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Copper sulfides (CuxS) with different stoichiometry are considered as prospective
cathode materials for lithium batteries owing to their large energy storage capability.
In this work, three-dimensional CuxS cathodes were synthesized via introducing
commercially available copper foam into the solution of dimethyl sulfoxide (DMSO) and
sulfur powder. The synthesis procedures were straightforward and ultrafast and did
not require additional reagents, high temperature, or long processing time and can
be considered as a facile one-step method. Copper sulfide materials with different
stoichiometry (x = 1.8, 1.96) were obtained by changing the temperature and the
residence time of the copper foam in the DMSO solution. The effects of the temperature
and time on phase and morphology of CuxS were characterized by X-ray diffraction
and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy.
Electrochemical tests resulted in a stable cyclability of Cu1.8S cathode with 100%
Coulombic efficiency and capacity of approximately 250 mAh g−1.

Keywords: lithium-ion batteries, copper foam, sulfur, one-step method, copper sulfide

INTRODUCTION

Currently, primary energy sources (i.e., fossil fuels such as oil, coal, and natural gas) are depleting
at an increasing rate; thus, energy storage devices that suggest offering both rate performance and
greater capacity are always of high interest. In addition to this, non-renewable energy sources
are responsible for environmental hazards such as “greenhouse gas” emissions and contamination
(Armaroli and Balzani, 2007). For the last three decades, lithium-ion batteries (LIBs) have been
known as one of the superior technologies to store energy and are already used in portable
electronics. Recently, LIBs made its progressive way into the field of electric vehicles, grid energy
storage, and plug-in hybrid vehicles (Chung and Sohn, 2002). However, traditional LIBs are still not
satisfying the needs for the high capacity, energy density, and, most importantly, safety aspects. For
instance, a traditional LIB cell consists of a transition metal oxide (e.g., LiCoO2) as the cathode
material and graphite as the anode material. Today, their energy density has reached its limits
of <260 Wh kg−1 and is not able to cope with the required energy demands of modern society
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(Meng et al., 2012; Manthiram et al., 2017). Furthermore,
inherent defects of LIBs such as safety concerns limit their
development, with incidents ranging from Hewlett Packard’s
recall of hundreds of thousands of laptop batteries in 2009 due
to overheating and fire, to the Samsung Galaxy Note 7 explosion
in 2017 (Liu et al., 2018). Additionally, LiCoO2 is expensive as
well as toxic (Blomgren, 2017).

Alternatively, scholars have been investigating new electrode
materials to solve these issues. Compared to conventional
candidate materials, conversion-based materials [e.g., metal
fluorides (Cabana et al., 2010; Wang et al., 2011), sulfides (Meng
et al., 2014; Lu et al., 2017), phosphides, and nitrides (Cabana
et al., 2010)] present an essential class that has not been well
researched. Conversion-based materials have been suggested for
LIBs because of their higher specific capacities and preferably
cost-effectiveness. Over the past decades, copper sulfides (CuxS)
have attracted considerable attention in the field of LIBs because
of their different valence states and stoichiometric compositions
(Chung and Sohn, 2002). The latest studies have shown that CuxS
(1 ≤ x ≤ 2) are an upcoming cathode candidate for interaction
with lithium metal (i.e., Li-CuxS, 1 ≤ x ≤ 2) with long cyclic
performance and high rate capability.

Copper sulfide is known to have five stable phases starting
from chalcocite “copper-rich” Cu2S to the covellite “copper-
deficient” CuS. The excellent properties such as high electronic
conductivity of 10−3 S cm−1 and theoretical capacities of 337–
560 mAh g−1 make them attractive electrode material for
large-scale applications in secondary lithium, magnesium, and
sodium batteries because of their abundance and inexpensiveness
(Lu et al., 2017; Xiao et al., 2018; Wang et al., 2019). It
has been reported that the electrochemical and electronic
properties of the CuxS system depend greatly on both the
Cu/S ratios and crystalline structures. An increase in the
bandgap occurs with an increase in the x value in bulk
CuxS (i.e., 1.2 eV for Cu2S, 1.5 eV for Cu1.8S, and 2.0 eV
for CuS). This implied that CuxS with the composition
closer to Cu2S will demonstrate higher electronic conductivity
than that of CuS electrodes (Grozdanov and Najdoski, 1995;
Zhao et al., 2009).

