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ABSTRACT
Over the past decade, global industrial and construction growth has underscored the impor-
tance of safety. Yet, accidents continue, often with dire outcomes, despite numerous safety-
focused initiatives. Addressing this, this article introduces a novel approach using YOLOv8, a
rapid object detection model, for recognizing personal protective equipment (PPE). This
method, leveraging computer vision (CV) instead of traditional sensor-based systems, offers
an economical, simpler and field-friendly solution. We established the Color Helmet and Vest
(CHV) and Safety HELmet dataset with 5K images (SHEL5K) datasets, comprising eight object
classes like helmets, vests and goggles, to detect worker-worn PPE. After categorizing the
dataset into training, testing and validation subsets, diverse YOLOv8 models were assessed
based on metrics including precision, recall and mAP50. Notably, YOLOv8x and YOLOv8l
excelled in PPE detection, particularly in recognizing person and vest categories. This innova-
tive CV-driven method promises real-time PPE detection, fortifying worker safety on con-
struction sites.
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1. Introduction

In the last 10 years, there has been some significant
growth in the industrial and construction sectors all
over the world. Safety is now a major priority and
yet, accidents keep occurring there and are often
undetected until it is too late. Injuries, regardless of
the severity, can have a huge impact on the worker,
their family and the project’s timeline and its budget.
Consequently, various initiatives have been introduced
in recent years to enhance job site safety and efficiency.
Furthermore, these initiatives are becoming smarter and
more innovative than ever before. According to the
Committee on Labour, Social Protection and Migration
of the Ministry of Labor and Social Protection of the
Population of the Republic of Kazakhstan, there were
workplace accidents at the end of 2021 that resulted
in injuries to 1465 workers, of which 200 were fatal

(https://kz.kursiv.media/2022-01-29/v-kazakhstane-rabo-
chie-kalechatsya-na-proizvodstve-v-tri-raza-chasche-
chem/).

Several contributing factors can lead to accidents
in the workplace, such as an employee’s unaware-
ness and inexperience, inadequate safety training,
not properly using PPEs, not having a safety officer
in hazardous areas and malfunctioning machinery.
Working in any industry carries inherent risks of acci-
dents and injuries. These risks range from falls from
ladders and structures, electrocution, being struck
by moving machinery or falling materials, getting
caught in equipment, and much more – each depend-
ing on the specific work environment. Preventing
accidents in the workplace can be achieved by dili-
gently following safety protocols and regulations.
This could include offering employees suitable safety
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training, strictly enforcing PPE compliance, performing
regular maintenance checks on work machines, mark-
ing danger areas and appointing a safety supervisor
for each risky area. Despite the authorities’ ongoing
efforts to enhance workplace safety, managing such
safety remains a complex task that necessitates man-
ual intervention. This complex endeavor requires con-
tinuing due diligence and constant attention in order
to give everyone the protection they deserve.
Although the use of PPE can prevent workplace acci-
dents and injuries, some workers still neglect to wear
protective gear when working. This not only jeop-
ardizes their safety, but it also has a negative
impact on company productivity and leads to finan-
cial losses. The timely identification of workers not
utilizing PPE is crucial for maintaining a safe pro-
duction environment. This is usually done manually
by examining surveillance footage, however, AI-
driven solutions are being developed to automate
this process and detect unsafe human behavior more
efficiently and accurately.

For a project or venture to be successful, prioritiz-
ing the safety and well-being of employees is pertin-
ent. Regular assessments by relevant authorities
should take the physical and mental health of
employees into account to ensure their optimal per-
formance and satisfaction. Mishaps or accidents can
easily lead to prolonged complications or possible
failures for both parties involved. Potential risks,
however, can be better understood and managed
through careful examination of multiple factors that
are difficult to assess manually. To reduce the chan-
ces of accidents, an AI-assisted approach is necessary
for efficient risk prediction.

Currently, PPE detection can be divided into two
distinct categories – sensor-based and vision-based.
Sensor-based methods typically use positioning
technology to identify personnel and protective
equipment. Vision-based techniques involve com-
puter vision (CV) algorithms to detect the presence
of PPE.

Initially, researchers employed sensor-based tech-
niques for PPE identification on construction sites
(Dong et al., 2015; Kelm et al., 2013). However, these
methods entailed additional expenses and posed
hazards to workers’ safety. Therefore, it was not a
practical solution, as it added extra costs to produc-
tion without supplying the desired outcome. Before
the advent of deep learning, image processing, in
conjunction with machine learning, was primarily uti-
lized to ascertain whether employees were properly
donned in their protective equipment (Fang, Ding,
et al., 2018; Park & Brilakis, 2012; Cai & Qian, 2011).

