed to explore and characterize
specific interactions between the species under examination.6–9 An
intriguing aspect involves the exploration of spatial distribution pat-
terns using diffusion models, even in the absence of environmental
heterogeneity.10–14 The establishment of explicit solutions is vital for
gaining a deeper understanding of the underlying processes.

On account of the variability of populations and environments, the
fractional prey–predator system containing diffusion is of consider-
able significance.6–8,14,15 This fractional diffusive predator–prey (DPP)
equation is extremely significant, so a lot of researchers have become
intrigued by identifying analytical solutions to it. As a result, numerous
integration tools have been used to acquire this equation’s wave solu-
tions. Recently, utilizing two different kinds of fractional derivatives,
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conformable and Caputo, wave solutions to the time-fractional DPP
model have been studied.16 One novel fractional-order DPP model
with group defense is proposed in,6 for example, using the Caputo
fractional derivative. Aside from their physical significance, close-form
solutions for partial differential equations that are nonlinear aid nu-
merical solvers in stability analysis by allowing them to compare the
preciseness of the outcomes.8,9,17 An attempt has been developed an
efficient numerical solution for computing the predator–prey model’s
functional response (Beddington–DeAngelis) and fractional derivatives
with a Mittag-Leffler kernel.17 In Ref. 8, a variation of the Kolmogorov
model called the Gauss-type predator–prey model was investigated.
This model included the Allee effect and the Holling type-III func-
tional response. In Ref. 15, a novel formulation of a spatial predator–
prey model, incorporating Leslie–Gower and Holling type II schemes
in the context of prey social behavior, has been systematically in-
vestigated. The study explores the impact of predator harvesting on
predator–prey interactions in the presence of prey social behavior,
employing a reaction–diffusion system subjected to Neumann bound-
ary conditions.18 Additionally, the asymptotic analysis of spatially
heterogeneous viral transmission, considering cell-to-cell transmission,
virus nonlocal dispersal, and intracellular delay, has been examined.19
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Furthermore, the global threshold dynamics of a hybrid viral infection
model has been studied, assuming all parameters are spatially depen-
dent. The study establishes the existence and uniqueness of a global
solution, demonstrating the presence of a global compact attractor.20

The study and modeling of a wide range of phenomena in var-
ous fields have significantly benefited from the framework of non-
inear fractional partial differential equations (NFPDEs).21–26 Due to
he complexity of the fractional calculus, there are no exact analytical
rocedures that can provide exact results for NFPDEs. Establishing
eliable and consistent numerical and analytical techniques for solving
hysically and biologically relevant FPDEs has also required a lot of re-
earch. However, many computational and analytical approaches were
eveloped as a result of the pursuit for reliable fractional solutions in
arious investigations,16,25,27–32 such as fractional sub-equation, Sine–
ordon expansion, first integral, variational iteration, exponential func-

ion techniques, and so on. It is ultimately of significant interest to
nvestigate fractional derivative partial differential equations and look
or their solitary wave solutions because of the vital role of solitary
aves in numerous fields of research.33–38

In addition to established fractional derivative definitions such
as Riemann–Liouville, Caputo, He, local, and Grunwald–Letnikov for
NFPDEs,25,26 Khalil et al. introduced a novel and straightforward
definition known as the conformable fractional derivative.39 This new
definition has garnered considerable interest among mathematicians
and physicists. More recently, Abdon Atangana proposed the beta-
derivative as an extension of these fractional derivatives.40 While the
aforementioned derivatives can be seen as a logical progression from
classical derivatives rather than fractional derivatives, Chen introduced
a fractal derivative based on the fractal paradigm.41 In recent decades,
research on fractal derivatives has flourished due to their intrigu-
ing properties. Moreover, fractal derivatives offer a more accessible
means to theoretically investigate certain physical models. A notable
advantage of fractal derivatives is their ability to be straightforwardly
transformed into their traditional form using transformation analogues
akin to fractional complex transforms.42 Consequently, a novel (3+1)-
imensional modified Zakharov–Kuznetsov equation, incorporating the
onformable fractional derivative, has been formulated.43 Using an

innovative approach known as the fractal semi-inverse variational
method, several new types of fractal traveling wave solutions have
been successfully derived.43 The modified KdV–Zakharov–Kuznetsov
equation has been subject to a fractal modification, and its fractal
generalized variational structure has been established through the
semi-inverse method.44 Moreover, a new fractal modified equal width-
Burgers equation, involving the local fractional derivative, has been
derived.45 Utilizing the Mittag-Leffler function method, traveling wave
solutions for this equation have been obtained. In addition to this, sig-
nificant efforts have been directed towards deriving localized solutions
for fractional nonlinear Schrödinger-type equations.17,30,32,35,37