Thus far, many studies have been devoted to the synthesis
of 1–3D structured CuS and Cu2S electrodes by hydrothermal
(Tao et al., 2014), solvothermal (Han et al., 2011; Liu and Xue,
2011), microwave (Xiao et al., 2016; Yuan et al., 2016; Wang et al.,
2019), spray pyrolysis (Madarasz et al., 2001; Kalimuldina and
Taniguchi, 2016a,b), and other methods. However, only a few
have focused on the preparation of freestanding 3D structured
CuxS electrodes (Ni et al., 2013; Tang et al., 2017). In this research,
we investigate a facile way to prepare a 3D structured freestanding
cathode material at a low temperature via a straightforward
one-step method that does not require expensive apparatus and
additional chemical agents compared to the conventional and
complex ways of cathode preparation.

To develop a better battery with sufficient volumetric and
power densities, the fabrication of freestanding cathodes is being
considered as a reasonable approach. Therefore, the preparation
of freestanding CuxS with high active mass loading by an ultrafast
and low-cost method could benefit the simplification of cell

packaging configurations as binders, and current collectors can
be omitted (Zeng et al., 2015).

MATERIALS AND METHODS

Synthesis Procedure
The materials utilized in this work were commercialized copper
foam (Cu foam; MTI Corp., United States), sulfur powder
(S, LenReaktiv), and dimethyl sulfoxide (C2H6OS, DMSO;
Sigma–Aldrich, Germany). Materials were analytical grade and
were used as received without further purification. First, to
assess the solubility of S powder in DMSO, different amounts
of S powder were dissolved in 20 mL DMSO at a heating
temperature of 80◦C. It was found that more than 0.1 g of powder
cannot be fully dissolved in the solution. Afterward, an optimized
amount of 0.1 g was used in further experiments. The effect of
temperature on the formation of CuxS phases was investigated by
varying the reaction temperature from 80◦C to 110◦C with the
help of a heater while keeping the time constant at 30 s. After
finding the desired favorable temperature for the synthesis, time
was varied from 10 s to 1 min to optimize the reaction time.

In a typical synthesis procedure, 0.1 g of S powder was
weighed and added into 20 mL of DMSO solution under vigorous
stirring with a magnetic stirrer at the above-stated temperatures.
For the preparation of the copper foam, it was cut into small
rectangular pieces, washed with acetone, and dried in a vacuum
oven at 60◦C for 1 h. After the total dissolution of S powder,
the prepared copper foam pieces were soaked into the solution
as seen in Figure 1. Subsequently, blackened copper foam pieces
were then dried in a vacuum oven at 60◦C for 24 h. The masses
of the obtained CuxS active materials were calculated based on
the fact that the Cu element from the Cu foam directly reacts
with the S in the solution. First, the mass of the deposited S
was calculated by subtracting the pristine Cu foam mass from
the obtained Cu/CuxS material mass. After, the electrode’s mass
was calculated considering the molar masses of CuxS by the
cross-multiplying method.

Physical and Electrochemical
Characterizations of CuxS
Obtained CuxS materials were characterized by X-ray powder
diffraction (XRD; Rigaku SmartLab R© X-ray diffraction system,
Japan) to investigate the phases of CuxS. The scanning electron
microscope Crossbeam 540 coupled with energy-dispersive
X-ray spectroscopy (SEM-EDS; Zeiss, Germany) was employed
to observe the morphologies and distribution of separate

FIGURE 1 | Copper sulfide on Cu foam synthesis route scheme.
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components of obtained materials. CR2032 type coin cells were
assembled and tested to assess the electrochemical performances
of the synthesized electrodes. Copper foam pieces were cut into
16 mm in diameter disks and were used as cathodes without any
binders and additives in half-cells with Li metal. The mass loading
of CuxS active material varied between 8.7 and 10.4 mg cm−2,
depending on the synthesis time. Glovebox (MBraun, Germany)
was used to assemble the half-cells, where the role of the separator
was served by the Celgard 2400, and 1 M LiTFSI in DOL/DME
was utilized as an electrolyte. The cells were then tested in
the multichannel battery test system Arbin in the voltage range
between 1.0 and 3.0 V with a constant current in the form of a
C/5 rate (1C = 7–7.3 mAh).

