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Abstract: This research focuses on developing an artificial vision system for a flexible delta robot ma‑
nipulator and integrating it with machine‑to‑machine (M2M) communication to optimize real‑time
device interaction. This integration aims to increase the speed of the robotic system and improve
its overall performance. The proposed combination of an artificial vision system with M2M commu‑
nication can detect and recognize targets with high accuracy in real time within the limited space
considered for positioning, further localization, and carrying out manufacturing processes such as
assembly or sorting of parts. In this study, RGB images are used as input data for theMASK‑R‑CNN
algorithm, and the results are processed according to the features of the delta robot arm prototype.
The data obtained from MASK‑R‑CNN are adapted for use in the delta robot control system, con‑
sidering its unique characteristics and positioning requirements. M2M technology enables the robot
arm to react quickly to changes, such as moving objects or changes in their position, which is crucial
for sorting and packing tasks. The system was tested under near real‑world conditions to evaluate
its performance and reliability.

Keywords: machine‑to‑machine communication; delta robot manipulator; artificial vision system;
RGB; MASK‑R‑CNN

1. Introduction
Presently, the widespread adoption of artificial intelligence (AI) with various robotic

systems to mimic human intelligence has triggered tremendous changes in today’s techno‑
logical environment and human activities as a whole. Over the past decades, elements of
artificial intelligence, using techniques such as machine learning, deep learning, cognitive
computing, etc., have made significant progress in creating a variety of applications and
robotic systems that can perceive, analyze, and process incoming information, including
making decisions autonomously without human intervention, in various fields such as lo‑
gistics, transport, surveillance systems, automated complexes, health care, and science [1].

The concept of applying artificial intelligence is justified as an interdisciplinary and
complex technology to create intelligent robotic systems. This is justified by the fact that it
combines different technologies that can operate as independent systems and also in com‑
bination with various Internet of Things (IoT) devices, allowing remote control of systems
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or devices throughmobile control platforms. The complexity of intelligent robotic systems
technology also lies in the integration and interaction between control, monitoring, and
automation systems, including centralized data storage and processing and production
facilities, which in turn must have properties such as self‑awareness, self‑prediction, self‑
comparison, self‑configuration, self‑service, organization of the process being performed,
and a sufficient level of sustainability without human involvement in the intelligent pro‑
duction process. This trend in the formation of intelligent robotic systems leads to the
development of new approaches to industrial production based on the process of genera‑
tion, as well as processes using AI elements of machine vision and computer vision, which
raises the relevance of research in the field of generation and detection of objects using
elements of artificial vision without human participation.

In a broadunderstanding, themain role of artificial vision inmodern intelligent robotic
systems is to interpret obtained visual data, including processes such as object recognition,
tracking, and image segmentation [2]. Currently, the effectiveness of image classification,
object detection, and segmentation algorithms strongly depends on the analysis of visual
data and its spatial patterns, including real‑time data processing. The integration of com‑
plex data acquisition systems, processing algorithms, and computational complexity re‑
quires significant time and computational resources [3].

Various image augmentation techniques can be applied to simplify the process and
prevent over‑learning. These methods include modifications such as rotating, cropping,
rotating, resizing, adding noise, random erasure, combining images, and other similar
techniques. However, most robotic systems have insufficient data storage capacity and
computational power, which makes the solution to this problem more urgent.

The combination of artificial intelligence algorithms with Internet of Things (IoT) de‑
vices is also popular. This approach is based on deployed deep or machine learning mod‑
els that allow for the processing and analysis of incoming visual data, including making
decisions collaboratively or independently without human intervention [4]. In this case,
storage in the form of a cloud server equipped with neural networks is introduced into the
Internet of Things environment to perform the functions of load balancing of visual data
for storage and processing, as well as to perform computational operations, which con‑
tributes as an assistant in analyzing the input data received from intelligent devices. This
kind of interconnection between IoT devices and various servers is defined as “machine‑
to‑machine communication” (M2M), which today is becoming more dominant than the
interconnection between a human and an intelligent device or machine.

In today’s world, artificial vision and machine‑to‑machine communication play vi‑
tal roles in the development of robotics and the automation of industrial and domestic
processes. Artificial vision, as a key component of artificial intelligence, gives robots and
automated systems the ability to perceive and analyze their surroundings using cameras,
sensors, and other devices. M2M, on the other hand, allows these systems to share data
and information, opening up new possibilities for network coordination and collaboration.
Despite significant advances in artificial vision and machine‑to‑machine communication,
many challenges in the development of intelligent robotic systems still exist for developers
and researchers.

The relevance of this study is due to several important factors that take into account
the progress of robotic systems development. First, the current trend towards the automa‑
tion of manufacturing processes and the increasing requirements for accuracy and effi‑
ciency stimulate the development of more advanced control systems for robotic systems.
Second, the application of M2M technologies greatly simplifies the integration of various
components of a robotic system, increasing its flexibility and scalability in space. Third, ad‑
vances in artificial vision and machine learning open new perspectives for creating adap‑
tive control systems that can effectively respond to changing production conditions and
automatically adjust the operation of the robotic system. In this regard, the development of
an artificial vision system for a parallel manipulator using M2M technologies is an urgent
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and promising task that can bring significant changes in the control processes of robotic
systems used in the production process.

This research aims to develop an artificial vision system for a robotic device like the
delta robot—a manipulator using machine‑to‑machine technologies. Specific objectives
of the research include studying the possibilities and advantages of M2M technologies
for delta robot manipulator operation, developing algorithms for image processing and
data analysis, and creating an intelligent control system to coordinate the actions of the
delta robotmanipulator based on the information received from the artificial vision system.
The research results can be applied in various fields, including manufacturing, medicine,
service, and education.

In the course of the research implementation, the authors review the latest trends
and achievements in the development of artificial vision systems in robotic systems using
M2M technologies. Also, this paper details the principles of the combined operation of the
artificial vision system and machine‑to‑machine communication, including their role in
the creation of autonomous robots and intelligent control systems based on the developed
prototype delta robot manipulator by the authors [5].

In [5], the authors created a robotic system consisting of a fixed and mobile platform
with three axes of freedom to move in a limited space, perform grasping operations, and
function at high speeds. Delta robot arms of this type have found wide application in
the industrial sector, in areas such as the sorting of objects/parts, assembly processes, and
other operations where fast movement in three‑dimensional space is a key factor. Today,
they are also used in medical and pharmaceutical processes, as well as in the production
of electronics and other high‑precision products.

Considering the peculiarities of the positioning of the proposed flexible robot and the
key forward and inverse kinematic parameters, the development proposed in the paper by
the authors of [5] was intended to conduct research on the creation of a machine vision sys‑
tem with an intelligent control system for its further optimal positioning and application
in sorting processes.

This research on the development of an artificial vision system for a deltamanipulator
robot includes several key steps necessary to achieve the objective:
1. Development of computer vision algorithms for object recognition and image pro‑

cessing. This stage includes the development of algorithms for processing images ob‑
tained from the camera located in the delta robot manipulator, realized by studying
algorithms for object detection, pattern detection, and motion identification. For this
purpose, this paper applies the methods of machine learning and computer vision.

2. Development of a delta robot manipulator control system. In this stage, a control
system is developed that will use image processing algorithms to control the motion
and positioning of the robot. The control system developed should be able to take
input data from the camera, process it using algorithms, and then send commands to
move the robot.

3. Integration of the artificial vision systemwith theM2M‑based robot control system to
fulfill the specified tasks. This stage involves integrating the created artificial vision
algorithm with a complex delta robot arm control system. The integration of the
systems should be able to control the robot’s motion in such a way that it can respond
to visual stimuli with a high speed and accuracy while respecting the forward and
backward kinematics of the robot’s operation.