Regrettably, this approach exhibits efficacy only
when distractions in the surrounding environment
are minimal and performs suboptimally in situations
involving complex background scenes. To ensure
that the personal protective equipment (PPE) is used
properly, Zhang et al. (2015) utilized the Global
Position System (GPS) to identify workers and hel-
mets. In addition, Kelm et al. (2013) developed a
mobile Radio Frequency Identification (RFID) plat-
form to confirm compliance with PPE regulations.
Wearing RFID PPE, workers’ information can be
documented when they go through verification
gates. Regrettably, this approach exhibits efficacy
only when distractions in the surrounding environ-
ment are minimal and performs suboptimally in sit-
uations involving complex background scenes.
Although the use of this technology requires workers
to wear an extra device to send and receive data,
sensor-based helmet detection methods utilize
equipment that are not influenced by external ele-
ments such as weather, illumination and humidity.
Sensor-based approaches have the advantage of giv-
ing reliable results and making them applicable for
most construction sites. Nonetheless, such systems
require a considerable initial and long-term invest-
ment in its acquisition, installation and maintenance.
While individual sensors are relatively affordable,
installing them for every piece of PPE and each
employee accumulates costs quickly, suggesting that
scalability might be constrained. In addition to this,
traditional RFID approaches require workers to wear
an end device for connection with the network,
which adds more weight and causes discomfort.
RFID technology is being implemented to track
when an employee utilizes their PPE. This system uti-
lizes Zigbee mesh network communication to do
this (Barro-Torres et al., 2012). However, investing in
sensors and setting them up can be difficult and
expensive which makes it hard to scale up. Also,
troubleshooting (Stojanovic et al., 2020) and main-
tenance add to the complexity of the process.

Utilizing cameras to capture images of construc-
tion sites, vision-based methods afford a more com-
prehensive insight into complex areas. These
pictures can provide abundant information which
can be processed for PPE detection quickly, accur-
ately and more comprehensively (Seo et al., 2015).
Zhu et al. employed HOG to detect head features,
which were subsequently submitted to an SVM
(Support Vector Machines) for classification to dis-
cern whether individuals were wearing helmets (Zhu
et al., 2015; Park et al., 2015). Rubaiyat et al. (2016)
came up with an innovative method by combining
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HOG (Histogram of Oriented Gradients) and SVM for
human detection and Circle Hough Transform (CHT)
to detect helmets. This method has proven success-
ful in detecting both humans and helmets. Wu and
Zhao (2018 implemented K-nearest neighbors (KNN)
to pick out moving objects from videos and fed
them into convolutional neural networks (CNNs) for
categorizing of the pedestrian, head and helmet.
Pradana et al. developed a CNN-based model
(Pradana et al., 2019) to classify 12 situations, which
consisted of 5 PPE items including glasses and hel-
mets. Although experiments were conducted on
images with plain indoor backgrounds (not on actual
outdoor building sites), this might limit further adap-
tation for outdoor environments.

Region CNN (R-CNN) models are becoming the
go-to family for object recognition. This includes R-
CNN (Girshick et al., 2014), Fast R-CNN (Girshick,
2015) and Faster R-CNN (Ren et al., 2017), each suc-
cessive method offering improvements over its pre-
decessor in terms of performance. R-CNN uses a
region proposal algorithm called ‘Selective Search’ to
generate 2000 regions from an image. Subsequently,
visual descriptors are automatically extracted using
convolutional layers, with each region being classi-
fied via a one-versus-all SVM (Liu and Zheng, 2005)
classifier. Fast R-CNN was introduced to improve the
time complexity of the model. Instead of computing
visual descriptors from 2000 regions, this approach
extracts visual descriptors from the entire image first.
Subsequently, a region of interest (ROI) pooling layer
is applied to aggregate the contextual descriptions
from the concluding feature map. This is then fol-
lowed by a SoftMax layer that classifies this area.
Building upon R-CNN (Girshick et al., 2014) and Fast
R-CNN (Girshick, 2015), Faster R-CNN (Ren et al.,
2017) was developed, extending the capabilities of
the prior models. In contrast with the ‘Selective
search’ algorithm, this technology utilizes a region
proposal network (RPN) instead. As opposed to
manually extracting a limited number of regions
which may be either empty or partially include the
object, Faster R-CNN (Ren et al., 2017) uses a mini
CNN known as the RPN to learn the location of the
region in question. These region-based solutions
offer two outputs. These coordinates provide the
boundaries of the object of interest, along with its
respective class. Utilizing this data will help to iden-
tify and classify various objects. (Akbarzadeh et al.
2020) implemented two Faster R-CNN approaches to
identify violations of safety regulations. The first one
recognized human presence at the construction site
whereas the second one identified helmet and vest
use. The Faster R-CNN approach (Ren et al., 2015) is

an effective solution for detecting workers wearing
helmets under remote surveillance (Fang, Li, et al.,
2018). A study by Fan et al. (2020) compared mul-
tiple object detection algorithms and highlighted
that Faster R-CNN had the best performance for
detecting large-scale targets such as helmets.