In the development of the above stated investigations, in this work,
we focus on the fractional two-coupled partial differential equations
that model the population dynamics of prey and predator, where the
fractional derivative is defined in the sense of conformable. We here
intend to study the solitary wave dynamics in this model. For this,
we transform the model under investigation into two coupled ODEs
through fractional derivative wave transformation. We construct two
sets of three different solitary wave-like solutions, namely kink type,
periodic, and rational, for the later equation by utilizing the

(

𝐺′

𝐺

)

expansion method. We then show the dynamical nature of solitary-like
profiles in three different situations. Furthermore, we also investigate
the impact of the fractional order on the dynamics of the prey–predator
model. We find that the fractional order/derivative power affect the
stability and behavior of the population dynamics. Specifically, we
observe that the fractional order plays a significant role in determining
the coexistence or extinction of the prey and predator species. In accor-
dance with our findings, increasing the fractional order may regulate
the system while favoring the cohabitation of predator and prey species.
2

The structure of the paper is as follows. In Section 2, we consider
the conformable space–time fractional DPP model and construct the
solitary wave solutions through the

(

𝐺′

𝐺

)

expansion method. We then
obtain three different solitary wave solutions, namely kink-type, pe-
riodic, and rational, for two different wave velocities. Furthermore,
we also investigate the dynamical features of the considered model
by varying the space-fractional and time-fractional derivative power
parameters. Finally, we conclude our findings in Section 3.

2. Fractional diffusive predator–prey model and its solitary-wave
like solutions

The fractional coupled diffusion equation is a mathematical model
that extends classical diffusion equations by incorporating fractional
derivatives. It is used to describe the dynamics of multiple entities
undergoing diffusion in a system, where the movement of particles
is influenced not only by their immediate surroundings but also by
historical positions and interactions.2–4 The fractional derivatives in-
troduce memory and non-locality into the model, allowing for a more
accurate representation of complex diffusion processes. This equation
finds applications in various scientific fields, including physics, biology,
and materials science, where multi-scale modeling and the charac-
terization of anomalous diffusion behavior are essential. Numerical
simulations and analytical techniques are employed to solve the frac-
tional coupled diffusion equation, revealing emergent phenomena and
providing insights into the intricate dynamics of diffusing entities in
complex systems.10,11 Considering these advancements in fractional
coupled diffusion phenomena, this study investigates the conformable
space–time fractional diffusive predator–prey system.

In this work, we consider the conformable space–time fractional
diffusive predator–prey (CSTFPP) system, which is of the form

𝜙𝜇
1𝑡 = 𝜙𝜆

1𝑥𝑥 − 𝑠𝜙1 + (1 + 𝑠)𝜙2
1 − 𝜙3

1 − 𝜙1𝜙2,
𝜇
2𝑡 = 𝜙𝜆

2𝑥𝑥 + 𝑟𝜙1𝜙2 − 𝑏𝜙2 − 𝛿𝜙3
2, (2.1)

here 𝜙1 = 𝜙1(𝑥, 𝑡) and 𝜙2 = 𝜙2(𝑥, 𝑡) denote the prey and predator
ensities, respectively. The derivative 𝐷𝜇

𝑡 is the time-fractional and 𝐷𝜆
𝑥𝑥

s the space-fractional derivative, where 𝜆 and 𝜇 (0 < 𝜇, 𝜆 ≤ 1) repre-
ent the space and time-fractional order parameter/derivative power.
he parameters 𝑠, 𝛿, 𝑟 and 𝑏 are positive constants. The biological

nterpretation of Eq. (2.1) and the presence of parameters has been
xplained in-detail, one may refer.4,5 In order to explore the dynamical
haracteristics of the model (2.1), we convert the above mentioned
odel into the following system by presuming the connections between

he parameters (𝑏 = 𝑠 and 𝑟 + 1
√

𝛿
= 𝑠 + 1), that is

𝜙𝜇
1𝑡 = 𝜙𝜆

1𝑥𝑥 − 𝑠𝜙1 + (𝑟 + 1
√

𝛿
)𝜙2

1 − 𝜙3
1 − 𝜙1𝜙2

𝜙𝜇
2𝑡 = 𝜙𝜆

2𝑥𝑥 + 𝑟𝜙1𝜙2 − 𝑠𝜙2 − 𝛿𝜙3
2. (2.2)

t is noticed that numerous features of the predator–prey system have
een investigated by constructing traveling, kink-type, and periodic
ave solutions through different integration schemes,4,5,46–48 when 𝜇

and 𝜆 are equal to one.
Next, we intend to study the impact of space and time fractional-

order parameters on the solitary wave solutions, we first derive them in
the considered model (2.2). For this, we adopt the fractional derivative
wave transformation to the CSTFDPP system. The following definition
and properties are pertinent to this study39,40,42:

Definition. For a function 𝑔 ∶ (0,∞] → R, the conformable fractional
derivative of 𝑔 of order 𝜇 is defined by

𝐷𝜇𝑔(𝑡) = lim
𝑔(𝑡 + 𝜖𝑡1−𝜇) − 𝑔(𝑡)