4. Testing and debugging the artificial vision system in real robot working conditions.
This stage includes the experimental study of the delta robot manipulator.
The significance of the structure proposed by the authors, combining the artificial

vision system for the parallel manipulator with the use of M2M technologies, lies in the
significant improvement of the performance and accuracy of the parallel manipulator. The
use of an artificial vision system increases the autonomy and efficiency of the manipulator,
enhancing its ability to adapt to different conditions and tasks, considering data processing
using M2M technology.



Sensors 2024, 24, 3792 4 of 31

This research has great practical significance in the field of creating affordable mobile
robotic systems to simplify the production process in sorting parts, objects, garbage, etc.
The results obtained from the research can find application in various industries, including
manufacturing process automation.

It is also important to note that the focus of this work is on the development of an
affordable robotic system with an emphasis on the integration of low‑cost technologies
that will increase productivity and quality of themanufacturing process, reducing the time
required to complete sorting tasks and minimizing the likelihood of errors. In addition,
such a system has the ability to operate around the clock without interruption, which will
reduce personnel costs and increase overall production efficiency. As a result, the solution
proposed by the authors can help industries cope with labor shortages and improve their
competitiveness in the market.

2. Related Work
Automation of production processes using robotic systems provides many advan‑

tages in replacing the role of humans in reliable detection and rapid manipulation of vari‑
ous production processes [6]. To date, the research interest of scientists around the world
is focused on developing intelligent robotic systems that can be used in various types of
industrial and domestic activities, the effectiveness of which is confirmed by the lower con‑
sumption of resources for their maintenance and training processes. The most important
factor in the development of intelligent robots lies in ensuring high reliability and flexibil‑
ity of the system being developed, as well as in creating an effective system of adaptation
to different circumstances and requirements. In this case, the introduction of artificial intel‑
ligence into the robotic system helps developers increase productivity by reducing energy
consumption for data processing and further decreasing the time required to perform var‑
ious operations in real‑time [7,8].

This trend in the development of intelligent robotic systems is implemented using
machine learning algorithms and deep learning artificial neural networks to thoroughly
understand human behavior to solve complex tasks by robots in industrial and domestic
processes. Also, the integration of robotic systems with artificial intelligence today allows
robots to perform such complex tasks as the detection of objects, their recognition, and
segmentation by various attributes, including the processing of a large amount of datawith
further intellectual analysis to form a consistent action. In this case, the above standard
tasks related to object detection and segmentation, including the processes of their tracking,
are performed using a combination of artificial vision and machine learning [9,10].

The above integration of robotic systems with various computer vision capabilities al‑
lows scientists to create fully functional intelligent robots using a variety of algorithms and
performance parameters of artificial intelligence andmachine‑to‑machine communication.
This is due to the high increase in demand for the Internet of Things with the presence of
the application of artificial vision capabilities over the last decade in the industrial sector
to optimize image‑based inspection processes, object digitization, and object detection, as
well as to perform visual maintenance and robot calibration, including mobile navigation
of the robotic system in space [11]. It is also important to note that artificial vision meth‑
ods and algorithms play a key role in the control systems of robotic systems, as they allow
robots to interact with their environment, analyze it, and make decisions based on the in‑
formation obtained.

The artificial vision hierarchy in the implementation includes three main steps that
aim to endow the robotic system with the ability to interpret and analyze visual informa‑
tion, similar to human perception. These steps are as follows:

Image Classification: this process involves the ability of computer vision to learn and
recognize graphic images, ultimately assigning a category according to pre‑configured pre‑
set sectors or object labels, focused on certain types of objects and criteria. This process is
fundamental in the development of an artificial vision system, as the system must have
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an extensive range of images that vary according to different parameter selection criteria,
such as object shape, color, size, etc.

Object Detection: this process involves the automatic identification and finding of
the spatial location of objects using computer vision methods and machine learning algo‑
rithms, bounding box methods, as well as the identification of key points in the image.
This forms a spatial understanding of the localization of objects in the image, where a high
level of detection accuracy is required.

Segmentation: this is the process of dividing an image into several parts or segments,
where each pixel is assigned to a particular object or background category, marking the
boundaries of each object. It is based on the processes of selecting and identifying objects
or regions in an image, realized by applying pixel‑based segmentation and semantic seg‑
mentation processes. The segmentation process is an important tool in an artificial vision
system, as it enables the correct interpretation of the environment, increasing the accu‑
racy and efficiency of the recognition process. It also improves the visual understanding
of the image content by highlighting the relationship with the different elements of the
background under consideration.

Considering the hierarchy of the artificial vision system structure, the visual overview
of an artificial vision‑based robotic system combined with machine learning techniques
facilitates the kinematics of the robot, which significantly impacts its basic performance
and physical abilities.

It is important to note that target detection in a robotic system is implemented using
one‑stage or two‑stage artificial vision detection to identify and locate objects in images or
video files using various algorithms to analyze visual patterns and select objects against
the background of space [11].

Artificial vision includes many algorithms and analysis techniques depending on the
application domain and performance, such as convolutional neural networks (CNN), the
support vectormethod (SVM), feature‑based object detectors (Haar, HOG, SURF, etc.), seg‑
mentation methods (such as U‑Net, Mask R‑CNN), competitive image and keypoint detec‑
tion methods (SIFT, ORB, SURF, etc.), deep neural networks for image generation (GAN,
VAE), etc.

Also, the most commonly used CNN architectures are MobileNetV2, ResNet50, and
DenseNet121, which were applied by the authors [12] in a previous study. In this study,
the authors achieved a 2–3% increase in accuracy rates, achieving 88% for MobileNetV2,
91% for ResNet50, and 92% forDenseNet121 by adding a squeeze‑and‑excitation (SE) block
that allows the neural network to better extract important features. This study, along with
the study by the authors [13], demonstrates that the use of modern machine learning and
deep learning techniques combined with advanced neural network architectures can not
only improve the accuracy of detecting abnormal situations depending on various factors
but also significantly accelerate the data processing process.

Another study [14] achieved a 96% detection and classification accuracy using detec‑
tion transformer computer vision (DETR) to manage defects in the supply chain. The au‑
thors also improved the system’s performance through artificial intelligence algorithms to
detect defects in real‑time. However, such a system requires a significant amount of data
and computational power and also requires the consideration of many factors such as the
location of objects, lighting conditions, distance to objects, and other factors.

In their work, the authors of [15] dedicated algorithms to image processing such as
Harris, SUSAN, FAST, SIFT, and SURF, emphasizing the importance of illumination con‑
ditions in the considered space, which can ultimately reduce detection accuracy in case
of large changes in illumination levels. Despite this, a stable algorithm with a matching
accuracy that can reach over 94% has been experimentally achieved.

A new efficient feature extraction algorithm for multispectral images based on geo‑
metric algebra, GA‑ORB, is presented in [16]. Experimental results confirmed the effec‑
tiveness of the GA‑ORB algorithm, which outperforms a number of previous methods in
terms of distinguishability and reliability in extracting and matching points of interest. In
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addition, this algorithm is significantly faster in computation. Also, in the research review
article “A Review of Machine Learning and Deep Learning for Object Detection, Seman‑
tic Segmentation, and Human Action Recognition in Machine and Robotic Vision” the au‑
thors [17] emphasize key aspects of deep learning architectures in robotic vision, including
convolutional neural networks (CNN), recurrent neural networks (RNN), and generative
adversarial networks (GAN) in their framework architectures.

The above technologies arewidely used for tasks such as object detection, pose estima‑
tion, and semantic segmentation. CNNs are central to the tasks of object detection, image
classification, and scene segmentation. They efficiently extract complex features from raw
image data, enabling accurate object identification and tracking. In tasks requiring tempo‑
ral sequence analysis, RNN, particularly long short‑term memory (LSTM) networks, are
especially important. These networks are excellent at tracking moving objects and predict‑
ing future actions based on historical data. It is also important to note that artificial vision
methods and algorithms play a key role in the control systems of robotic systems, as they
allow robots to interact with their environment, analyze it, and make decisions based on
the information obtained.

