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Abstract: The relevance of the research is determined by the need to simulate wave propagation in
heterogeneous media based on phononic crystals. These studies are necessary for the tasks of flaw
detection, the development of non-destructive testing methods, geophysics, engineering geophysics
and other methods of acoustic research. During the study, it was determined that the fragmentation
of the components of two-component phononic crystals into 2, 3, . . . N equal parts in the unit
cell leads to a catastrophic rearrangement of the dispersion relations and the appearance of new
elementary wave packets for acoustic waves. Using numerical-analytical methods, it is shown that in
two-component phononic crystals, the polydispersity of the components can significantly affect the
average characteristics of the propagation of long acoustic waves when the polydisperse crystal is
close to monodisperse with a smaller unit cell size. For polydisperse crystals close to monodisperse
with the same period (unit cell size), their averaged characteristics for long waves coincide.

Keywords: phononic crystals; acoustic waves; waves in inhomogeneous media; methods of averaging
inhomogeneous media; acoustics of composites; acoustics of porous media; acoustic control methods

1. Introduction

The relevance of the research is determined by the increasing need to model and
describe the averaged characteristics of waves in heterogeneous media. One of the methods
of averaging the properties of a heterogeneous medium is the description of long waves
using phononic crystals (PCs). These methods are based on the fact that most heterogeneous
media have a periodic or almost periodic structure with a characteristic spatial period.
This approach was used by Newton when modeling acoustic waves in the air using
a weight-spring chain. It should be noted that all composite materials with a woven
reinforcing base have a spatially periodic structure. It is usually assumed that the unit
cell of a phononic crystal modeling a two-component inhomogeneous heterogeneous
medium contains one component of each of the media; such crystals are, for convenience,
considered monodisperse. In this paper, studies of the influence of polydispersity (at the
same concentration) on the main characteristics of the propagation of long acoustic waves
in phononic crystals are carried out.

A phononic crystal will be called polydisperse if the number of matrix elements and
reinforcing material elements in the unit cell is greater than one and there are at least two
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matrix elements or two reinforcing material elements of different sizes. An element of the
matrix material or reinforcing material is the connected part of the corresponding material.
Sometimes, the intuitive terminology of “drop” is used for the reinforcing material and
“bubble” for the mixture matrix. Using this terminology, polydispersity means that there
are either two drops or two bubbles of different sizes in the unit cell.

Phononic crystals take into account the properties of waves, such as scattering, inter-
ference and resonant phenomena in one-dimensional periodic chains of inhomogeneities,
to form “band-gaps”, that is, ranges of wavelengths or frequencies within which waves
cannot propagate through the structure [1].

Due to its spatial periodicity, the propagation of acoustic waves in phononic crystals
has special properties that can later be used in various devices and techniques.

There are several classes of phononic crystals that differ mainly in the physical nature
of the inclusions and the matrix. Among them, attention has been paid to solid/solid,
liquid/liquid and mixed solid/liquid composite systems. Such media have transmission
frequency bands and forbidden frequency bands of transmission spectra for which the
propagation of sound or vibration can be strictly prohibited in all directions.

Using the band gap principle, phononic crystals make it possible to regulate the
propagation of elastic or acoustic waves [2]. In other words, they play the role of ideal
scatters for elastic or acoustic waves in the band gap frequency range. Thus, phononic
band gap can be used to filter, limit or direct acoustic energy and, therefore, can be used in
various applications.

Acoustic waves themselves are the object of research in seismology and seismic
exploration. There are features and differences of wave propagation in a solid medium and
in a porous one (when the medium is inhomogeneous and heterogeneous). The propagation
of acoustic waves in porous media is described in [3]. In [4–9], studies of the soundproofing
and wind-proofing properties of phononic crystals were carried out. These studies have
shown that devices such as filters, resonators, waveguides, switches and other phononic
metamaterials can be created on the basis of phononic crystals. Acoustic wave propagation
and resonance phenomena in monodisperse phononic crystals are described in [10].