Deep learning has emerged as the predominant
method for PPE detection, witnessing notable success
with techniques such as object detection (Li et al.,
2023). It provides incredibly accurate results with a
faster processing speed which is one of the reasons
why it is being adopted in industrial production (Wang
et al., 2020; Han et al., 2021). Vision-based methods
can be bifurcated into two categories: the conventional
approach combining image processing and machine
learning (Fang, Ding, et al., 2018; Park & Brilakis, 2012;
Cai & Qian, 2011; Li et al., 2017; Bo et al., 2019), and
the utilization of deep learning technologies, such as
object detection (Huang et al., 2021; Nath et al., 2020;
Xiong & Tang, 2021; Wang, Wu, et al., 2021; Shen
et al., 2021; Iannizzotto et al., 2021; Gallo et al., 2022;
Ferdous & Ahsan, 2022). Traditionally, image process-
ing techniques have been utilized to detect the
ROI and extract pertinent features. Following this,
machine learning methods can be employed to train
a classifier which is capable of determining if the
region is a helmet or workwear (Lowe, 2004; Dalal &
Triggs, 2005; Lienhart & Maydt, 2002). Li et al. (2017)
employed the ViBe background modeling algorithm
and a pedestrian classification framework to accur-
ately identify workers. Subsequently, they pinpointed
the head region and applied color space transforma-
tions and color feature recognition to detect helmets.
Cai and Qian (2011) developed edge images of safety
helmets from different perspectives and extracted
four directional features. To create a classifier for rec-
ognizing safety helmets versus non-safety helmets,
they modeled the feature dispersion with a Gaussian
function.

The advent of deep learning, object detection
and related technologies has propelled significant
innovations in PPE detection. Improvements such as
R-CNN (He et al., 2017) have helped break through a
bottleneck period for object detection algorithms
and have increased both speed and accuracy signifi-
cantly. Numerous object detection techniques, con-
structed on the foundation of potential boxes, have
been created and are being used for intelligent
video security purposes. The Faster R-CNN (Ren
et al., 2015) based method has proved to be effect-
ive in detecting construction workers wearing hel-
mets under remote monitoring (Fang, Li, et al.,
2018). However, while the candidate frame-based
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object detection algorithm exhibits high accuracy, it
does not perform optimally in real-time scenarios.
Consequently, numerous researchers have adopted
single-stage object detectors for recognizing safety
helmets and workwear.

Furthermore, YOLO algorithms (Redmon et al.,
2016; Redmon & Farhadi, 2017; Redmon & Farhadi,
2018) have become popular for helmet detection.
Fan et al. (2020) and Wang et al. (2020) have found
ways to enhance the YOLOv3 algorithm (Redmon
and Farhadi, 2018), particularly for industrial helmet
detection. Wang, Wu, et al. (2021) created a high-
quality dataset and used several versions of YOLO to
detect six classes of objects (helmets in four colors,
person and vest). This demonstrated that YOLOv5x is
truly effective for PPE detection. The Covid-19 health
crisis has caused a need for stricter measures to
ensure everyone is wearing the necessary PPEs. This
has resulted in various research studies that have
developed systems based on YOLO technology, cap-
able of detecting masks and gloves (Loey et al.,
2021; Protik et al., 2021; Avanzato et al., 2020). Xie
et al. (2018) carried out an evaluation of various
detection models using the same datasets. The
results showed that you only look once (YOLO) had
the highest mean average precision (mAP) (53.8%)
and the fastest speed (10 FPS), outperforming SSD
and faster R-CNN in both respects.

Table 1 shows a summary of surveyed literature
where machine vision has been used to detect PPE.

To this end, this article proposes a new method
for utilizing YOLOv8 in PPE recognition tasks. The
YOLOv8 model is employed as the main framework
for PPE detection. YOLOv8 is lightweight and fast,
requiring fewer computational resources compared
to other models. It is an improved version of previ-
ous YOLO models in terms of speed. YOLO is used
for real-time object detection. YOLOv8 is the latest
object detection model developed by ultralytics.

2. Materials and methods

Managing safety measures and ensuring compliance
on construction and production sites have become
increasingly challenging due to the extensive work-
force, complicating effective safety management and
monitoring. Consequently, this study proposes an
automatic PPE detection system, rooted in CV, cap-
able of identifying various PPE types. Employing the
Color Helmet and Vest (CHV) dataset – encompass-
ing 1330 annotated images across five classes – the
YOLOv8 architecture was applied for detection, out-
performing other object detection models and deliv-
ering satisfactory execution times. Furthermore, the
YOLOv8x model demonstrated superior mAP com-
pared to other YOLOv8 variations.