No less important is the formation of the control system of the robotic system, which
requires a comprehensive approach that includes requirements analysis, design of the con‑
trol structure, selection of technologies and tools for structure development and data pro‑
cessing, as well as testing and optimization of the created structure to achieve high perfor‑
mance and reliability. In this case, the consideration of these criteria makes the delta robot
manipulator control system a powerful tool for automation and optimization of manufac‑
turing processes, providing high performance, safety, and resource savings.

The authors of [18] investigated the process of improving the motion control system
of a parallel delta robot depending on complex conditions such as high nonlinearity and
uncertainty instability. The proposed methods and approaches to create robust control of
a nonlinear delta‑parallel robot allowed for more accurate and robust control of the robot’s
motion, improving its performance and reliability in various operating environments.

Similarly, the authors of [19] applied a programmable gate array (FPGA) to develop
a control system for the delta robot with three pneumatic actuator subsystems, achieving
high accuracy in the available workspace for controlling the three‑dimensional trajectory
tracking of the delta robot.

In “Modeling, Design, and Control of a 4‑Arm Delta Parallel Manipulator Employing
Type‑1 and Interval Type‑2 Fuzzy Logic‑Based Techniques for PrecisionApplications,” the
authors of [20] created a control strategy based on Fuzzy PD and Fuzzy PID configurations.

Based on the above sources, as well as studies [21–23], the control system of a delta
robotmanipulator should allow for customization of the robot’s movements depending on
the task and working conditions. This includes motion control within a specific region of
the workspace, providing flexibility and adaptability of the robot to different factors and
conditions. It is also important when creating a control system to consider integrationwith
other automated systems and components, which allows for the creation of complete so‑
lutions for automating various processes. This increases efficiency and productivity while
minimizing energy consumption. Artificial vision methods and algorithms play a key role
in the control system of a robotic system because they allow the robot to interact with the
environment, analyze it, and make decisions based on the obtained information. The in‑
terrelation of existing methods and algorithms of artificial vision with the control system
of the robotic system allows for processing and analysis of the data received by sensors,
identifying patterns, contours, and characteristics of objects, which is the basis for decision‑
making by the robot.

Despite the diversity of a wide sector of existing artificial vision methods and algo‑
rithms, most of the authors give preference [24–28] to the CNN model, which has estab‑
lished itself as one of the most powerful and widely used methods in the field of artificial
vision. CNN algorithmmodels allow a robotic system to automatically extract hierarchical
features from images or videos, which makes them effective for classification tasks, object
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detection, segmentation, and many others. Here, the authors of [29] use software libraries
such as Tensor Flow 2, ImageAI 2.3.0., GluonCV 0.9.0, and YOLOv7 in implementing the
algorithms for target detection.

Also, in developing “A Vision‑Based Path Planning and Object Tracking Framework
for a 6‑DOFRoboticManipulator”, the authors of [30] applied a triangulation technique in a
three‑dimensional stereovision coordinate system (SVCS) with an embedded RGBmarker
system, which eventually increased the accuracy of robot path prediction up to 91.8% by
combining learning models with a color region‑tracking process and machine learning.

In creating joint identification and tracking modules in their work, researchers [31]
applied the hyper frame vision (HFV) architecture consisting of a 3D sensor. However, the
continuous process of capturing a sequence of stereo images using the camera is buffered
into a large framememory, which is energy consuming for a robotic system, which in turn
requires processing the acquired large data in real‑time.

To ensure the efficiency of the results, the authors [32,33] in their work applied the
R‑CNN, FASTER‑RCNN, and MASK‑RCNN algorithms, among which the last one has
the highest target detection accuracy of up to 89.9%, which is estimated to be the most
efficient among the considered algorithms.

Neural networks are superior to other methods and solutions in the task of object de‑
tection due to their ability to provide more accurate results in the shortest possible time
for a robotic system. An intelligent robotic system developed based on the application of
a neural network with artificial intelligence is a modern technological solution that allows
for training the system to adapt to a variety of situations, make decisions, and perform
tasks with minimal human participation, as well as to increase their performance signifi‑
cantly and the level of autonomy and accuracy of tasks. This is confirmed by the practical
achievements of the authors mentioned above.

The robotic system studied in this paper belongs to a type of delta robot manipulator
that has wide applications in manufacturing processes to perform various operations such
as parts assembly, packaging, and precise positioning of objects. When building complex
integrated robotic systems such as the delta robot arm, it is necessary to consider basic
requirements such as the following [34]:
1. High accuracy and speed of movement: delta robots must a have high accuracy and

speed of movement, so the intelligent control system must ensure fast and accurate
execution of given commands.

2. Stable, wear‑resistant design: the delta robot arm must be rigid to ensure stable and
accurate operation. The design should be strong and resistant to deformation.

3. High reliability: the control system must be robust and stable to minimize the likeli‑
hood of failure and ensure continuous operation of the manipulator.

4. Programmability and flexibility: the control system should support programming
and adjustment of the manipulator parameters for different tasks and working
conditions.

5. Safety: When designing and operating delta robots, safety measures must be taken
into account to prevent possible injuries and damage.

6. Ease of use: the control system should be intuitive and easy to use to facilitate the
operator’s work and increase the manipulator’s efficiency.

7. Ability to integrate with other systems: the control system should be compatible
and integratewith other automated systems to perform complex tasks and increase
productivity.
Based on the literature review of research in this area and the requirements, the au‑

thors propose a methodology for applying a convolutional neural network (CNN) based
the artificial vision algorithm for delta robot manipulators based on an additive RGB vi‑
sual spectrummodel. In this study, the components of the computer vision system and the
control system of the delta robot manipulator are realized using machine‑to‑machine com‑
munication using data mining techniques between electronic boards, providing effective
control behind the computer vision system and the manipulator.
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The computer vision system in this case is used to recognize objects and determine
their position and orientation in space. These data are transmitted to the electronic boards
of the delta robot control system, which perform trajectory calculations and commands to
perform the task of manipulating the object.

M2M‑based datamining techniques allow the system control process to be optimized,
taking into account various factors such as speed and accuracy of task execution, power
consumption, etc. This in turn makes it possible to improve the efficiency of the overall
system and ensure accurate and fast task completion.

In such a context, the importance of machine‑to‑machine communication is to ensure
that the data mining techniques of the delta robot control system work together with the
components of the computer vision system, which will shape the efficient execution of the
assigned tasks.

Addressing the above challenges with compliance in building complex integrated
robotic systems, the research proposed in this paper is distinctive and fills the gaps in the
following aspects:
1. This research focuses on the integration of an artificial vision systemwithmachine‑to‑

machine (M2M) communication technology, which improves real‑time device inter‑
action, enabling faster andmore accuratemanipulation of a parallel robot in response
to changes in the environment.

2. Unlike the use of simple algorithms for object recognition, the use of MASK‑R‑CNN
allows for high accuracy and detection in identification and positioning processes.

3. An important contribution is the adaptation of the data obtained fromMASK‑R‑CNN
to the delta robot control system. This takes into account the creation of unique char‑
acteristics and positioning requirements of the delta robot.

4. System testing was performed under conditions that are as close to real‑world condi‑
tions as possible. This allows for a more accurate assessment of the effectiveness and
reliability of the developed system.

5. The combination of an artificial vision system with M2M technology in this study
allows for a significant increase in the speed of operation and overall performance of
the robotic system. This metric is critical for tasks such as sorting and packing parts,
especially in dynamic or constrained environments.
The proposed solution in this study not only integrates state‑of‑the‑art technology to

create amore efficient robotic system but also provides practically applicable solutions that
can significantly improve the current methods of automating manufacturing processes.

3. Materials and Methods
The design and research of a fully functional delta robot manipulator in this paper

was carried out in four stages:
(1) Solving the kinematic problems of manipulator construction solved earlier by the au‑

thors [5] in the study, “Trajectory Planning, Kinematics, and Experimental Validation
of a 3D‑Printed Delta Robot Manipulator”.