. (2.3)
𝑡 𝜖→0 𝜖
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These newly defined fractional derivative has a number of well-
known features, including:

Let 𝜇 ∈ (0, 1] and 𝑘, 𝑙 be the 𝜇 differentiable at point 𝑡 > 0, then we
have

• 𝑔𝜇 (𝑎 𝑘 + 𝑑 𝑙) = 𝑑 𝑔𝜇 (𝑘) + 𝑑 𝑔𝜇 (𝑙) , ∀ 𝑎, 𝑑 ∈ R.
• 𝑔𝜇 (𝑡𝑞) = 𝑞𝑡𝑞−𝜇 , ∀ 𝑞 ∈ 𝑅.
• 𝑔𝜇 (𝑎) = 0, for all constant 𝑘 (𝑡) = 𝑎.
• 𝑔𝜇 (𝑘 𝑙) = 𝑘 𝑔𝜇 (𝑙) + 𝑙 𝑔𝜇 (𝑘).
• 𝑔𝜇

(

𝑘
𝑙

)

= 𝑙 𝑔𝜇 (𝑘)−𝑘 𝑔𝜇 (𝑙)
𝑙2

.

• If, in addition to 𝑘 is differentiable, then 𝑔𝜇 (𝑘) (𝑡) = 𝑡1−𝜇 𝑑𝑘
𝑑𝑡 .

By considering the above-mentioned definition and properties with
the fractional derivative wave transformation, we first convert the
CSTFDPP Eqs. (2.2) into its traditional form. To do so, we consider the
transformation30,39,42 as

𝜙1(𝑥, 𝑡) = 𝜙1(𝜉), 𝜙2(𝑥, 𝑡) = 𝜙2(𝜉), 𝜉 = 𝑥𝜆

𝜆
− 𝑐 𝑡

𝜇

𝜇
. (2.4)

Plugging this transformation (2.4) into CSTFDPP Eqs. (2.2), we arrive

𝜙′′
1 + 𝑐𝜙′

1 − 𝑠𝜙1 +

(

𝑟 + 1
√

𝛿

)

𝜙2
1 − 𝜙3

1 − 𝜙1𝜙2 = 0,

𝜙′′
2 + 𝑐𝜙′

2 + 𝑟𝜙1𝜙2 − 𝑠𝜙2 − 𝛿𝜙3
2 = 0. (2.5)

It is essential to highlight that the two coupled ordinary differential
Eqs. (2.5) can be investigated through various analytical methods
discussed in the introduction section. Among the available analytical
approaches, we opt for the

(

𝐺′

𝐺

)

-expansion method to solve Eqs. (2.5)
ue to its simplicity and efficiency. By applying this method to (2.5),
e consider a polynomial in (𝐺

′

𝐺 ) of the following form:

1(𝜉) =𝑝𝑚

(

𝐺′

𝐺

)𝑚
+ 𝑝𝑚−1

(

𝐺′

𝐺

)𝑚−1
+ 𝑝𝑚−2

(

𝐺′

𝐺

)𝑚−2
+⋯ ,

2(𝜉) =𝑞𝑛

(

𝐺′

𝐺

)𝑛
+ 𝑞𝑛−1

(

𝐺′

𝐺

)𝑛−1
+ 𝑞𝑛−2

(

𝐺′

𝐺

)𝑛−2
+⋯ , (2.6)

with 𝐺 = 𝐺(𝜉) denotes the solution of the following equation as
′′ + 𝛼𝐺′ + 𝛽𝐺 = 0. (2.7)

In Eqs. (2.6) and (2.7), the parameters 𝑝𝑚, 𝑝𝑚−1, 𝑝𝑚−2, 𝑞𝑛, 𝑞𝑛−1, 𝑞𝑛−2,
and 𝛽 are constants which can be calculated below. To determine

he values of 𝑚 and 𝑛, we substitute the presumed solutions (2.6) into
q. (2.5). After simplifying the yield equation, we determine that 𝑚 = 1
nd 𝑛 = 1. Considering these values in (2.6), they are reduced in the
ollowing equations, such as

1(𝜉) = 𝑝1

(

𝐺′

𝐺

)

+ 𝑝0, 𝜙2(𝜉) = 𝑞1

(

𝐺′

𝐺

)

+ 𝑞0, 𝑝1, 𝑞1 ≠ 0. (2.8)

Substituting the above expressions (2.8) and their first and second order
derivatives in (2.5), we come up with the following equations with
𝐺′′(𝜉) and 𝐺′′′(𝜉), that is

𝑝1𝐺′(𝜉)
(

𝐺′(𝜉)
(

𝑝1
(

−3
√

𝛿𝑝0 +
√

𝛿𝑟 + 1
)

−
√

𝛿
(

𝑐 + 𝑞1
)

)

− 3
√

𝛿𝐺′′(𝜉)
)

√

𝛿𝐺(𝜉)2

+
𝑝1

(

𝑐𝐺′′(𝜉) + 𝐺(3)(𝜉)
)

