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In the present paper, we take case of a complex scalar field on a Riemannian manifold and study differential 

geometry and cohomological way to construct field theory Lagrangians. The total Lagrangian of the model is proposed 

as 4-form on Riemannian manifold. To this end, we use inner product of differential (p, q)-forms and Hodge star 

operators. It is shown that actions, including that for gravity, can be represented in quadratic forms of fields of matter 

and basic tetrad fields. Our study is limited to the case of the Levi-Civita metric. We stress some features arisen within 

the approach regarding nil potency property. Within the model, Klein-Gordon, Maxwell and general relativity actions 

have been reproduced. 
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Introduction 

A cohomological approach is used to describe field theory models as a powerful instrument to reveal 

hidden symmetries and especially topological properties. The use of the theory of differential forms and 

external calculus is a feature of Einstein-Cartan’s theory [1, 2], teleparallel gravity [3] and field theories on 

symplectic manifolds [4]. We note that the action for gravitational field in general relativity introduced as a 

4-volume integral of the scalar curvature of the field, or other scalars are built from metrics and connections 

(see, for example a review work [5]). The reason for such choice is to keep invariance and follow minimal 

model set up. Similar approach is used in the gauge theory of gravity, where the covariant derivative is 

introduced by analogy with the theories of physical fields, but the action of the field itself is postulated in the 

standard form used in general relativity; see, for example, one of the first work [6].  

In our approach, we build the action based on the well-known inner product of differential forms, 

 

                                                                                                                               (1) 

 

where ∗ is the Hodge star operator. The concept of external differential forms is generalized to the objects 

defined simultaneously on the tangent and cotangent bundle and written in the antisymmetric basis, 

 

 
 

The objects are well-known and called (p, q)-forms. We introducing these and use in such a way that 

the action can be constructed in a cohomological approach. 

We use the following concepts and notations. Let  be coordinates in a certain area of the Riemannian 

manifold R
1,3

. We naturally assume that a small neighborhood of each point R
1,3

 is isomorphic to Minkowski 

space. That is, at each point R
1,3 

a local coordinate system  (a = 0,1,2,3) can be chosen, in which the 

metric takes the simple form  = diag(1,−1,−1,−1). 

Here below, we use Latin letter indices for local coordinate system and  Greek letter indices for the 

global system  on R
1,3

.Thus at each point on R
1,3

 the following elements are defined: the elementary 

interval , the elementary oriented area , volume , and 
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4-volume  form  , where  is totally antisymmetric tensor; 

. 

The relation of the differentials of the local coordinate system  with the differentials at a 

given point is determined by the coefficients  and  ( , ): 

 

,         . 

 

If we define a basis  independently at each point of the space R
1,3 

then the coefficients  and  

turn into functions of the system , . Since  is independent at different points in space, 

they can be considered as a tetrad of basis fields . These are not necessarily holonomic ones [3]. 

The space-time metric on R
1,3 

in the holonomic basis is definedin the standard way: 

. 

In the following, along with the notation and for the anti-symmetric basis with multiplication 

denoted by ∧, we will use notation  and , assuming the antisymmetric property . 

On TR
1,3

, an antisymmetric basis dual to can be introduced, which we denote as .  In this basis, 

contravariant antisymmetric tensors called here as q-forms, dual to the usual antisymmetric differential p-

forms, can be expanded. In particular, vector space can beun derstood due to isomorphism as the space of 

contravariant 1-forms . Generally,  can be treated not only as the differentials of . For 

example, one could assign it Fadeev-Popov’s ghost fields meaning; see [7] for details. In this set up, the 

fields  and  acquireghost numbers 

 

,  

 

and the total ghost number should be conserved. 

The basis for contravariant vectors is usually denoted as , as a dual to the differentials of . 

The choice of such a notation is determined by the corresponding law of the gradient transformationof the 

function . Geometrically, the main this is their transformation rules. Taking into account the 

possibility of a scalar product between basic elements on TR
1,3 

and T∗R
1,3

, it is more convenient to associate 

with the operator  rather than . In the conjugate representation,  can be associated with 

. We stress that the introduced above are the same as  but antisymmetric multiplication 

through the wedge ∧ should be used. 

1. External Calculus on Riemannian Manifold 

Let p-forms be ordinary differential antisymmetric forms defined on the cotangent bundle T∗R
1,3

. They 

can be written in a form 

 

              or                     

 

Let q-forms be contravariant antisymmetric tensors of rank q defined on a tangent bundle TR
1,3

. They 

have a form 

 

              or                 

 

Let (p, q)-forms be antisymmetric tensors with q contravariant and p covariant indices.  The tensors are 

antisymmetric with respect to the both sets of contravariant and covariant indices. Therefore, the (p, q)-forms 

defined simultaneously on the tangent TR
1,3

 and on the cotangent T∗R
1,
3 bundles and can be written as 
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There is an isomorphism between the tangent and cotangent bundles realized by metric operators 

 

, . 

 

Let’s define the generalizations of these operators , which trans-form (p, q)-forms into (q, p)-forms 

using the metric tensor due to the rule 

 

. 

 

A covariant exterior differential d that converts (p, q)-forms to (p+1, q)-forms can be defined as 

, or 

 

.                                                                                                                   (2) 

 

In particular, when it is acting on (0,1)-form  we have: 

 

. 