(2) Development of the mechanical design and electronic system of the delta robot
manipulator.

(3) Creation of an artificial vision system for the prototype delta robot manipulator and
its machine‑to‑machine communication protocol.

(4) Experimental study of the created artificial vision system with M2M interactions in
the real working conditions of the delta robot manipulator.

3.1. Solution of Kinematic Problems of Delta Robot Manipulator Construction
In this study, a type of parallel robot, the delta robot, was chosen as the prototype

manipulator. The typical design of this type of delta robot is shown in Figure 1. It consists
of the following elements: two platforms, a fixed upper base (1), and a small mobile plat‑
form (8) connected by three arms. Each arm comprises two parts: the upper arm (4) rigidly
connected to the motor (3) located on the upper base, and the lower arm, which forms a
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parallelogram (5a, 5b) with so‑called universal joints (6, 7) at its corners, allowing for angle
adjustments. Each parallelogram is connected to the upper arm by a joint (16) in such a
way that its upper side always remains perpendicular to its arm and parallel to the plane
of the upper base. This configuration ensures that the movable robot platform, attached to
the lower sides of the parallelograms, will also always be parallel to the upper base. The
position of the platform can be controlled by changing the angle of rotation of the upper
arms relative to the robot base using motors.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 33 
 

 

(2) Development of the mechanical design and electronic system of the delta robot 
manipulator. 

(3) Creation of an artificial vision system for the prototype delta robot manipulator and 
its machine-to-machine communication protocol. 

(4) Experimental study of the created artificial vision system with M2M interactions in 
the real working conditions of the delta robot manipulator. 

3.1. Solution of Kinematic Problems of Delta Robot Manipulator Construction 
In this study, a type of parallel robot, the delta robot, was chosen as the prototype 

manipulator. The typical design of this type of delta robot is shown in Figure 1. It consists 
of the following elements: two platforms, a fixed upper base (1), and a small mobile 
platform (8) connected by three arms. Each arm comprises two parts: the upper arm (4) 
rigidly connected to the motor (3) located on the upper base, and the lower arm, which 
forms a parallelogram (5a, 5b) with so-called universal joints (6, 7) at its corners, allowing 
for angle adjustments. Each parallelogram is connected to the upper arm by a joint (16) in 
such a way that its upper side always remains perpendicular to its arm and parallel to the 
plane of the upper base. This configuration ensures that the movable robot platform, 
attached to the lower sides of the parallelograms, will also always be parallel to the upper 
base. The position of the platform can be controlled by changing the angle of rotation of 
the upper arms relative to the robot base using motors. 

 
Figure 1. Delta robot manipulator design model. 

In the center of the lower platform (8), the so-called robot work unit (9) is attached. 
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additionally used, which provides rotation of the working body via a boom (14). Based on 
a typical model of a delta robot (Figure 1), a 3D model of the delta robot manipulator 
shown in Figure 2 was created using SolidWorks for further printing on a 3D printer, the 
Flying Bear Ghost 4S.  

Figure 1. Delta robot manipulator design model.

In the center of the lower platform (8), the so‑called robot work unit (9) is attached.
This is a manipulator with a gripping device. If necessary, another motor (11) can be ad‑
ditionally used, which provides rotation of the working body via a boom (14). Based on a
typical model of a delta robot (Figure 1), a 3Dmodel of the delta robot manipulator shown
in Figure 2 was created using SolidWorks for further printing on a 3D printer, the Flying
Bear Ghost 4S.
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The delta robot consists of two triangular platforms, one stationary (1), and the other
movable and an end effector (4). The platforms are connected by three kinematic chains,
each consisting of two active (2) and passive arms (3) [5].

The main advantage of the developed delta robot manipulator is the high speed of
the fulfillment of set operations due to the placement of weighty motors on the base of
stationary type. In this case, the moving mechanisms are arms and the bottom platform,
which were made of light composite materials to reduce their force of inertia.

To build the prototype, the kinematic problem was solved when the desired position
for the robot arm was known. This involved determining the angle values required to
rotate the motors connected to the delta arms of the robot arm, followed by adjusting the
gripping processes and confirming their correct positioning. This process of determining
the angles for the kinematic problem is known as the inverse kinematic problem. The fixed
base of the robot and its moving platform can be represented as equilateral triangles in
Figure 3, where the angles of rotation of the robot arms concerning the base plane (angles
of rotation of the motors) are denoted as Ѳ1, Ѳ2, and Ѳ3, and the coordinates of the point
E0 located in the center of the moving platform and where the robot arm will be fixed are
(x0, y0, z0).
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Two functions are introduced to formulate the objectives:
(1) finverse(x0, y0, z0)→ (Ѳ1, Ѳ2, Ѳ3) for solving the inverse kinematic problem
(2) fforward(Ѳ1, Ѳ2, Ѳ3)→ (x0, y0, z0) for solving the forward kinematic problem.

The solution of these problems plays a key role in the operation and motion control
of the delta robot manipulator.

The importance of forward kinematic characterization lies in the processes of tra‑
jectory planning, control of the delta robot manipulator, and in the optimization of
its motion trajectory to minimize energy and time consumption. This calculation al‑
lowed us to calculate the coordinates of the robot’s end based on the rotation angle of
its components.

The inverse kinematic characterization of the delta robot in turn provides a means
of calculating the required rotation angles to move the robot to a given position. The
importance of this characterization is to ensure that the robot moves accurately to a
given position based on its final coordinates, taking into account the correction of the
joint rotation angles.
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The delta robot comprises two triangular platforms: a fixed platform (1) and a mobile
platform (2). These platforms are connected by three kinematic chains, each composed of
two links: an active link (2) and a passive link (3). The end effector (4) is affixed to the
mobile platform.

Based on a study by the authors of [5], the forward kinematics of the delta robot ma‑
nipulator allows the position of the turning elements to be determined based on the known
angular rotation. In contrast, inverse kinematics allow the necessary turning positions to
be determined to achieve a given robot position element.

3.2. Development of the Mechanical Design and Electronic System of the Delta
Robot Manipulator

To develop the mechanical design of the Delta Robot Manipulator, a 3D model was
generated using SolidWorks 3D CAD Design Software & PDM Systems 2022. The design
was carried out considering all technical requirements and functional characteristics nec‑
essary for the manipulator’s operation. Detailed drawings of all the components of the
manipulator were created using SolidWorks tools, including the frame, motors, links, and
other parts.

Additionally, a visualization of the manipulator’s operation was created using Solid‑
Works, allowing for the checking of its functionality and efficiency. The resulting 3D
model, shown in Figure 4, will be used to produce a prototype of the manipulator.
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Figure 4. 3D model of the delta robot (general view).

During the development of the Delta Robot Manipulator, the majority of the frame
connectors were 3D printed on a Flying Bear Ghost 4S 3D printer using Bestfilament PLA
0.75 mm plastic. The 3D printing process was facilitated by a Cura Ultimaker 3D slicer.
The frame elements, as depicted in Figure 5 of the delta robot arm prototype, were mod‑
eled in the FreeCad automatic design (3D) software environment. This allowed for the
determination of optimal dimensions before being printed using a 3D printer.
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Figure 5. Elements of the upper and lower platform. (a) “Upper carrier” element of the upper plat‑
form to support the gearbelt system. (b) “Carriage” element of the lower platform of the delta robot.

In general, the experimental setup consists of the following components of the main
and auxiliary devices:
‑ three Nema 17 stepper motors (42HS60‑1504‑001);
‑ MKS SBase V1.3 control boards;
‑ DRV8825 stepper drivers;
‑ Endstop mechanical switch;
‑ MKS TFT35 V1.0 touch display with a Wi‑Fi module.