The initial YOLOv1 algorithm, unveiled in 2016,
employed a CNN for simultaneous bounding box
and object class prediction, offering rapid and effi-
cient detection but struggling with small object
detection and class limitation. Its successor, YOLOv2,
introduced in 2017, incorporated anchor boxes and
batch normalization, enhancing algorithm perform-
ance. YOLOv3, revealed in 2018, advanced the net-
work architecture and training methodology, utilizing
three different scales for object detection to adeptly
identify varying object sizes, alongside implementing
the Leaky ReLU activation function and the Darknet-
53 architecture. The 2020 edition, YOLOv4, brought
forth further advancements, such as network architec-
ture optimization, CSPNet and PANet utilization, and
new data augmentations, ensuring notable perform-
ance and accuracy alongside swift processing.
Subsequently, YOLOv5 incorporated architectural and
training alterations like adopting PyTorch and intro-
ducing different model sizes (S, M, L and X) for varied
performance and accuracy demands, alongside pio-
neering training improvements like new data aug-
mentations and AutoAugment. Released in July 2022,

Table 1. Summary of surveyed literature.
Model Goal

R-CNN To detect if a worker is not wearing a hard hat (Girshick et al., 2014; Fang, Li, et al., 2018; He et al., 2017)
Fast R-CNN To detect if a worker is not wearing a hard hat (Girshick, 2015)
Faster R-CNN To detect if a worker is not wearing a hard hat (Ren et al., 2015, 2017; Fang, Li, et al., 2018)
SSD To detect if a worker is not wearing a hard hat (Ferdous & Ahsan, 2022; Liu et al., 2016; Wu et al., 2019; Long et al., 2019)
FCN To detect if a worker is not wearing a hard hat (Xie et al., 2018; Dai et al., 2016; Park et al., 2019)
CNN-LSTM Detection of PPE (M�arquez-S�anchez et al., 2021; Ding et al., 2018)
HOG Detection of PPE compliance (Zhu et al., 2015; Park et al., 2015; Rubaiyat et al., 2016)
YOLO Detection of PPE compliance (Redmon et al., 2016)
YOLO v2 Detection of medical PPE (Loey et al., 2021)
YOLO v3 Detection of PPE compliance (Redmon & Farhadi, 2018; Avanzato et al., 2020)
YOLO v4 Real-time detection of fire and PPE (Protik et al., 2021; Bochkovskiy et al., 2020; Kumar et al., 2022; Ma et al., 2022; Ji et al., 2023)
YOLO v5 Fast detection of PPE in construction sites (Wang, Wu, et al., 2021; Alateeq et al., 2023; Kwak & Kim, 2023)
YOLO v6 To detect PPE for construction sites (Ferdous & Ahsan, 2022)
YOLO v7 Detection safe behavior like wearing safety helmets and vests along with detecting any nonsafe activities such as not wearing

protective gear is an important part of ensuring workplace safety (Shahin et al., 2023)
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YOLOv7 surpassed its predecessors in both speed and
accuracy across a 5 FPS to 160 FPS range, despite
training solely on the MS COCO dataset without pre-
trained backbone layers, and proposed numerous
architectural alterations. Lastly, YOLOv8 emerges as
the pinnacle of YOLO models for object detection,
image classification, and instance segmentation.
Developed by Ultralytics, creators of the pivotal
YOLOv5, YOLOv8 introduces numerous architectural
enhancements and improvements, notably prioritizing
developer experience compared to YOLOv5.

2.1. Data preparing

In recent years, while sensor-based systems for
detecting PPE have been developed, this study piv-
ots toward utilizing a CV-based system, owing to its
cost-effectiveness, simplicity and convenient applic-
ability in field conditions. Utilizing the CHV dataset –
originated by Wang et al. in 2021 – PPE worn by
workers, inclusive of helmets and vests in four dis-
tinct colors, alongside the individuals themselves,
were detected. However, the practicality of a CV
alarm system extends beyond merely helmet detec-
tion; head detection also holds pivotal importance,
enabling the system to identify users without hel-
mets (Wang, Wu, et al., 2021). Given the prevalent
concern regarding eye injuries among workers,
detection capabilities for protective goggles and
human heads were integrated into the CHV dataset,
culminating in the CHVG dataset, which encom-
passes eight object classes. This dataset was com-
piled through internet image searches, significantly
leaning on the prior work of Xi and Wang. Helmets,
vests, and protective goggles stand out as primary
PPE on construction sites, and their detection via CV
can play a crucial role in safeguarding workers. The
‘SHEL5K’ dataset (Wang, Yeh, et al., 2021) was also
developed with an aim to train and validate machine
learning models for the automated detection and
localization of objects in images, thereby enhancing
safety on work sites. Comprising 5000 annotated
images in the PASCAL VOC format, each image indi-
cates the object class (human or safety helmet) and
provides bounding box coordinates, thereby furnish-
ing a sturdy foundation for developing and testing
object detection algorithms.