+ 𝐺′(𝜉)
(

2𝑘𝑝1𝑝0 + 𝑝0
(

2𝑝1
√

𝛿
− 𝑞1

)

− 𝑝1
(

𝑞0 + 𝑠
)

− 3𝑝1𝑝20
)

𝐺(𝜉)

−
𝑝1

(

𝑝21 − 2
)

𝐺′(𝜉)3

𝐺(𝜉)3
+ 𝑝0

(

𝑘𝑝0 +
𝑝0
√

𝛿
− 𝑝20 − 𝑞0 − 𝑠

)

= 0, (2.9)

𝐺′(𝜉)
(

𝑝0𝑞1𝑟 + 𝑝1𝑞1𝑟 − 3𝛿𝑞31 − 𝑞1𝑠
)

𝐺(𝜉)
+

𝐺′(𝜉)2
(

𝑝1𝑞1𝑟 − 3𝛿𝑞31
)

𝐺(𝜉)2

−
𝑐𝑞1𝐺′(𝜉)2

𝐺(𝜉)2
𝑐𝑞1𝐺′′(𝜉)
𝐺(𝜉)

−
𝛿𝑞31𝐺

′(𝜉)3

𝐺(𝜉)3
−

2𝑞1𝐺′(𝜉)𝐺′′(𝜉)
𝐺(𝜉)2

+
𝑞1𝐺(3)(𝜉)
𝐺(𝜉)

+ 𝑞1𝐺
′(𝜉)

(

2𝐺′(𝜉)2

𝐺(𝜉)3
−

𝐺′′(𝜉)
𝐺(𝜉)2

)

+ 𝑝0𝑞1𝑟 − 𝛿𝑞31 − 𝑞1𝑠 = 0. (2.10)
3

By replacing 𝐺′′(𝜉) = −𝛼𝐺′(𝜉) − 𝛽𝐺(𝜉) and 𝐺(3)(𝜉) = 𝛼2𝐺′(𝜉) + 𝛼𝛽𝐺(𝜉) −
𝜇𝐺′(𝜉) in the above equations and reorganizing with different powers
of

(

𝐺′

𝐺

)

, we obtain

[2𝑝1 − 𝑝31]
(

𝐺′

𝐺

)3

+

[

3𝑝1𝛼 − 𝑐𝑝1 + 𝑟𝑝21 +
𝑝21
√

𝛿
− 3𝑝21𝑝0 − 𝑝1𝑞1

]

(

𝐺′

𝐺

)2

+

[

(2𝛽 + 𝛼2)𝑝1 − 𝑐𝛼𝑝1 − 𝑠𝑝1 + 2𝑟𝑝0𝑝1 +
2𝑝1𝑝0
√

𝛿
− 3𝑝20𝑝1 − 𝑝1𝑞0 − 𝑝0𝑞1

]

(

𝐺′

𝐺

)

+

[

𝛽𝑝1𝛼 − 𝑐𝛽𝑝1 − 𝑠𝑝0 + 𝑟𝑝20 +
𝑝20
√

𝛿
− 𝑝30 − 𝑝0𝑞0

]

= 0, (2.11)

[2𝑞1 − 𝛿𝑞31 ]
(

𝐺′

𝐺

)3
+
[

3𝑞1𝛼 − 𝑐𝑞1 + 𝑟𝑝1𝑞1 − 3𝛿𝑞21𝑞0
]

(

𝐺′

𝐺

)2

+
[

(2𝛽 + 𝛼2)𝑞1 − 𝑐𝛼𝑞1 − 𝑠𝑞1 + 𝑟𝑝0𝑞1 + 𝑟𝑝1𝑞0 − 3𝛿𝑞20𝑞1
]

(

𝐺′

𝐺

)

+
[

𝛽𝑞1𝛼 − 𝑐𝛽𝑞1 − 𝑠𝑞0 + 𝑟𝑝0𝑞0 − 𝛿𝑞30
]

= 0. (2.12)

y setting the coefficients of different powers of
(

𝐺′

𝐺

)

to zero in the
Eqs. (2.11) and (2.12), we arrive the system of algebraic equations,
namely

2𝑝1 − 𝑝31 = 0,

3𝑝1𝛼 − 𝑐𝑝1 + 𝑟𝑝21 +
𝑝21
√

𝛿
− 3𝑝21𝑝0 − 𝑝1𝑞1 = 0,

(2𝛽 + 𝛼2)𝑝1 − 𝑐𝛼𝑝1 − 𝑠𝑝1 + 2𝑟𝑝0𝑝1 +
2𝑝1𝑝0
√

𝛿
− 3𝑝20𝑝1 − 𝑝1𝑞0 − 𝑝0𝑞1 = 0,

𝛽𝑝1𝛼 − 𝑐𝛽𝑝1 − 𝑠𝑝0 + 𝑟𝑝20 +
𝑝20
√

𝛿
− 𝑝30 − 𝑝0𝑞0 = 0, (2.13)