The upper part of the delta robot, as shown in Figure 6, comprises a flat platform on
which manipulators or other working elements, such as the Nema 17 type stepper motors
of the brand 42HS60‑1504‑001, are mounted onto an alloy steel bracket. This bracket is
securely fixed to the fixed plate through drilled holes.
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Figure 6. Delta robot manipulator top platform. (a) “Top Holder” element of the upper platform
with the gearbelt system. (b) General view from the top of the upper platform.

A camera with a high color sensitivity is located on a movable plate connected to
Raspberry Pi by a cable to take photos or videos of the object located on the bottom surface
of the delta robot manipulator.



Sensors 2024, 24, 3792 13 of 31

In this case, the Raspberry Pi 4 (Model B) acts as a centralized controller and processor
for processing data received from a color‑sensitive camera located on a moving platform.
The Raspberry Pi is connected to this camera by a cable and is used to extend the detec‑
tion, reception, and processing functions of the camera data. After analyzing the received
data, the Raspberry Pi commands the motors of the delta robot manipulator, adjusting its
movement and positioning to perform various tasks. Additionally, the Raspberry Pi helps
interact with other components of the delta robot system to coordinate actions and solve
complex tasks, taking into account the storage and analysis of the data.

Also, stepper drivers of the DRV8825 type, as depicted in Figure 7, were used. This
type of driver is a device that configures the operating modes of the stepper motors in the
delta robot manipulator, controlling parameters such as the angle of rotation and direction
of movement.
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Figure 7. Driver type DRV8825.

The wiring diagram of the stepper motor and the control board to the DRV8825 type
driver is shown in Figure 8. In this case, it is necessary to ensure the correct connection of
the phasewires to guarantee themotor’s proper operation. To achieve this, the phasewires
of the stepper motor must be connected to the A1, A2, B1, and B2 outputs on the DRV8825
driver. Additionally, the stepper motor power wire is connected to the VMOT and GND
power terminals on the DRV8825 driver. The step (STEP) and direction (DIR) control wires
should be connected to the corresponding ports on the MKS SBase V1.3 control board.
Furthermore, the power wires (VCC, GND) are connected to the control board, and the
input signal wires (EN) are connected to the DRV8825 driver. Finally, the control board is
connected to the power supply. After completing the wiring, the motor control program
on the MKS SBase V1.3 control board can be initiated.
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Special software is utilized to control all components of the system, enabling adjust‑
ment ofmovement parameters of the steppermotors, control of the robot’s positioning, and
monitoring of its operation via the touchscreen display. This functionality is facilitated by
the proper connection of the delta robot manipulator components in the electronic circuit,
as depicted in Figure 9.
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TheMKS Sbase control board uses Smoothie firmware with the “Rotary delta” config‑
uration file, the beginning of which is shown in Figure 10. This configuration is designed
to work with nonlinear delta robots.
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3.3. Developing an Artificial Vision System for the Delta Robot Manipulator Prototype and Its
Machine‑to‑Machine Communication Protocol
3.3.1. Development of Artificial Vision System for Delta Robot Manipulator Prototype

Based on the analysis of the relatedworkmentioned in [35–38], in the context of trajec‑
tory tracking, the choice between different algorithms depends on the specifics of the task
to be performed by the delta robot manipulator. To determine the best algorithm for delta
robot manipulator trajectory tracking, it is necessary to analyze the characteristics of the
data, the accuracy and performance requirements, and the overall complexity of the task.

CNNs and DNNs (deep neural networks) are commonly used for image analysis and
pattern recognition, where the main objective involves analyzing images to track a trajec‑
tory in space. These models may be the best choice, as they are able to extract features
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from images and predict motion based on these features. However, if the system has a
small number of training examples, the recognition accuracy of CNNs can decrease signif‑
icantly. Additionally, DNNs have difficulties in interpreting results and training themodel
due to the large number of layers and parameters, which require substantial computational
resources for training and prediction. This can be problematic in robotic systems where
high‑speed tasks are required.

Simpler models like basic neural networks (NNs) may be more suitable if the data
have a simple structure and do not require deep feature analysis or high accuracy in ob‑
ject detection.

RBF (radial basis function) networks can be effective if the task requires approxima‑
tion of complex functions or deals with inaccurate information about the data. However,
this increases the data processing time.

The artificial vision system for the delta robot manipulator prototype is designed to
detect parts during the sorting process. The first step in developing the artificial vision
system for the prototype involves collecting images for training, achieved by using image
sensors to acquire image data. For prototype manipulators, the most commonly used type
of image is color images of the RGB type. Additionally, modern architectures like YOLOv8
are employed in the experimental phase of the study.

The analysis of existing variants of applying machine learning models for the forma‑
tion of artificial vision systems demonstrates the effectiveness of convolutional neural net‑
works with MASK‑R‑CNN architecture, where the number of layers varies from 5 to 50.
The application of this algorithm is one of the most effective for the process of object seg‑
mentation in images, providing the ability to select masks for instances of different objects
in photos, even when the objects partially overlap or have different sizes. The structure of
the convolutional neural network is presented in Figure 11.
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All feature maps in the convolution layer have the same dimensions, which are deter‑
mined by the following formula:

s = mS − kS + 1 (1)

s′ = mS′ − kS′ + 1 (2)
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where (s, s’) is the computed size of the convolutional map,mS is the width of the previous
map, mS’ is the height of the previous map, kS is the width of the kernel, and kS’ is the
height of the kernel.

In order to avoid non‑calibrated results, the step size can be varied from 0 to 2 relative
units when calculating the output feature size of the map.

The application of the MASK‑R‑CNN neural network architecture for the delta robot
manipulator forms the following basic processes of artificial vision elements:
‑ classification;
‑ semantic segmentation;
‑ object detection;
‑ instance segmentation.

Developing an artificial vision system using the MASK‑R‑CNN method has several
advantages over other methods and is an effective tool for creating robotic systems that
are capable of efficient real‑time image processing.

The rationale behind the application of MASK‑R‑CNN in this study is as follows:
‑ It provides accurate object detection in images, which can accurately detect object

boundaries and create masks that show the contour of each object.
‑ It can process images in real‑time, making it an excellent choice for robotics applica‑

tions where processing speed is important.
‑ It allows for simultaneous object detection, classification, and image segmentation.

This makes it a versatile tool for a variety of artificial vision applications.
‑ It is open source, making it easily accessible and easy to use.

Additionally, the application of MASK‑R‑CNN enables the automation of several
tasks related to image processing, thereby increasing the efficiency of robotic systems. The
RGB model is an additive model, where visible light is concentrated during the creation
of new colors for the image through addition. In this case, new colors are formed by the
additive mixing of red, green, and blue in variable proportions, with three stripes in red,
green, and blue colors present in these images. In this study, the architecture of theMASK‑
R‑CNN algorithm with an adaptive RGB model is illustrated in Figure 12.

For the delta robot manipulator to recognize objects in RGB‑type images, setting up
the classification code by object type is sufficient to identify the objects. In this study, the
open‑source Computer Vision Librarywas utilized as an open‑source computer vision and
image processing library. However, for data processing and verification of neural network
training results, including the optimization of imaging results, the joint operation of artifi‑
cial vision based on MASK‑R‑CNN with machine‑to‑machine (M2M) protocol is applied.
This will contribute to activating the delta robot manipulator into a mobile state. In this
study, the implementation of theMASK‑R‑CNN architecture with an adaptive RGBmodel
was carried out using the selective search algorithm. This algorithm can quickly suggest
potential image regions for further object detection based on various characteristics such
as color, texture, size, and shape.

The basic idea is to group image pixels into similar regions, which are then combined
into larger segments to map objects in the image onto the considered Ozx, Ozy, Oxy delta
robot manipulator space for further positioning.

YOLO (you only look once) technology represents an innovative approach to building
artificial vision systems that leverage deep learning and computer vision technologies for
image and video processing.