Modeling of a one-dimensional periodic medium with the help of mechanical analogs
of a weight-spring is described in the fundamental work [11]. This approach can be used
for acoustically contrasting heterogeneous one-dimensional periodic media. In fact, the me-
chanical analogy [11] is an approximate model of a phononic crystal with contrasting media.
The paper [12] describes integral methods for studying the propagation of acoustic waves
in averaged heterogeneous media. The immanent difficulties in dynamic homogenization
of the dispersion waves in heterogeneous media are analyzed in [13,14].

Direct studies of wave propagation in such media are therefore impossible, so methods
of averaging the main characteristics of a heterogeneous medium are almost always used.
Modeling heterogeneous media using phononic crystals is one of these methods. This
determines the practical importance of the study, since homogeneous media essentially do
not exist in nature.

In this paper, studies of the features and specifics of acoustic wave propagation in
polydisperse phononic crystals have been carried out, as well as qualitative assessments
of the effect of polydispersity of phononic crystals on the propagation velocity of acoustic
waves and on the position of the forbidden and transmission frequency bands.

This work is a further development of the methods and approaches described in [10]
and [15–19]. The effect of polydispersity on the propagation velocity and on the frequency
bands of transmission and locking of waves is described here.

Methods and results of the theory of propagation and resonance of acoustic waves in
phononic crystals are widely used in the development and creation of phased receiving
and transmitting antenna arrays [20,21].
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2. Formulation of the Problem

For the purposes of this paper, it is believed that phononic crystals are one-dimensional,
heterogeneous, two-component media periodic in space, and the components can be both
elastic and liquid or gaseous media.

An inhomogeneous one-dimensional periodic medium consists of two components,
medium 1 and medium 2, and the characteristics of these media have an index of 1 or 2,
respectively (Figure 1).

Figure 1. The unit cell.

L is the smallest spatial period, X is a dimensional variable, x = X/L is a dimensionless
spatial variable, here the period is 1.

The unit cell is a set of such x that x* < x < x* + 1 where x* is any number. Media 1
consists of a chain of drops, and media 2 consists of a chain of bubbles. The unit cell is
0 < x < 1. The coordinates of the borders of drops and bubbles should be as follows:

Ω1 = {x: 0 ≤ x ≤ k1} Ω2 = {x : k1 ≤ x ≤ k1 + k2},
Ω3 = {x : k1 + k2 ≤ x ≤ k1 + k2 + k3}, Ω4 = {x : k1 + k2 + k3 ≤ x ≤ 1}

ki—the size of the drop or bubble under the index «i».
Modeling of inhomogeneous media using chains of inclusions of one medium into

another is one of the possible approaches for studying wave propagation.
The wave propagation equations are described by an elementary wave packet, in

which there is a circular frequency, a wave number and a wave amplitude:

A(x)ei(ξ x−ωt) = u(x, t)

A(x + 1) = A(x) is amplitude factor.
Fluctuations in one spatial period are described by the equations:

Ω1 : p′1 + λ2 p1 = 0, λ =
ωL
c1

κ =
c1

c2

Ω2: p′2 + λ2k2 p2 = 0,

Ω3 : p′3 + λ2 p3 = 0,

Ω4 : p′4 + λ2k2 p4 = 0,

where κ = c1
c2

is the ratio of sound velocities, ω is the circular oscillation frequency, λ = ωL
c1

is
the spatial frequency, indices 1, 3 and 2, 4—correspond to media 1 and 2, with
boundary conditions:

p1(0)eiξ = p4(1), (1)

p1(k1) = p2(k1), (2)

p2(k2) = p3(k2), (3)

p3(k3) = p4(k3), (4)
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τ12
∂p1

∂x
(k1) =

∂p2

∂x
(k1), τ12 = ρ2/ρ1, (5)

τ23
∂p2

∂x
(k2) =

∂p3

∂x
(k2), τ23 = ρ3/ρ2, (6)

τ34
∂p3

∂x
(k3) =

∂p4

∂x
(k3), τ34 = ρ4/ρ3, (7)

τ12
∂p1

∂x
(0)eiξ =

∂p4

∂x
(1) (8)

where τ is the ratio of the density of air (gas) to the density of water (liquid). ξ is the phase
shift of the oscillations in the adjacent cells of the chain.