𝑞1 − 𝛿𝑞31 = 0,

𝑞1𝛼 − 𝑐𝑞1 + 𝑟𝑝1𝑞1 − 3𝛿𝑞21𝑞0 = 0,

2𝛽 + 𝛼2)𝑞1 − 𝑐𝛼𝑞1 − 𝑠𝑞1 + 𝑟𝑝0𝑞1 + 𝑟𝑝1𝑞0 − 3𝛿𝑞20𝑞1 = 0,

𝑞1𝛼 − 𝑐𝛽𝑞1 − 𝑠𝑞0 + 𝑟𝑝0𝑞0 − 𝛿𝑞30 = 0.

wo sets of constant values, namely 𝑝1, 𝑝0, 𝑞1, 𝑞0 and 𝑐 are obtained by
olving the sets of algebraic expressions (2.13) as

ase (𝑖) 𝑝1 = ±
√

2, 𝑞0 =
𝑝0
√

𝛿
, 𝑞1 = ±

√

2
𝛿
, 𝑐 = ∓ 𝑟

√

2
, 𝛼 = ∓

𝑟 − 2𝑝0
√

2
,

𝑠 =𝑘𝑝0 − 𝑝20 + 2𝛽. (2.14)

Case (𝑖𝑖) 𝑝1 = ±
√

2, 𝑞0 =
𝑝0
√

𝛿
, 𝑞1 = ±

√

2
𝛿
, 𝛼 = ±

𝑝20 + 2𝛽
√

2𝑝0
, (2.15)

𝑐 = ± 1
√

2

(

2𝑟 − 3𝑝0 +
6𝛽
𝑝0

)

, 𝑠 = −
(𝑝20 − 2𝛽)(−𝑟𝑝0 + 𝑝20 − 2𝛽)

𝑝20
.

t is verified that these four set of parameters separately satisfy the
lgebraic equations given in (2.13). Utilizing the above set of constants,
ne can derive the explicit solitary wave solutions of the fractional DPP
odel under investigation (2.2).

By considering the first set of constants and substituting them into
he Eq. (2.8), the solutions turn out to be of the form

1(𝜉) = ±
√

2
(

𝐺′

𝐺

)

+ 𝑝0, 𝜙2(𝜉) = ±
√

2
𝛿

(

𝐺′

𝐺

)

+
𝑝0
√

𝛿
, (2.16)

here 𝐺(𝜉) is the solution of (2.7). With regard to the values of 𝛼 and
, it is established that Eq. (2.7) admits three distinct types of solutions,
uch as

Case 1: 𝛼2 − 4𝛽 > 0

(𝜉) = 𝑒(−𝛼∕2)𝜉
(

𝑐1 sinh

√

𝛼2 − 4𝛽
𝜉 + 𝑐2 cosh

√

𝛼2 − 4𝛽
𝜉

)

, (2.17)

2 2
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Fig. 1. Density distribution of prey (𝜙1) and predator (𝜙2) using the kink-like solution (2.20) for (2.2). For time and space fractional parameter 𝜇 = 1 and 𝜆 = 1, (a) prey density;
(b) contour plot of (a); (c) predator density; (d) contour plot of (c). (e) and (g) prey and predator density for various time-fractional parameter (𝜇), (f) and (h) prey and predator
density for various space-fractional parameter (𝜆) at 𝑡 = 1. The other parameters are 𝑝0 = 3.75, 𝑐1 = 0.5, 𝑐2 = 1.5, 𝛽 = 1.5, 𝛿 = 5 and 𝑟 = 3.
Case 2: 𝛼2 − 4𝛽 < 0

𝐺(𝜉) = 𝑒(−𝛼∕2)𝜉
(

𝑐1 cos

√

4𝛽 − 𝛼2

2
𝜉 + 𝑐2 sin

√

4𝛽 − 𝛼2

2
𝜉

)

, (2.18)

Case 3: 𝛼2 − 4𝛽 = 0

𝐺(𝜉) = (𝑐1 + 𝑐2𝜉)𝑒(−𝛼∕2)𝜉 . (2.19)

When we replace (2.16) with (2.17)–(2.19), we obtain the solitary wave
(kink-type, periodic and rational) solutions, namely

Case 1: kink-type solitary wave solutions when 𝛼2 − 4𝛽 > 0

𝜙1(𝜉) = ±
√

2

⎛

⎜

⎜

⎜

− 𝛼
2
+ 𝛾

⎛

⎜

⎜

⎜

𝑐1 cosh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sinh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

𝑐 sinh
[

𝛾
(

𝑥𝜆 − 𝑐 𝑡𝜇
)]

+ 𝑐 cosh
[

𝛾
(

𝑥𝜆 − 𝑐 𝑡𝜇
)]

⎞

⎟

⎟

⎟

⎞

⎟

⎟

⎟

+ 𝑝0,
4

⎝ ⎝

1 𝜆 𝜇 2 𝜆 𝜇
⎠⎠
𝜙2(𝜉) = ±
√

2
𝛿

⎛

⎜

⎜

⎜

⎝

− 𝛼
2
+ 𝛾

⎛

⎜

⎜

⎜

⎝

𝑐1 cosh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sinh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

𝑐1 sinh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cosh
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
,

(2.20)

where 𝛾 =
√

𝛼2−4𝛽
2 , and 𝑐 = ∓ 𝑟

√

2
.