Ensuring a strategic distribution of objects within
the SHEL5K dataset (Figure 1) among the training,
testing and validation sets is pivotal to certify that
the model is trained and evaluated on a representa-
tive data sample. Ideal distribution necessitates ran-
domness and assures representation of all classes

and subclasses in each set. The training set must
encompass sufficient data for model training, while
the testing and validation sets should be adequately
expansive to offer a reliable evaluation of the mod-
el’s performance. The data were segmented as fol-
lows: 80% for training, 10% for testing and 10% for
validation. This distribution was selected to afford
ample images for training while simultaneously
ensuring reliable model performance evaluation on
unseen data.

To ensure that all classes are well-represented in
the training set, an analysis of the distribution of
objects by class in each set was performed (Figure 2).
This is an important step in ensuring that the dataset
is properly prepared for training and that the result-
ing model can generalize well to new data.

If one class is underrepresented in the training
set, the model may not learn to recognize that class,
which can lead to poor performance on the test set.
Therefore, it is important to ensure a balanced distri-
bution of objects for each class in all sets.

2.2. Experiments with YOLOv8

In order to compare different versions of the
YOLOv8 architecture for PPE detection utilizing the
CHV and SHEL5K datasets, we explored the following
versions: YOLOv8n, YOLOv8s, YOLOv8l, YOLOv8m
and YOLOv8x. When comparing these versions of
YOLOv8, several metrics were utilized, including pre-
cision, recall, mAP at various Intersection over Union
(IoU) thresholds, and training time. These metrics
facilitate the evaluation of model performance across
different classes and assist in determining which ver-
sion is optimally suited for a particular project.
Precision assesses the frequency with which the
model accurately classifies objects, whereas recall
evaluates the number of objects the model

Figure 1. Object distribution into training, testing and valid-
ation set of SHEL5K.
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categorizes into a given class. The mAP50 and
mAP50-95 metrics illustrate the model’s efficacy in
recognizing objects in images at distinct IoU levels,
while training time reflects the model’s learning
speed across a large dataset.

Table 2 provides a comparative analysis of metrics
across different versions of the YOLOv8 architecture.
Each row of the table presents metric values for a spe-
cific object class, along with average values across all
classes. The table encompasses versions YOLOv8n
(nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l
(large) and YOLOv8x (extra-large). The results indicate
that all models achieve high accuracy and recall in
detecting PPE within images. However, the YOLOv8x
and YOLOv8l models demonstrate superior metric val-
ues, indicative of enhanced performance.

For tasks where rapid model learning from a
minimal amount of data is pivotal, YOLOv8n or
YOLOv8s may be selected due to their shorter train-
ing times. However, they manifest slightly lower
accuracy compared to other models. If high accur-
acy is paramount, then YOLOv8x or YOLOv8l might
be the optimal choices as they exhibit the highest
precision and mAP50 and mAP50-95 metrics, albeit
with lengthier training durations. For endeavors
where both training time and accuracy bear signifi-
cance, YOLOv8m might be a prudent choice, offer-
ing higher accuracy than YOLOv8n and YOLOv8s,
while also training more rapidly than YOLOv8x and
YOLOv8l.

The confusion matrices (Figure 3) delineate the
performance of various YOLOv8 models on an object

Figure 2. The per class object distribution in each CHV set.

Table 2. Metrics comparison of different YOLOv8 architectures.
Object YOLOv8n (nano)

Class P R mAP50 mAP50-95

All 0.913 0.807 0.884 0.546
Person 0.959 0.866 0.932 0.573
Vest 0.852 0.775 0.841 0.525
Blue helmet 0.947 0.731 0.857 0.513
Red helmet 0.863 0.789 0.869 0.55
White helmet 0.941 0.879 0.925 0.626
Yellow helmet 0.918 0.804 0.88 0.491

Object YOLOv8s (small)

All 0.93 0.844 0.907 0.562
Person 0969 0.88 0.938 0.588
Vest 0.884 0.813 0.88 0.531
Blue helmet 0.968 0.796 0.917 0.55
Red helmet 0.835 0.854 0.862 0.525
White helmet 0.98 0.899 0.954 0.666
Yellow helmet 0.944 0.812 0.893 0.511

Object YOLOv8l (large)

All 0.917 0.856 0.918 0.58
Person 0.928 0.872 0.933 0.954
Vest 0.876 0.789 0.874 0.549
Blue helmet 0.975 0.857 0.927 0.584
Red helmet 0.832 0.875 0.897 0.554
White helmet 0.948 0.918 0.958 0.664
Yellow helmet 0.944 0.826 0.918 0.534

Object YOLOv8x (x large)