Sound waves are described by an acoustic pressure disturbance, respectively, in these
media. Helmholtz equations are used to solve the equations of elastic and acoustic waves.
The general form of the solution of the Helmholtz equation for calculating the pressure in
the cells Ω1, Ω2, Ω3, Ω4 can be written in the form:

p1 = a1 exp(iλx) + b1 exp(−iλx), (9)

p2 = a2 exp(iλkx) + b2 exp(−iλkx), (10)

p3 = a3 exp(iλkx) + b3 exp(−iλkx), (11)

p4 = a4 exp(iλkx) + b4 exp(−iλkx) (12)

Dynamic and kinematic conditions at the boundary (x1 = c1, x2 = c1 + c2, x3 = c1 + c2 + c3)
of media.

a1eiλc1 + b1e−iλc1 = a2eiλkc1 + b2e−iλkc1 , (13)

τ(a1eiλc1 − b1e−iλc1) = (a2eiλkc1 − b2e−iλkc1)k, (14)

a2eiλk(c1+ c2) +b2e−iλk(c1+c2) = a3eiλ(c1+c2) + b3e−iλ(c1+c2), (15)

τ(a3eiλ(c1+c2) − b3e−iλ(c1+c2)) = (a2eiλk(c1+c2) − b2e−iλk(c1+c2))k, (16)

a3eiλ(c1+c2+c3) + b3e−iλ(c1+c2+c3) = a4eiλk(c1+c2+c3) + b4e−iλk(c1+c2+c3), (17)

τ(a3eiλ(c1+c2+c3) − b3e−iλ(c1+c2+c3)) = (a4eiλk(c1+c2+c3) − b4e−iλk(c1+c2+c3))k (18)

Dynamic and kinematic conditions at the boundaries of (x = 0, x = 1) media, taking
into account the phase shift:

(a1 + b1)e−iξ= a4eiλk + b4e−iλk, (19)

τ(a1 − b1)e−iξ= (a4eiλk − b4e−iλk)k (20)

3. Dispersion Relations

The wave motion in the unit cell of a polydisperse phononic crystal (Figure 1) is
described using four equations in the corresponding domains and conditions at the contact
boundaries of two (Media1 and Media2) media of continuity of acoustic pressure and
acoustic velocity. In addition, the phase shift condition must be met at the boundaries of
the unit cell.

These relations can be considered as a system of algebraic equations for unknown
coefficients a1, b1, a2, b2, a3, b3, a4, b4. Since this system of equations is homogeneous, the
solution of the system of equations with the matrix M(λ, ξ) exists if the determinant of the
matrix is zero Det (M (λ, ξ)) = 0. For all specific phononic crystals with known parameters
media of Media1 and Media2, relation

DetM(λ, ξ)) = 0 (21)
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is the dispersion relation in a phononic crystal for elementary wave packets of the form

A(x)ei(ξ x−ωt), A(x + 1) = A(x) (22)

For example, acoustic waves in a polydisperse phononic crystal made of water and air
or polyurethane foam

ρair = 1.204, cair = 331, ρwater = 999, cwater = 1500

τ12 =
ρwater

ρair
, τ23 =

ρair
ρwater

, τ34 = τ12, κ12 =
cair

cwater
= κ, λ =

ωL
c1

With the help of dispersion relations (21), taking into account the accepted reference
thermodynamic characteristics of water and air, using numerical methods for investigating
functions given implicitly, it is possible to graphically describe the dependence of the upper
frequency of the first bandwidth on the concentration of water in the air for polydisperse
crystals. Since for the first bandwidth, the lowest frequency is 0, the upper value of the
bandwidth is the width of this bandwidth.

The dependence of the frequency bandwidth on the linear concentration k for fixed
values of the parameters of two media (water–air) is shown in Figure 2. Here, the polydis-
persity of the medium is taken into account using the expressions k1 + k3 = k, k3 = 0.2 ∗ k1,
k4 = 0.2 ∗ k2. The graph coincides with the case of a monodisperse distribution of media,
k3 = k4 = 0.