Case 2: periodic wave solution when 𝛼2 − 4𝛽 < 0

𝜙1(𝜉) = ±
√

2

⎛

⎜

⎜

⎜

− 𝛼
2
+ 𝛾

⎛

⎜

⎜

⎜

−𝑐1 sin
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cos
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

𝑐 cos
[

𝛾
(

𝑥𝜆 − 𝑐 𝑡𝜇
)]

+ 𝑐 sin
[

𝛾
(

𝑥𝜆 − 𝑐 𝑡𝜇
)]

⎞

⎟

⎟

⎟

⎞

⎟

⎟

⎟

+ 𝑝0,
⎝ ⎝

1 𝜆 𝜇 2 𝜆 𝜇
⎠⎠
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Fig. 2. Density distribution of prey (𝜙1) and predator (𝜙2) using the periodic wave solution (2.21) for (2.2). For 𝜇 = 1 and 𝜆 = 1, (a) prey density; (b) predator density. (c) and
(e) prey and predator densities for various 𝜇, (d) and (f) prey and predator densities for various 𝜆 at 𝑡 = 1. The other parameters are 𝑝0 = 1.75, 𝑐1 = −0.09, 𝑐2 = 2.1, 𝛽 = 3, 𝛿 = 5
and 𝑟 = 1.65.
𝜙2(𝜉) = ±
√

2
𝛿

⎛

⎜

⎜

⎜

⎝

− 𝛼
2
+ 𝛾

⎛

⎜

⎜

⎜

⎝

−𝑐1 sin
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cos
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

𝑐1 cos
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sin
[

𝛾
(

𝑥𝜆

𝜆
− 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
,

(2.21)

where 𝛾 =
√

4𝛽−𝛼2
2 , and 𝑐 = ∓ 𝑟

√

2
.

Case 3: rational solution when 𝛼2 − 4𝛽 = 0

𝜙1(𝜉) = ±
√

2

⎛

⎜

⎜

⎜

⎝

𝑐2

𝑐1 + 𝑐2
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

) − 𝛼
2

⎞

⎟

⎟

⎟

⎠

+ 𝑝0,

𝜙2(𝜉) = ±
√

2
𝛿

⎛

⎜

⎜

⎜

⎝

𝑐2

𝑐1 + 𝑐2
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

) − 𝛼
2

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
, (2.22)

where 𝑝0 = − 2
√

2𝛽+𝑟
2 , 𝑐 = ∓ 𝑟

√

2
, 𝑐1, and 𝑐2 are arbitrary constants.

Fig. 1 shows the qualitative nature of the density of prey (𝜙1)
and predator (𝜙2) using the fractional kink-type solitary wave solu-
tion (2.21) for CSTFDPP Eq. (2.2). We first consider the integer-order
derivative case, that is, 𝜆 = 𝜇 = 1. The kink-type solitary wave
profiles are shown in Figs. 1(a) and 1(c) for prey and predator pop-
ulations, respectively. The corresponding contour plots are represented
in Figs. 1(b) and 1(d). We can see that density of both populations
increases slowly and rapidly, and finally they reach saturation level.
5

The resultant profile is similar to the kink solitary wave profile. Next,
we consider the fractional-derivative scenario, that is 𝜆 and 𝜇 < 1. The
outcomes are illustrated in Figs. 1(e)–(h). While varying the time and
space-fractional derivative power, we can see the phase shift in the
density profile for prey (𝜙1) which is displayed in Figs. 1(e) and 1(f)
and for predator (𝜙1) as shown in Figs. 1(g) and 1(h), respectively. It
is important to note here that we almost recover the fundamental kink-
type solitary wave profile for both the parameter 𝜆 and 𝜇 approaches
to unity.

In Figs. 2(a)–(b), we plot the periodic wave solution (2.21) of (2.2)
for 𝜇 and 𝜆 equal to 1. These figures reveal the characteristics of the
usual periodic wave profile. We then vary the fractional derivative
powers (𝜇 and 𝜆) in the same solution (2.21). Fig. 2(c) represents
the different prey densities (periodic wave profile) for different time
derivative power values and fixing 𝜆 = 0.99. Also, we vary the space
fractional-order parameter (𝜇) and fix 𝜇 = 0.99, the resultant structure
is demonstrated in Fig. 2(d). By varying the 𝜆 and 𝜇 values, we can
attain different propagation characteristics of periodic profile in the
CSTFDPP model under investigation. Similarly, we also obtain the same
dynamical features in the predator density which can be visualized in
Figs. 2(e)–(f).