All 0.945 0.869 0.929 0.591
Person 0.955 0.874 0.949 0.61
Vest 0.898 0.784 0.888 0.566
Blue helmet 0.999 0.878 0.935 0.588
Red helmet 0.866 0.971 0.915 0.579
White helmet 0.993 0.939 0.967 0.678
Yellow helmet 0.957 0.822 0.919 0.522
Training time 442.5ms

Object YOLOv8m (medium)

All 0.923 0.87 0.915 0.538
Person 0.949 0.905 0.945 0.606
Vest 0.855 0.807 0.867 0.543
Blue helmet 0.977 0.857 0.924 0.585
Red helmet 0.86 0.875 0.895 0.566
White helmet 0.959 0.934 0.964 0.671
Yellow helmet 0.939 0.84 0.897 0.519
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detection task across six classes: person, vest, blue
helmet, red helmet, white helmet and yellow helmet.
The true labels are presented in rows, whereas the
predicted labels are illustrated in columns.

Overall, the YOLOv8m (medium) and YOLOv8n
(nano) models demonstrate analogous performance,
each displaying an average precision of around 0.3.
The YOLOv8s (small) model performs slightly infer-
iorly, achieving an average precision of approximately
0.2, while the YOLOv8l (large) model exhibits the best
performance among all the models, with an average
precision nearing 0.4. These models manifest superior
performance in detecting the ‘person’ and ‘vest’
classes as compared to the various ‘helmet’ classes.
Analyzing the confusion matrix for YOLOv8m, it is evi-
dent that the model provides the most balanced pre-
cision-recall (PR) trade-off for all classes, with the
notable exception of the ‘blue helmet’ class. Although

the precision for this class is the highest among all
models, its recall is the lowest, indicating that the
model often overlooks objects within this class.

The ‘precision-recall’ (PR) curve, illustrated in
Figure 4, facilitates choosing the optimal evaluation
metric for the model. Displaying precision on the Y-
axis and recall on the X-axis, the PR curve enables
the determination of optimal values for both metrics,
which are found in the top-right corner.

The results reveal that the YOLOv8l (large) model
boasts the highest precision and recall values across all
classes, suggesting that it might be the optimal model
for object detection. Nevertheless, when selecting a
model for a particular use case, considerations such as
computational resources and model size should not be
overlooked.

Table 3 provides a comparative analysis between
the YOLO models utilizing the CHV and SHEL5K

Figure 3. Performance of YOLOv8m, YOLOv8n, YOLOvV8s and YOLOvV8l models.
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datasets. This table delineates the performance met-
rics of various models concerning the detection and
recognition of distinct objects. The evaluation lever-
ages precision, recall and mAP scores, which are
standard metrics in object detection tasks.

Precision, recall, and mAP stand as pivotal metrics
in evaluating the performance of object detection
models. Precision quantifies how many of the
objects identified by the model truly belong to the

target class. For instance, a high precision of 0.945
for YOLOv8x (x large) indicates that the model yields
0.065 false positives. Conversely, Recall assesses the
proportion of target class objects the model detects
relative to all objects of that class in the dataset; a
robust Recall of 0.87 implies that the YOLOv8m
(medium) model effectively identifies objects of the
target class. mAP, representing the mAP across all
classes and IoU thresholds, provides a comprehensive

Figure 4. PR curve of YOLOvV8m, YOLOv8n, YOLOvV8s and YOLOvV8l.

Table 3. Comparison results between YOLO models.
Model performance Precision Recall mAP 50

YOLOv3-tiny/SHEL5K (Otgonbold et al., 2022; Adarsh et al., 2020) 0.7695 0.4225 0.3779
YOLOv3/SHEL5K (Redmon & Farhadi, 2018; Otgonbold et al., 2022) 0.8509 0.4482 0.417
YOLOv3-SPP/SHEL5K (Zhang et al., 2020; Otgonbold et al., 2022) 0.8851 0.5848 0.5572
YOLOv4/SHEL5K (Bochkovskiy et al., 2020; Otgonbold et al., 2022) 0.925 0.7798 0.7693
YOLOv4pasp-x-mesh/SHEL5K (Bochkovskiy et al., 2020; Otgonbold et al., 2022) 0.9195 0.8036 0.7915
YOLOv5s/SHEL5K (Jocher et al., 2021; Otgonbold et al., 2022) 0.9205 0. 774 0.861
YOLOv5m/SHEL5K (Jocher et al., 2021; Otgonbold et al., 2022) 0.9251 0.7851 0.8687
YOLOv5x/SHEL5K (Jocher et al., 2021; Otgonbold et al., 2022) 0.9188 0.817 0.8826
YOLOvR/SHEL5K (Otgonbold et al., 2022; Wang, Yeh, et al., 2021) 0.9322 0.8066 0.8828
YOLOv7/CHV (Shahin et al., 2023) 0.833 0.714
YOLOv8n (nano)/SHEL5K [proposed model] 0.911 0.781 0.86
YOLOv8l (large)/SHEL5K [proposed model] 0.92 0.824 0.891
YOLOv8x (x large)/SHEL5K [proposed model] 0.92 0.832 0.896
YOLOv8m (medium)/SHEL5K [proposed model] 0.919 0.833 0.89
YOLOv8n (nano)/CHV [proposed model] 0.913 0.807 0.884
YOLOv8s (small)/CHV [proposed model] 0.93 0.844 0.907
YOLOv8l (large)/SH CHV [proposed model] 0.917 0.856 0.918
YOLOv8x (x large)/CHV [proposed model] 0.945 0.869 0.929
YOLOv8m (medium)/CHV [proposed model] 0.923 0.87 0.915
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assessment of the object detection model’s quality.
An evaluation score of 0.929, as demonstrated by
YOLOv8m (medium), underscores its aptitude to cor-
rectly classify and precisely localize objects.