The advantages of using YOLOv8 technology for a delta robot arm include fast data
processing and a high‑speed algorithm, which allows the robot to react faster to changes
in the environment and perform various tasks at high speed. When YOLOv8 technology is
integrated with a delta robot arm, functions such as automatic recognition and positioning
of objects for further processing or assembly can be realized.
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OpenCV (Open Computer Vision Library), which provides powerful tools for image
and video processing as well as for the realization of computer vision and machine learn‑
ing, was used as a dataset. The popularity of its application is confirmed by the imple‑
mentation of various image operations such as filtering, binarization, segmentation, and
object recognition.

In this case, theOpenCV library has beenused to improve the functionality of the delta
robot manipulator. It allows for the implementation of algorithms to recognize objects in
images, determine their position and orientation, and perform automatic control of the
arm to grasp and move objects. This enables the robotic arm to move and perform tasks
efficiently and accurately.

3.3.2. Integration of Artificial Vision System with Machine‑to‑Machine
Communication Protocol

Integration of the artificial vision system with machine‑to‑machine communication
protocols can significantly expand the functionality of the delta robot manipulator in posi‑
tioning and orientation within three‑dimensional space. The use of these communication
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protocols, in combination with the artificial vision system, allows data about recognized
objects and segmented image areas to be transferred between different devices and sys‑
tems. This primarily creates a distributed control system that allows the delta robot arm to
efficiently navigate and coordinate in space as well as process a large set of real‑time data
at a high speed for target detection. The configuration of the interconnection between the
various components and devices of the delta robot arm is shown in Figure 13.
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Figure 13. Block diagram of the delta manipulator.

Here is a simplified block diagram of the delta manipulator system:
‑ Power supply: The power supply provides power to the entire system. It converts

AC power from the mains to DC power suitable for other system components.
‑ Stepper controller: The stepper controller is an important part of the system that

drives the stepper motors. It interprets the commands of the main controller (for ex‑
ample, amicrocontroller or a computer) and generates the necessary signals to control
the stepper motors.

‑ Encoder: The encoder provides feedback on the position and speed of the end effec‑
tor of the manipulator or individual joints. This feedback is important for feedback
control and precision positioning tasks. Encoders can be incremental or absolute de‑
pending on the requirements of the application.

‑ Stepper gearmotor: Stepper gearmotors are actuators that are responsible formoving
the joints of the manipulator. Stepper motors are preferred in many robotic applica‑
tions because of their precise control and ability to maintain their position without
feedback when properly controlled.
The main controller, which can be a microcontroller or a computer, sends commands

to the stepper controller depending on the desired trajectory or tasks. The stepper con‑
troller then coordinates the motion of the stepper motors based on these commands and
feedback received from the encoders to achieve the desired motion of the delta manipula‑
tor end effector.

A machine vision system for identifying and tracking the trajectory of objects usually
includes several components working together to collect, process, and analyze visual data.

‑ Camera: The camera captures images or video footage of a scene where objects are
present. The type of camera (RGB) depends on the specific requirements of the appli‑
cation, such as the need for color information or depth perception.

‑ Lens: The lens focuses light on the cameramatrix and determines aspects such as field
of view, depth of field, and focal length. Depending on the specific requirements of
the application, such as the distance from the tracked objects and the required level
of detail, different lenses can be used.

Lighting: Proper lighting is crucial for good image quality and accurate object de‑
tection. Various lighting methods can be used, including ambient lighting, LED arrays,
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or strobe lights, depending on factors such as ambient lighting conditions and reflective
properties of objects.

‑ Image processing unit: This unit processes images captured by the camera to extract
relevant information about objects in the scene. Image processing techniques can in‑
clude noise reduction, image enhancement, segmentation (to separate objects from
the background), feature extraction, and pattern recognition.

‑ An algorithm for detecting and tracking objects: Object detection algorithms identify
anddetect objects inside images or video frames. These algorithms can use techniques
such as pattern matching, edge detection, contour detection, or machine learning‑
based approaches such as convolutional neural networks (MASK‑R‑CNN) for more
complex scenarios. After objects are detected, tracking algorithms predict and update
the positions of objects in successive frames, providing trajectory tracking.

‑ Trajectory analysis and prediction: Trajectory analysis algorithms analyze patterns of
movement of objects over time to predict their future positions and trajectories. These
algorithms can use techniques such as Kalman filters, particle filters, or optical flow
analysis to estimate the velocity, acceleration, and direction of movement of an object.

‑ Feedback and management system: Trajectory information obtained from the vision
system can be used to provide feedback to a control system or a robotic platform for
real‑time decision‑making or adjustments. For example, in a robotic arm, trajectory
information can be used to adjust the position and orientation of the arm to accurately
interact with moving objects.

By integrating these components, amachine vision system can effectively identify and
track the trajectory of objects. Figure 14 shows the scheme ofmachine vision for identifying
and tracking the trajectory of objects.
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In the conducted study, a highly color‑sensitive camerawas used to capture images of
objects, with subsequent processing using software applications. The captured object data
were then transferred to Raspberry Pi. The Raspberry Pi performed data processing using
Python programming language scripts and the OpenCV library for object detection. The
processing results were then sent to the Arduino (type of Mega) through the serial port.
The Arduino, in turn, controlled the motors to move the moving mechanisms of the ma‑
nipulator based on the data received. The serial communication between the Raspberry Pi
and Arduino provided bidirectional data transfer, allowing both devices to communicate
with each other. In a typical setup, the Arduino could transmit data to the Raspberry Pi
and also receive data from it and vice versa.

The Raspberry Pi acts as the central hardware entity that processes data from the cam‑
era and controls all the working systems. It performs image analysis using Python scripts
and theOpenCV library to search for objects. It also processes data, taking images from the
camera, analyzing them to find objects, and determining the necessary actions. Based on
the results of image processing, it sends commands to theArduino to control themanipula‑
tor motors. The Arduino is responsible for directly controlling the delta robot manipulator
motors. It receives commands from the Raspberry Pi through a serial port and provides
the physical manipulator movement according to the submitted tasks. Additionally, it di‑
rectly interacts with the mechanical parts of the manipulator, including the drive motor
and moving mechanisms.

Through the serial port, the Arduino can both receive commands from the Raspberry
Pi and send back information about the state of the manipulator, allowing the system to
respond to changes in real‑time. This combination creates a flexible and powerful system
inwhich the Raspberry Pi handles the complex tasks of image analysis and logic control for
the delta robot arm, while the Arduino provides direct and efficient control of the physical
components of the arm. A block diagram of machine‑to‑machine interaction (M2M) for
artificial vision is illustrated in Figure 15.
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The robotic platform allows for predicting of the trajectory of an object based on input
data and outputting the results in a user‑friendly format. The scheme of operation of the
robotic platform for predicting the trajectory of movement is illustrated in Figure 16.
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Integration of the artificial vision systemwith the delta robot manipulator control sys‑
tem is performed throughmachine‑to‑machine communication, which is realized through
an ethernet interface designed for data exchange andprocessing between different systems.
The scheme of operation of the delta manipulator control model is illustrated in Figure 17.
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The main components and their interactions according to the control scheme shown
in Figure 17 are as follows:

Inverse Kinematics Model: Receives data from the sensors about the robot’s position
and orientation and calculates the necessary angles for the stepper motors to achieve the
given position and orientation.
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Stepper Motors: Drive the manipulator according to the calculated angles from the
inverse kinematics model.

Robot Pose: Reflects the current position and orientation of the manipulator.
Position Ref (t) and Attitude Ref (t): Define the setpoints for the manipulator’s position

and orientation to be achieved.
Error Signals (e(t)): Determine the difference between the setpoints (Position Ref(t) and

Attitude Ref(t)) and the current manipulator position and orientation values.
PI Controllers: Consist of proportional (KP, which responds to the current error) and

integral (KI, which accounts for accumulated errors over time, helping to eliminate steady‑
state errors) components, generating control signals (u(t)) to correct the error.

Control Signals (u(t)): The output signals of the PI controllers that adjust the operation
of the steppermotors tominimize errors and achieve the position and orientation setpoints.