 

Here and after, by  is meant the Levi-Civita connection, consistent with the metric 

 

. 

 

Note that the nil potency property of the exterior differential  is preserved on the space of (p,0)-

forms. However, on the space of (0, q)-forms this property is violated. In particular, for we have 

 

 
 

where  is the Riemannian curvature tensor. 

It can be shown that the dual to d operator  that converts (p, q)-forms to (p, q+ 1)-forms can 

be represented as , or 

 

. 

 

Using the 4-form of volume  and its dual, fully antisymmetric 

contravariant tensor , we can define two types of the Hodge star 

operators: the operator ∗ which is transforming (p, q)-forms into (4−p, q)-forms in a standard way and the 

conjugate operator * converting (p, q)-forms into (p,4−q)-forms. 

The Hodge star operators ∗ and * allow us to construct the divergence operator , lowering the 

p-rank of the form by one ((p, q)→(p−1, q)), and its dual operator * * acting like (p, q)→(p, q−1). It 

can be shown that 
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.                                                                                                                   (3) 

 

Note that the operator can be derived from (2) by formal replacing . 

It is easy to check that commutators and  give the same Laplace operator (up to the 

isomorphism ). We use the term ’commutator’ both to commutators and anti-commutators assuming that 

the latter applies only for odd (p+q) rank. We now see that methods of cohomology theory (see for example 

[8]) can be applied here to a full extent. However, it is easy to verify that the commutator of conjugate 

operators (2) and (3) gives the Ricci tensor when acts at the (0,1)-form: 

 

.                                                                                                                 (4) 

 

The inner product (1) allows to build entities like usual scalar product but it has a wider scope.  In this 

paper, we are using the following formulas. For usual functions (0-forms)  and  we have 

 

,                                        (5) 

 

where  is an elementary 4-volume. 

For 1-forms  and  we have 

 

.                                                                                                        (6) 

 

 

For 2-forms  and  it follows 

 

.                                                                                           (7) 

 

2. Scalar Field 

The complex scalar field  can be considered as taking values in ’inner’ spaces attached to the 

points of R
1,3

, with a complex structure C
1 

so that , or Euclidean one R
2
 with metrics 

. In the last case, 

 

. 

 

The inner product of two complex scalar fields  and φ gives the invariant with respect to the action of 

transformation group U(1), 

 

, 

 

where the Hermitian conjugation † is acting only on the internal space. In particular, in the complex 

representation † is reduced simply to the complex conjugation and in the matrix representation to transpose. 

As it follows from (5) and (6) the inner square of the complex scalar field  and its first 

differential are 

 

, 

 

and 

. 
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This allows us to represent the action of a complex scalar field, 

 

, 

 

in the following form: 

 

.                                                                                                         (8) 

 

This action can be varied directly using properties of the inner product (see [9]) and one can get usual 

Klein-Gordon equation in the form . To turn on an interaction with external 

electromagnetic field let’s consider a basis on an ’inner’ space eA (A = 1, 2). Let’s define an internal 

connection in standard way as 

 

,                                                                                                                                   (9) 

 

with imposed local U(1) symmetry we get 

 

, 

 

where  is a generator of u(1) algebra. 

Thus, the covariant derivative , which is a variant of the Fock-Ivanenko derivative [3], acts as 

follows: 

 

. 

 

 

In the complex representation , the covariant derivative takes the form 

 

. 

 

In field theory, the covariant derivative usually includes the charge e as a characteristic of the 

interaction with the field, . Here we put e= 1 for simplicity. 

Generalization of external calculus to complex-valued forms implies the replacement . The 

consequence of this is the loss of the nilpotency property of the external differential, as occurred above for 

the covariant differential on Riemannian manifold.  Namely, on Minkowski space we have (see [9] for 

details) 

 

, 

 

where . 

Explicitly, taking into account the rule , the action of the scalar field (8) takes the usual form 

for complex scalar field interacting with exterior vector field : 

. 

 

3. The Actions of Electromagnetic and Gravitation Fields 
 

The expression (9) allows us to define the differential of the basis vector in the form 
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.                                                                                                                      (10) 

 

For double differential we have 

 

 

 

Obviously, the first term is identically equals to zero. So, we get 

 

. 

 

Taking into account the relation  and (7) we have 

 

 
 

Finally, the action of the electromagnetic field  can be rewritten in the 

terms of structure elements of tangent bundle space, 

 

. 

 

Note that the inner square of the first differentials of the basis vectors , by virtue of (10) is 

proportional to . Such term is not included in the action of charged particles and the electromagnetic 

field due to the zero-mass assumption for photons.  The action for general relativity case can be constructed 

almost in the same way, with the basis have to be taken due to (4). For basis fields  and 

.we have 

 

, 

 

where  is the scalar curvature. 

Thus, the Einstein-Hilbert action [5] for the gravitational field canbe written as 

 

. 

 

Conclusion 
 

In the present work, we demonstrated that the action for scalar, electromagnetic, and gravitation fields 

can be represented as the sum of the internal squares of the scalar field, the basis fields and their differentials, 

 

. 

 

As a final remark we note that construction of a Lagrangian as 4-form on Riemannian space imposes 

some restrictions on the acceptable forms of action of field theoretical models. 
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