Fig. 3 illustrates the rational/singular solitary wave profiles for prey
and predator population densities using the solution (2.22). When both
parameters 𝜆 and 𝜇 are fixed at 1, the typical features of a rational
solitary wave profile are obtained for prey and predator density, as
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Fig. 3. Density distribution of prey (𝜙1) and predator (𝜙2) using the rational solution (2.22) for (1). For 𝜇 = 1 and 𝜆 = 1, (a) prey density; (b) predator density. (c) and (e) prey
and predator densities for various 𝜇, (d) and (f) prey and predator densities for various 𝜆 at 𝑡 = 1. The other parameters are 𝑐1 = 0.1, 𝑐2 = 3, 𝛽 = 3, 𝛿 = 2 and 𝑟 = 0.05.
seen in Figs. 3(a) and (b), respectively. In the scenario where the
space-fractional derivative power 𝜆 is set to 0.99 while varying the
parameter 𝜇, there are no notable changes in the resulting profiles.
This observation is evident in Fig. 3(c) for prey density and Fig. 3(e)
for predator density. Similarly, with 𝜇 = 0.99 and varying values of 𝜆,
rational solitary wave profiles for prey and predator density are plotted,
as shown in Figs. 3(d) and 3(f), respectively.

Now substituting the second set of constants (2.15) into Eq. (2.16),
we get the following three traveling wave solutions (kink-type, periodic
and rational) of the CSTFDPP system as

Case 1: 𝛼2 − 4𝛽 > 0

𝜙1(𝜉) = ±
√

2
(

−𝛼
2

+ 𝛾

⎛

⎜

⎜

⎜

⎝

𝑐1 cosh
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sinh
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

𝑐1 sinh
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cosh
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+ 𝑝0,

𝜙2(𝜉) = ±
√

2
𝛿

(

−𝛼
2

+ 𝛾

⎛

⎜

⎜

⎜

⎝

𝑐1 cosh
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sinh
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

𝑐1 sinh
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cosh
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
,

6

(2.23)
where 𝛾 =
√

𝛼2−4𝛽
2 , and 𝑐 = ± 1

√

2

(

2𝑟 − 3𝑝0 +
6𝛽
𝑝0

)

.

Case 2: 𝛼2 − 4𝛽 < 0

𝜙1(𝜉) = ±
√

2
(

−𝛼
2

+ 𝛾

⎛

⎜

⎜

⎜

⎝

−𝑐1 sin
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cos
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

𝑐1 cos
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sin
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+ 𝑝0,

𝜙2(𝜉) = ±
√

2
𝛿

(

−𝛼
2

+ 𝛾

⎛

⎜

⎜

⎜

⎝

−𝑐1 sin
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 cos
[

𝛾
(

𝑥𝜆

𝜆 − 𝑐 𝑡𝜇

𝜇

)]

𝑐1 cos
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

+ 𝑐2 sin
[

𝛾
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

)]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
,

(2.24)

where 𝛾 =
√

4𝛽−𝛼2
2 , and 𝑐 = ± 1

√

2

(

2𝑟 − 3𝑝0 +
6𝛽
𝑝0

)

.

Case 3: 𝛼2 − 4𝛽 = 0

𝜙1(𝜉) = ±
√

2

⎛

⎜

⎜

⎜

𝑐2

𝑐1 + 𝑐2
(

𝑥𝜆 − 𝑐 𝑡𝜇
) − 𝛼

2

⎞

⎟

⎟

⎟

+ 𝑝0,
⎝

𝜆 𝜇
⎠
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Fig. 4. Density distribution of prey (𝜙1) and predator (𝜙2) using the kink-like solution (2.23) for (2.2). For 𝜇 = 1 and 𝜆 = 1, (a) prey density; (b) predator density. (c) and (e)
prey and predator densities for various 𝜇, (d) and (f) prey and predator densities for various 𝜆 at 𝑡 = 1. The other parameters are 𝑝0 = 5, 𝑐1 = 0.2, 𝑐2 = 0.5, 𝛽 = 4, 𝛿 = 2 and 𝑟 = 3.
𝜙2(𝜉) = ±
√

2
𝛿

⎛

⎜

⎜

⎜

⎝

𝑐2

𝑐1 + 𝑐2
(

𝑥𝜆
𝜆 − 𝑐 𝑡𝜇

𝜇

) − 𝛼
2

⎞

⎟

⎟

⎟

⎠

+
𝑝0
√

𝛿
. (2.25)

where 𝑝0 =
√

2𝛽, and 𝑐 = ± 1
√

2

(

2𝑟 − 3𝑝0 +
6𝛽
𝑝0

)

.