Although PI control is a powerful method for controlling robots, it can encounter
difficulties when the Ref(t) task changes over time, especially if the changes are rapid
or unpredictable. To improve the control system, it may be necessary to add a differ‑
ential component or to use adaptive and predictive control methods. Additionally, the
control accuracy of the manipulator is highly dependent on the correctness of the inverse
kinematics model; any inaccuracies in themodel can lead to errors in the position and ori‑
entation of the manipulator. In this study, to avoid these problems, the PI controllers are
precisely tuned and optimized for specific manipulator operating conditions to ensure
stable operation.

This scheme of operation of the delta manipulator control model can be realized with
the help of software and a control room that enables the control of the movement of each
link, monitors their position and orientation, and corrects the movement to reach the de‑
sired end point.

The proposed structure setup of the developed artificial vision system using M2M
protocols provides a structured and efficient transfer of information between delta robot‑
manipulator deviceswith a high accuracy in detecting objects and concentratedpositioning
towards the detected target.

4. Experimental Study of the Delta Robot Manipulator Prototype
The assembled fully functional delta robot manipulator illustrated in Figure 18 can

find application in positioning tasks and the processes of sorting and assembling parts,
where the speed of manipulation and accuracy of object detection are important. For this
purpose, an artificial vision system for the delta robot manipulator was developed, which
is a rather complex task requiring the integration of various systems and components.
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To obtain an objective evaluation of the performance of an M2M‑based artificial vi‑
sion system for a robot manipulator in positioning tasks, an experimental study was con‑
ducted in a standardized work environment that closely resembles a production environ‑
ment. This study took into account the most important parameters that affect the target
detection process, including lighting, background, and the size and location of objects to
be positioned, in order to eliminate the influence of external factors on the results. The
total area of the roomwas 46 m2, and the distance between the upper and lower platforms
was 1 m (100 cm).

The experiments were conducted at a normal temperature of approximately 25 ◦C,
which primarily allowed the baseline performance of the system to be evaluated under
standard conditions.

To experiment with a machine learning‑based artificial vision (M2M) system for a
robot manipulator in a positioning task, it is important to consider different lighting levels,
including standard daylight, artificial lighting, and low light and shadow conditions.

Standarddaylight: 5000 lux. This lightingprovides goodvisibility and contrast, which
is important for accurate object recognition.

Artificial lighting: 2000 lux. Artificial lighting is used to create uniform illumination
of surfaces and objects.

Low light and shadows: 1500 lux. Under these conditions, lighting is insufficient to
see objects clearly, which can lead to recognition and positioning problems.

When planning an experiment, it is important to consider that each type of illumina‑
tion can affect the quality of images produced by the artificial vision system and the ability
of the robot manipulator to accurately position objects.

The developed artificial vision system for the delta manipulator robot should fulfill
the following tasks:
‑ Object detection and identification, selection of areas in the considered space;
‑ Positioning of the delta robot manipulator in space, planning of movement trajecto‑

ries, and interaction with objects.
To realize the first stage of the task, an artificial vision system was designed for the

delta robot manipulator prototype. In addition, interaction with the machine‑to‑machine
communication protocol was applied for positioning and determining motion trajectories
for object detection.

The software part of this study was implemented using a joint combination of C++23
and Python 3.9 programming languages. By introducing the coordinates of the forward
and inverse kinematics of the delta robot manipulator, a special program code that de‑
scribes the algorithm of the delta robot manipulator was written in the C++ programming
environment, and the program code for working with the artificial vision system was im‑
plemented in the Python programming environment. By applying the methods of ob‑
ject detection and recognition, the main tasks of the computer vision system were solved,
namely object detection, focusing on it, and tracking. The main parameters and properties
of the computer vision system algorithm were also written in the Python environment.

In this experimental study, the initial step of the delta robot arm operation is to de‑
termine the initial coordinates of the lower base of the manipulator in three‑dimensional
space. This is illustrated in Figure 19a, which shows the delta robot arm in the operating
state, with the main components connected. The delta robot arm then changes its position
in Figure 19b to determine the initial coordinates of the lower base and switches to the
waiting mode of pointing towards the object in the visible view of the manipulator.

Once the objects in the delta robot arm’s viewhave beendetected and segmented, LAB
color space recognition methods can be used to filter the objects based on their color. For
this purpose, in the experimental study, position transformation from the camera frame
to the delta robot arm frame in LAB color space is performed. The application of the LAB
color space recognition method with the combination of the MASK‑R‑CNN algorithm im‑
proves the accuracy and efficiency of object detection in images, especially when color is
an important feature for their identification or classification.
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Figure 19. Operating position of the delta robot arm. (a) Initial position of the delta robot arm at
startup. (b) Standby position after the initial coordinates of the lower base have been determined.

The presented software interface in Figure 20 consists of a code terminal (code algo‑
rithm for object detection and recognition), a serial terminal (reading output parameters
and results), a frame buffer (dynamic video stream, 1fps), and histograms. In the experi‑
mental study, in the LAB color space, the luminance value is placed separately from the
tone and color saturation values. Lightness in this case is given by the coordinate L, which
varies on a scale from 0 to 100; that is, from the level of the darkest to the lightest tone, the
chromatic component is formed using two Cartesian coordinates, A and B. In the experi‑
mental study, the first (A) denotes the color position in the range from green to red, and
the second (B) denotes the range from blue to yellow.
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Figure 20. Python software interface when realizing the process of determining the initial coordi‑
nates of the bottom base.

This software, with a special program code, makes it possible to realize effective work
of the computer vision system in real‑time mode due to the presence of a “Frame Buffer”
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block, with the further translation of dynamic video streams in real‑time. Also, this soft‑
ware has a block, “Histogram”,which contains dynamically time‑varyingparametric graphs.
The said graphs in the interface determine the color space valueswhen objects are detected.
The color space values determine and set the properties of the parameters of the object un‑
der investigation using the LAB method.

5. Results and Discussion
Unlike the color spaces of various types of cameras, which essentially represent a set

of hardware data for reproducing color on paper or a monitor screen (where color may
vary depending on factors such as the type of printing press, brand of ink, humidity in the
shop, or monitor manufacturer and its settings), a delta‑robot manipulator frame based
on LAB defines a color space with a high precision. Therefore, LAB is widely used in
image processing software as an intermediate color space through which data conversion
between other color spaces (e.g., from RGB scanner to CMYK) takes place. Additionally,
the special properties of LAB make it a powerful color correction tool.

Next, object detection and positioning experiments were conducted to investigate the
performance of the developed artificial vision system with M2M. During the implemen‑
tation of the experimental part of this study, a comparative analysis of the application of
the MASK‑R‑CNN algorithm architecture with the adaptive RGB and YOLOv8 models
was conducted.

The object of study as a target for detection in the experimental part is a red‑colored
circular shape with a diameter of 41mm (red, circle) and a green‑colored square of 48mm2

(green, square).
By properly positioning the delta manipulator of the robot depending on changes in

the location of the sensing object, a high accuracy and efficiency of the task can be achieved.
As shown in Figure 21, the robot reacts to changes in the environment and moves

towards the object to obtain a better view or pick it up. This is facilitated by M2M sen‑
sors and artificial vision algorithms, which enable the robot to adapt to changes and make
decisions based on the received information. Thus, it can adjust its position to perform a
specific task by moving the movable part of the arm towards the object’s location.
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Figures 22 and 23 show that training the MASK‑R‑CNN model using YOLOv8 for
50 epochs resulted in the following results on the test sample of the experimental study.
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This confirms the potential of the MASK‑R‑CNN model with YOLOv8 in object detection
for delta robot manipulator positioning, but further work is required to improve its perfor‑
mance for more real‑world applications.
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The results indicate that the MASK‑R‑CNN model using YOLOv8 is quite successful
in recognizing “red, circle” (Figure 21) and “green, square” (Figure 22) objects. The recog‑
nition accuracy is close to 80%, which is a good result. The object detection time is also
quite acceptable for real‑time use.