RESULTS AND DISCUSSION

X-ray powder diffraction patterns and SEM pictures of CuxS
samples obtained at different temperatures with a constant time
of 30 s are shown in Figure 2. The main diffraction peaks located
at 43.5◦ and 50.7◦ for all samples can be assigned to the (1 1 1) and
(2 0 0) crystal faces of the Cu foam, respectively. All other peaks
could be indexed to Cu1.8S and Cu1.96S phases with the trace of
very weak peaks (35◦–38◦) that could correspond to monoclinic
Cu2S (Potter and Evans, 1976). At lower temperatures of 80
and 90◦C, phases of Cu1.96S prevail, whereas at slightly higher
temperatures of 100 and 110◦C, formation of more Cu1.8S
can be noticed. Also, one can observe from the SEM results
(Figures 2b–e) that the temperature had a considerable effect on
the morphologies and structures of the CuxS phases. In essence,
at 80◦C, the only formation of two-dimensional irregular CuxS
plates can be observed, whereas increasing the temperature only
by 10◦C results in a surface with rough structures that resemble

flowers-like humps. Going up to 100◦C leads to the formation
of homogenous hierarchical petals. Eventually, at 110◦C, petals
assemble themselves in flower-like spherical structures.

Figure 3 represents the XRD results and SEM images of CuxS
on Cu foam obtained at 90◦C at different times. The time had
a significant influence on the phases and morphologies of the
formed material as well. The samples prepared at the time of 10,
20, and 30 s showed a similar tendency of Cu1.96S formation.
However, material obtained at 10 s showed the purest phase of
Cu1.96S among them.

On the other hand, 1-min synthesis triggered the formation
of a flower-like Cu1.8S phase. As shown in Figures 3b–e, the
morphology evolution of CuS from irregular form to the flower-
like structure can be seen, involving several growth stages.
The introduction of copper foam into a sulfur solution for
10 s resulted in the formation of irregular pieces (Figure 3b),
whereas changing the time for 20 s enhanced the size of that
particle (Figure 3c). After 30 s, pieces transformed into the
sheets, and they became geometrically regular (Figure 3d). The
time increase to 1 min affected significantly the structure of
composites, forming a flower-like structure of CuxS (mainly
Cu1.8S) (Figure 3e).

The phase evolution of CuxS is depicted in Figure 4, and
several steps are suggested: first, after the Cu foam is soaked in
the solution, instant adsorption of sulfur molecules takes place
on the surface of the foam. Then, after several seconds, the
adsorbed sulfur molecules react with the copper molecules in the
surface of the Cu foam, resulting in a copper-rich Cu1.96S phase.
Subsequently, increasing the reaction time leads to the reaction
of the Cu1.96S phase with the sulfur again causing the formation
of sulfur-rich Cu1.8S phase. Also, it is worth to mention that the
main transformation of Cu1.96S to the Cu1.8S phase is due to
the large surface area of the nanocrystals (Figures 3b–d), which

FIGURE 2 | X-ray powder diffraction patterns (a) and SEM pictures of CuxS samples obtained at different temperatures with the constant time of 30 s: (b) 80◦C, (c)
90◦C, (d) 100◦C, and (e) 110◦C.
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FIGURE 3 | X-ray powder diffraction patterns (a) and SEM pictures of CuxS samples obtained at different times with the constant temperature of 90◦C: (b) 10 s, (c)
20 s, (d) 30 s, and (e) 1 min.

FIGURE 4 | Schematic representation of Cu1.96S and Cu1.8S formation on Cu foam.

allowed the rapid diffusion of Cu ions out of the crystal, thereby
increasing the surface oxidation which possibly accelerated the
djurleite formation (Green et al., 2012).

The scanning electron microscope–EDS images of Cu1.8S
(Figure 5) indicated that the distribution of Cu and S elements

on the copper foam’s surface was uniform, and the coverage was
even. Although the reaction between Cu1.96S and S continues on
the surface of the Cu foam in a gradient pattern, the composition
distribution of the main elements is homogenous throughout
the 3D material.
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FIGURE 5 | Scanning electron microscope–EDS mappings of obtained Cu1.8S on Cu foam: (a) pristine sample, (b) EDS spectra, (c) Cu and (d) S element mapping
images.