Evident from the table, each successive version of
YOLO – from v3 to v8 – generally exhibits enhance-
ments across all three metrics (precision, recall,
mAP@50), signifying that algorithms and network
architectures have evolved and refined with each
iteration. Particularly, variants YOLOv8x (x large) and
YOLOv8m (medium) on the CHV dataset showcase
exemplary results across all metrics among all ver-
sions. This underscores the superior efficiency of
these models in tackling object detection tasks.
Figure 5 graphically represents the results articulated
in Table 3.

In Figure 6, recall is employed as an auxiliary axis
since its values do not surpass those in the precision
column. The main line, MAP 50, showcases the fluc-
tuations in the performance of various YOLO models.
From the MAP50 curve, it is evident that each iter-
ation of YOLO technology has brought about
enhancements, progressively improving object iden-
tification within images as technology has advanced.
Among the YOLO versions evaluated, our proposed
model, YOLOv8x (x large), demonstrates superior
performance on the CHV dataset. Specifically, it
attains the highest precision of 0.945, a recall of
0.869, and an impressive mAP of 0.929 at an IoU
threshold of 0.5.

To meticulously oversee the training evolution of
the YOLOvl model, we strategically analyzed data
pertaining to training epochs, loss values, and other
pertinent metrics on the SHEL5K validation dataset.

A visual representation of this analysis is provided in
Figure 6, which systematically delineates the pro-
gression observed in each epoch of the model.

Diving into the nuanced examination of the train-
ing curves, our focus navigates through the tracking
of the loss trajectory spanning across all training
epochs. The initial phase is characterized by an
anticipated and pronounced decline in loss values.
This sharp descent signifies the model’s adeptness at
swiftly discerning prominent patterns within the
data. Subsequently, this rapid decline morphs into a
more gradual deceleration of loss reduction, grad-
ually approaching a point of stability or equilibrium.

Discerning whether and when this equilibrium is
attained emerges as a pivotal aspect, fundamentally
assisting in determining an apt juncture to conclude
the training process. Such strategic termination of
training circumvents both, unnecessary computational
expenditure and the risk of inadvertently veering into
overfitting.

Figure 5. Comparison mean average precision 50 between models.

Figure 6. Loss trends across epochs of YOLOv1 model.
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In a further breakdown of the losses – explicitly
categorized as val/box_loss, val/cls_loss and val/dfl_
loss – on the validation dataset for object detection,
a consistent diminishing trend becomes apparent
throughout the training process. Nearing the culmin-
ation of training, these losses ostensibly stabilize or
plateau, which can be inferred as an indicator of the
model’s iterative improvements and refinements
throughout the learning process.

3. Discussion

This article presents a comparison of various versions
of the YOLOv8 architecture for detecting PPE using
the CHV dataset. The comparative analysis utilizes
metrics such as precision, recall, and mAP at differ-
ent IoU thresholds, along with training time.

The results illustrate that all models attain high preci-
sion and recall in detecting PPE in images. Nonetheless,
the YOLOv8x and YOLOv8l models exhibit superior
metric values, signifying enhanced performance.

The YOLOv8n (nano) model yields the lowest preci-
sion and recall values across all classes, indicating
potential unsuitability for more intricate object detec-
tion tasks. The YOLOv8m (medium) and YOLOv8s
(small) models showcase similar performance; how-
ever, YOLOv8m (medium) slightly edges out in preci-
sion and recall values for most classes.

In an effort to boost model performance, object
distribution within the image was derived for the
YOLOv8m (medium) model for object detection, and
the optimal location for the bounding box around
each object was determined. Names of the object
classes to be detected and recognized in the image

are presented as labels in the figure. Object distribu-
tion within the image is illustrated as a histogram,
where each column represents one class of objects,
and each row signifies an image divided into cells,
as demonstrated in the figure. A darker column indi-
cates a higher count of objects of that class situated
in the corresponding cells of the image (refer to
Figure 7).