One of themain drawbacks of the YOLOv8model (and the previous version of YOLO)
is its sensitivity to changes in brightness and color illumination. YOLOv8, like other con‑
volutional neural network (CNN)‑basedmodels, is trained on static images that may differ
from the conditions in which the model will be used. As a result, the model’s accuracy in
object detection can significantly decrease if the illumination level or colored background
is different. Further improvements to the model can be achieved by adding more training
data, improving the model architecture, or using other methods to improve the accuracy
and speed of object detection.

The results of applying the MASK‑R‑CNN algorithm architecture with the adaptive
RGB model are shown in Figures 24 and 25, where the object is to be recognized as a red‑
colored circular shape with a diameter of 41 mm (red, circle) and a green‑colored square
of 48 mm2 (green, square).
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The nature of color detection in the LAB color space using the original image provided
an opportunity to separately affect the brightness and contrast of the image and its color.
In the experiment, it allowed us to accelerate image processing for further target detection
and provided an opportunity to speed up the process of changing themanipulator position
depending on the change in the object location.

The adapted MASK‑R‑CNN model using RGB data has the potential for use in a
variety of applications but requires further optimization work to ensure acceptable real‑
time performance.

In this experiment, the MASK‑R‑CNN model with the adaptive RGB model demon‑
strates a high object recognition accuracy. For both objects, “red, circle” and “green, square”,
significant accuracy rates of 0.905 and 0.943 are achieved, respectively. This indicates the
effectiveness of the adapted model in recognizing objects. The time taken to detect each
object was about 2.000 s. This is quite a long time and requires further optimization of
the model to reduce the processing time. Table 1 shows a comparison of the results of the
MASK‑R‑CNN algorithm models.
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Table 1. Comparison of MASK‑R‑CNN algorithm models under normal environmental conditions
(temperature 25 ◦C, illumination 5000 lux).

No. Model
Number of

Learning Epochs

Recognition Accuracy
on the Test Sample

Object Detection
Time, sec

Red,
Circle

Green,
Square

Red,
Circle

Green,
Square

1 YOLOv8 50 0.78 0.82 1.497 1.568
2 RGB 50 0.905 0.943 2.001 1.965

The main disadvantage of the YOLOv8 model can be related to its complexity and
computational resource intensity, which makes it less suitable for application on devices
with limited resources or in tasks that require high real‑time processing speeds, such as
delta robot manipulators.

The application of the LAB method based on the MASK‑R‑CNN algorithm architec‑
ture with an adaptive RGB model is more suitable for the task of a computer vision sys‑
tem related to the detection and recognition of the investigated object. The result of using
this method was a clearer definition of the boundaries of the color space of the object un‑
der study, which effectively increased the efficiency of the computer vision system tasks.
Additionally, the inter‑machine interconnectivity simplified the process of controlling the
delta‑robot manipulator, allowing for rapid movement of the manipulator towards the de‑
tected object.

The period of data processing in the experiment was not more than 1 s, but due to the
technical features of the modules used and the protocols of machine‑to‑machine commu‑
nication, the detection process varied from 1 to 2 s.

In the recognition accuracy criterion, MASK‑R‑CNN with the adaptive RGB model
provides a higher recognition accuracy under both 2000 lux and 1500 lux illumination con‑
ditions compared to YOLOv8, according to the results shown in Tables 2 and 3.

Table 2. Comparison of MASK‑R‑CNN algorithm models under normal environmental conditions
(temperature 25 ◦C, illumination 2000 lux).

No. Model
Number of

Learning Epochs

Recognition Accuracy
on the Test Sample

Object Detection
Time, sec

Red,
Circle

Green,
Square

Red,
Circle

Green,
Square

1 YOLOv8 50 0.696 0.745 2.001 2.743
2 RGB 50 0.808 0.785 2.404 2.750

Table 3. Comparison of MASK‑R‑CNN algorithm models under normal environmental conditions
(temperature 25 ◦C, illumination 1500 lux).

No. Model
Number of

Learning Epochs

Recognition Accuracy
on the Test Sample

Object Detection
Time, sec

Red,
Circle

Green,
Square

Red,
Circle

Green,
Square

1 YOLOv8 50 0.59 0.709 2.5 2.890
2 RGB 50 0.789 0.763 2.7 2.98

In terms of the detection time criterion, YOLOv8 has a faster object detection time in
both illumination conditions, even though its accuracy is lower.

The choice betweenMASK‑R‑CNN and YOLOv8 depends on the priorities of the task.
If a high recognition accuracy is required, MASK‑R‑CNN is the preferred choice. If the
speed of object detection is more important, YOLOv8 is a better choice.
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MASK‑R‑CNN is well‑suited for object segmentation in images and has a higher ac‑
curacy. It can accurately detect object boundaries and contours, which is useful for tasks
requiring very accurate object recognition. On the other hand, YOLOv8 is known for its
fast performance and can detect objects in images quickly. It is well‑suited for problems
where the speed of object detection is important.

Thus, the choice betweenMASK‑R‑CNNandYOLOv8 should be based on the require‑
ments of the task performed by the delta robot, prioritizing the importance of accuracy and
speed criteria.

The application of the LAB method, based on the MASK‑R‑CNN algorithm architec‑
ture with the adaptive RGB model, is more suitable for solving computer vision tasks re‑
lated to the detection and recognition of the object under study. The result of using this
method was a clearer definition of the boundaries of the color space of the object under
study, which effectively improved the efficiency of computer vision system tasks. Addi‑
tionally, the machine‑to‑machine interconnection simplified the process of controlling the
delta robot manipulator, allowing the manipulator to move quickly and precisely toward
the detected object.

6. Conclusions
During the first stage, the kinematics equations were derived for the construction of

the manipulator, taking into account its geometrical parameters. This made it possible to
determine the position of the lower end relative to the basic units of the manipulator.

In the second stage, the mechanical design of the manipulator was carried out, includ‑
ing material selection and strength and stiffness calculations of the parts. The electronic
control system of themanipulator was also designed, including the selection of controllers,
motors, and sensors, which contributed to the creation of the manipulator control system.

The third stage of the work involved the creation of an artificial vision system for the
manipulator through which it could interact with the environment. This system took into
account recognizing objects and coordinating the movements of the manipulator using a
machine‑to‑machine communication protocol.

In the final stage, an experimental study of a fully functional delta robot manipulator
was carried out. Its characteristics, performance, and accuracy of object detection and po‑
sitioning were tested. The results obtained helped us to determine the effectiveness and
potential of using this manipulator in various industrial and robotics applications.

In this experimental study, the nature of the delta robot manipulator workflow was
concluded as follows:

By applying the artificial vision algorithmMASK‑R‑CNN, the delta robotmanipulator
system performs the detection and classification of objects in the visible three‑dimensional
space. It then transmits the data to carry out the segmentation process, where the image
is divided into individual segments, ultimately allowing for more accurate identification
of the object and its distribution contour in space. After segmentation, the position and
orientation of the object of study are determined. In this case, the image detection analysis
determines the exact position and orientation of the detected object.

In this experimental study, the processing of received data and the transfer of visual
data between different components of the systemwere carried out using the ethernetM2M
protocol. This protocol enabled the effective implementation of manipulator control com‑
mands based on the received data from the artificial vision system and facilitated receiving
feedback on the performed operations. This, in turn, allowed for optimal generation ofmo‑
tion planning trajectories. In other words, the system plans optimal motion trajectories for
the manipulator based on data on the object’s location.

The developed system of artificial vision with the interaction of machine‑to‑machine
communication protocols for the delta robot manipulator in this study meets the above re‑
quirements and provides a high accuracy of object detection, with further motion planning
and control of the manipulator based on the processing of the received visual information.
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Such a system can be used in various industrial and automated scenarios, such as
sorting objects on a conveyor, controlling the assembly or packaging process, and other
real‑time object manipulation tasks.
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