The electrochemical characterization of Cu1.96S and Cu1.8S as
cathode materials in lithium half-cells is presented in Figure 6.
Galvanostatic tests were carried out at a rate of C/5 based on
the mass of CuxS. Figure 6A shows charge–discharge profiles
of Cu1.96S freestanding electrodes. It can be observed that the
first discharge profile exhibits short and prolonged plateaus at
2.0 and 1.73 V, respectively. The reaction mechanism for Cu2S
was reported as the initial discharge plateau should be at 1.73 V
and corresponded to Cu2S + 2Li+ + 2e−→ Li2S + 2Cu during
the first cycle (Kalimuldina and Taniguchi, 2016b). However, for
Cu1.96S, additional small peaks at 2.0 V can be seen, which is
a more typical discharge plateau to CuS electrode (Kalimuldina
and Taniguchi, 2017). That difference might come from some
impurities residing in the obtained Cu1.96S electrode. After the
fifth cycle, the discharge profile showed almost disappeared
plateau at 2.2 V and much prolonged at 1.75 V with a
capacity of 100 mAh g−1. Those changes might indicate the
phase transformation of Cu1.96S with some impurities into pure
Cu1.96S with the increase in the cycle number. The impurities
could be the insignificant trace of copper-rich phases (Fu and
Manthiram, 2013; Jache et al., 2014; Foley et al., 2018).

The first charge voltage profiles are depicted at 1.85
and 2.25 V, respectively. Furthermore, after five cycles, we
can observe previously reported flattening of the charge
plateau to 1.85 V (Jache et al., 2014). Consequently, we
can write the reversible electrochemical reaction accordingly
from the obtained charge–discharge profiles as Li2S + 2Cu
Û Cu1.96S + 0.04Cu + 2Li+ + 2e− (Debart et al., 2006;

Kalimuldina and Taniguchi, 2016b, 2017). The similar charge–
discharge profile of Cu1.8S electrode is demonstrated in
Figure 6B. However, the change in the discharge plateaus at 2.1
and 1.65 V can be seen as there longer 2.1 V discharge plateau
than that of in Figure 6A for Cu1.96S. However, after the fifth
cycle, both charge and discharge show single plateaus at 1.75 and
1.85 V with about 250 mAh g−1, respectively. This implies that
the richer the sulfur content in the composition of CuxS, the more
its electrochemical properties get closer to the behavior of the
covellite CuS electrode (Jianga et al., 2019).

Cycling performance of both Cu1.96S and Cu1.8S is
demonstrated in Figure 7. The residue time of 10 s to
obtain Cu1.96S at 90◦C released a low but stable capacity of
100 mAh g−1 for 20 cycles with 100% Coulombic efficiency. On
the contrary, when the reaction residue time was increased up
to 1 min to achieve Cu1.8S, the significant capacity increase was
observed. The capacity of Cu1.8S electrode with a mass loading
of 10.4 mg cm−2 without any binders and additives achieved
250 mAh g−1 for 20 cycles with 100% Coulombic efficiency. It is
well known that CuS is more attractive in the term of theoretical
capacity (560 mAh g−1); however, the electrode with higher
copper content is more electrically conductive (Grozdanov and
Najdoski, 1995). Based on the theoretical capacities of Cu1.96S
and Cu1.8S, the latter will deliver higher value. That can be
considered as one of the reasons for such differences in the
capacity between those electrodes.

The ultrafast and straightforward method of preparation
of 3D CuxS electrodes on Cu foam showed very prospective
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FIGURE 6 | Charge–discharge profiles of (A) Cu1.96S (90◦C, 10 s) and (B) Cu1.8S (90◦C, 1 min) cathodes between 1.0 and 3.0 V at C/5.

FIGURE 7 | Cycle performance of Cu1.96S (90◦C, 10 s) and Cu1.8S (90◦C,
1 min) cathodes between 1.0 and 3.0 V at C/5 over 20 cycles.

electrochemical properties as an applicable compartment in the
future LIBs. The work confirms that other phases of CuxS are also
electrochemically stable and have reversible charge–discharge
processes even at high active mass loading conditions.

CONCLUSION

Different phases of CuxS as Cu1.96S and Cu1.8S were successfully
prepared by a simple method of soaking Cu foam in an S/DMSO
solution for a short period of time. The effect of temperature
and synthesis time on the tendency for the reaction between
Cu foam and S were studied. The morphology of CuxS samples
was cubic-type irregular shapes at 80◦C and grew further to
the nanoflower-like structures at 110◦C. The reaction activity
of formed CuxS on the surface of Cu foam with remaining
S in the DMSO solution was enhanced with the increase in
the soaking time.

Electrochemical properties of Cu1.96S formed at 90◦C and
10-s synthesis time showed only 100 mAh g−1 at 5/C rate,
whereas the sample of Cu1.8S that was obtained by holding
Cu foam up to 1 min at 90◦C in S/DMSO solution reached
stable cycling performance at 250 mAh g−1 with extremely
high mass loading. This allows us to study the phase change
of CuxS materials, depending on the time and temperature
and its influence on the electrochemical properties of the
cathode material.
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