We proceed to discuss the characteristics of the second set of solitary
waves by examining the solutions provided in Eqs. (2.23)–(2.25) for the
CSTFDPP model (2.2). Figs. 4(a)–(b) illustrate the fundamental features
of the kink-type solitary wave profiles for prey and predator density
using the solution (2.23) with 𝜆 = 𝜇 = 1. From a biological perspective,
these profiles can be interpreted as both population densities experi-
encing a sudden increase and reaching a saturation level. By varying
the time and space-fractional derivative parameters in (2.23), different
dynamical properties in prey and predator densities are observed. For
instance, when 𝜆 = 0.99 is fixed, and 𝜇 varies from 0 to 1, distinct
propagation features of the kink solitary wave profile for prey density
are depicted in Figs. 4(c) and (e). Additionally, a noticeable phase shift
in the density profiles is observed when altering the value of 𝜇 from
0.25 to 0.999. Furthermore, when 𝜇 is held constant at 0.99 and 𝜆 is
varied from 0.25 to 0.7, the resulting profiles become almost flattened,
and as 𝜆 approaches 1, a kink-like solitary wave profile emerges. This
observation is illustrated in Figs. 4(d) and 4(f) for prey and predator
population density, respectively.
7

The density profiles for prey and predator populations, depicted in
Fig. 5, are plotted as functions of time and spatial fractional derivative
powers utilizing the solution (2.24). In Figs. 5(a)–(b), the usual periodic
wave features are observed for prey and predator density when 𝜇 =
𝜆 = 1. Variations in the periodic profile for prey density are illustrated
in Figs. 5(c) and 5(e) by manipulating the time fractional derivative
power. Similarly, changes in the predator density profile or periodic
wave are noted by adjusting the space fractional derivative power
parameter 𝜆, as shown in Figs. 5(d) and 5(f).

Fig. 6 presents the qualitative nature of rational-type solitary wave
profiles for prey and predator populations using the rational solution
provided in (2.25). For the settings 𝜆 = 𝜇 = 1, the corresponding density
profiles for prey and predator are displayed in Figs. 6(a) and 6(b), re-
spectively. Variations in the rational solitary wave profile are observed
when adjusting the space and time fractional derivative powers, as
shown in Figs. 6(c)–6(f).

3. Conclusion

In this work, we have constructed solitary wave solutions for the
conformable fractional space–time diffusive predator–prey system. We
have transformed the fractional model into its counterpart in the in-
teger model by employing fractional derivative wave transformation.
Using the

(

𝐺′ )

expansion method, we have obtained three different
𝐺
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Fig. 5. Density distribution of prey (𝜙1) and predator (𝜙2) using the solution (2.24) for (2.2). For time and space fractional parameter 𝜇 = 1 and 𝜆 = 1, (a) prey density; (b)
predator density. (c) and (e) prey and predator densities for various 𝜇, (d) and (f) prey and predator densities for various 𝜆 at 𝑡 = 1. The other parameters are 𝑝0 = 5, 𝑐1 = 0.15,
𝑐2 = 2.1, 𝛽 = 4 and 𝑟 = 3.65.
solitary wave solutions, namely kink-type, periodic, and rational, for
two different cases for the transformed two coupled ordinary differ-
ential equations. By substituting these constructed solutions into the
fractional derivative wave transformation, we have deduced the space–
time fractional solitary wave solutions. We have then analyzed the
various characteristics of prey and predator densities by tuning the
space and time fractional order parameters/derivative powers. Our
results reveal that when we fix the space and time-fractional derivative
powers to unity, we observe the fundamental characteristics of solitary
wave profiles. Additionally, we have observed phase shifts, singular-
ities, and variations in the amplitude in the density profiles. These
findings can carry significant implications for understanding population
dynamics in ecological systems and for developing effective control
strategies.

The methods presented in this paper can be applied to investi-
gate other NFPDEs, specifically the new (3+1)-dimensional fractional
fourth-order nonlinear equation, the (2+1)-dimensional Boussinesq
equation, and the (3+1)-dimensional Kudryashov–Sinelshchikov equa-
tion. This involves utilizing classical soliton molecules solutions of
these equations, which have been constructed in Refs. 49–51. The
outcomes are anticipated to offer new insights and inspiration for
the advancement of fractal theory in physics. Moreover, as a poten-
tial avenue for future research, the current theoretical study can be
8

readily extended to explore higher-order solitons, breathers, and rogue
waves.52–54 This extension would involve considering combined spatial
and longitudinally varying dispersion and nonlinear effects, as well
as introducing new forms of PT-symmetric potentials. This broader
investigation aims to unveil potential applications in optical systems.
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Fig. 6. Density distribution of prey (𝜙1) and predator (𝜙2) using the rational solution (2.25) for (2.2). For time and space fractional parameter 𝜇 = 1 and 𝜆 = 1, (a) prey density;
(b) predator density. (c) and (e) prey and predator densities for various 𝜇, (d) and (f) prey and predator densities for various 𝜆 at 𝑡 = 1. The other parameters are 𝑐1 = 1.25,
𝑐2 = 5.75, 𝜇 = 1.5, 𝛿 = 2 and 𝑘 = 0.03.
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