Selecting the optimal model hinges on specific
project requirements, necessitating a thorough
evaluation to determine which model aligns best
with set criteria. If rapid learning from a minimal
data volume is imperative, YOLOv8n or YOLOv8s
may be optimal choices due to their abbreviated
training times. Conversely, if high precision is priori-
tized, YOLOv8x or YOLOv8l may emerge as the top
choices, exhibiting the highest precision alongside
mAP50 and mAP50-95 metrics, albeit with extended
training durations. When both precision and training
time are pivotal, YOLOv8m might be the model of
choice, boasting superior precision compared to
YOLOv8n and YOLOv8s while also achieving faster
training than YOLOv8x and YOLOv8l.

Further, the confusion matrix for YOLOv8m was
scrutinized. It was observed that the model proffers
the most favorable PR ratio for all classes, with ‘blue
helmet’ being an exception. Although the precision
for this class surpasses that of all other models, its
recall is the lowest, indicating a tendency for the
model to miss objects within this class. The research
findings can assist in determining the optimal
YOLOv8 model for PPE detection tasks on the CHV
dataset and offer insights into model selection based
on specific project prerequisites.

Figure 7. CHV dataset: (a) labels and (b) correlogram.
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4. Conclusion

In conclusion, the findings from our study under-
score the robust efficiency of the YOLOv8 architec-
ture in detecting PPE in images, with all models
showcasing high accuracy and recall. Notably, the
YOLOv8l (large) model demonstrated superior per-
formance across all models, achieving the highest
precision and mAP50 and mAP50-95 metrics, albeit
with extended training periods. The YOLOv8n (nano)
and YOLOv8s (small) models emerge as suitable
choices for tasks necessitating swift learning from
limited data, despite presenting slightly diminished
accuracy compared to other models. YOLOv8m
(medium), offering a balance between training dur-
ation and accuracy, stands out as an optimal choice
for scenarios where both factors are pivotal, as it sur-
passes YOLOv8n and YOLOv8s in accuracy and trains
more rapidly than YOLOv8x and YOLOv8l.

Figures 8 and 9 illustrate several commendable
results from the YOLOv8m (medium) architecture. It is
observable that the objects, even while in a densely
packed state and thus occluded, are correctly detected.
The objects, depicted in natural working poses such as
kneeling and spine-bending at various angles, are
accurately identified by the YOLOv8m (medium)
model, among others. The comparative results of all

models are accessible on GitHub (https://github.com/
NurzadaEnu/Personal-Protective-Equipment-Detection-
using-YOLOv8).

Our examination of the distribution of objects per
class in each set underscores the imperative of main-
taining a balanced distribution across all classes in
every set to forestall suboptimal performance on the
test set. The confusion matrices facilitated an evalu-
ation of the performance of various YOLOv8 models
in an object detection task across six classes. The find-
ings illuminated that the models exhibited superior
performance in detecting ‘person’ and ‘vest’ classes in
contrast to helmet classes. A more granulated analysis
of the confusion matrix for YOLOv8m disclosed that
the model offers the most advantageous PR trade-off
for all classes, with the exception of ‘blue helmet’.

In a bid to enhance the performance of the
YOLOv8m model, we ascertained the distribution of
objects within the image and determined the optimal
location for the bounding box around each object.
The resultant histogram depicts the distribution of
objects in the image, where darker columns denote a
higher concentration of objects of that class in the
corresponding image cells.

Our study proffers invaluable insights into the per-
formance of diverse YOLOv8 models in the detection

Figure 8. Several satisfactory results of the YOLOvV8m/CHV.
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of PPE and underlines the criticality of adeptly prepar-
ing datasets for model training and evaluation. The
insights derived from our findings can serve to inform
the selection of the optimal model for specific use
cases, cognizant of considerations such as computa-
tional resources and model size.

4.1. Future works

In the planning phase for advancing a methodology
concerning safety knowledge modeling, particularly
considering workers’ PPE, our intention is to cultivate a
framework that meticulously ensures the automated
assignment of safety attributes based on PPE detection
through YOLO, integrates pivotal monitoring rules to

ensure on-site worker safety, and facilitates the analysis
of PPE data. Moreover, it aims at evaluating safety
compliance, issuing timely alerts and notifications
upon safety violations, and conducting real-time moni-
toring with prompt responsive actions to mitigate any
arising risks. As a crucial aspect of our forthcoming
work, we also plan to gather data directly from actual
construction sites, which will substantively ground our
research and development, providing tangible, real-
world insights and augmenting the practical applicabil-
ity and efficacy of our proposed methodology.
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Figure 9. Several satisfactory results of the YOLOvV8m/SHELK5K.
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