Figure 2. The upper frequency of the bandwidth for the 1st band or the width of this band, depending
on the concentration of water in the air. Polydispersity k1 + k3 = k, k3 = 0.2 ∗ k1, k4 = 0.2 ∗ k2 is taken into
account here. The graph coincides with the case of a monodisperse distribution of media, k3 = k4 = 0.

The most significant thing is that when k = 0.5 there is a global minimum of the width
of the first frequency band as a function of linear concentration.

For an elementary wave packet (22), the phase velocity of wave propagation in a
phononic crystal is determined using the ratio

cph(ξ,κ, τ) = λ(ξ,κ, τ)/ξ, (23)

which is true for mono and polydisperse phononic crystals. Here, ξ is a dimensionless wave
number, λ is a dimensionless cyclic oscillation frequency, and k is the concentration of the
medium. It should be noted that the waves in any phononic crystal are always dispersing,
since the phase velocity depends on the frequency of the wave (or on the wave number).

Figure 3 shows the dependence of the phase velocity on the wave number for equally
large volume (linear, k = 0.5) concentrations of water and air. Graphs are for monodisperse
k1 = k2 = 0.5; k3 = k4 = 0 and polydisperse k1 = k2 = 0.4; k3 = k4 = 0.1 phononic crystals.
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Figure 3. Phase velocity as a function of the wavenumber for monodisperse k1 = k2 = 0.5; k3 = k4 = 0
and polydisperse k1 = k2 = 0.4; k3 = k4 = 0.1 phononic crystals. The graphs match.

4. The Effect of Polydispersity on the Dispersion Ratio and Bandwidth for Long Waves

The dispersion relation for low-frequency waves (or for small frequency values) is the form

λpoly(ξ, k,κ, τ) =

√
2τ[1− cos(ξ)]

((kτ − (k− 1)κ2)((k− 1)τ − k))
(24)

This relation defines the dimensionless frequency λ as a function of the system param-
eters and associates it with the parameter ξ wavenumber, which determines the wavelength
of an elementary wave packet traveling through a phononic crystal. Here, k = k1 + k3, and
the parameter κ is the ratio of the speed of sound in media 2 (gas or air) to the speed of
sound in media 1 (water or polyurethane).

This explicit expression of the dependence of the dimensionless frequency on the
wavenumber ξ is obtained by direct calculation from the dispersion relation (22) for low
frequencies, (λpoly)

4 ≈ 0. This expression does not depend on the polydispersity of
phononic crystals. This means that polydispersity does not affect the propagation of low-
frequency waves in phononic crystals. It should be noted that it is assumed here that
polydispersity has little or no effect at all on the change in the size (length) of the unit cell
of the phononic crystal.

5. Comparative Analysis of Dispersion Ratios of Two-Component Mono and
Polydisperse Phononic Crystals at a Fixed Concentration of Media

This section presents the results of numerical and analytical studies of the effect of
crystal polydispersity on dispersion relations for acoustic waves in crystals. Throughout,
the volume (linear) concentration of the components is constant and equal to 0.5 in fractions
or 50% in percent, unless otherwise specified. Tables 1 and 2 describe the quantitative
characteristics after crushing the components in the unit cell. The first column contains the
phononic crystal number, the second the characteristics (lengths) of alternating connected
components of PCs, and the third column, the color of the graph of the corresponding
dispersion ratio (as indicated on Figures 4–6).

Table 1. Small perturbations of a monodisperse crystal. Description of the unit cell [0,1].

Cell Number Component Length The Color of the Graph

N 1 0.4 + 0.4 + 0.1 + 0.1 Black
N 2 0.4 + 0.25 + 0.1 + 0.25 Green
N 3 0.5 + 0.5 + 0 + 0 Blue
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Table 2. Small perturbations of a monodisperse crystal with a period 2 times smaller. Description of
the unit cell [0,1].

Cell Number Component Length The Color of the Graph

N 4 0.25 + 0.24 + 0.25 + 0.26 Brown
N 5 0.3 + 0.2 + 0.2 + 0.3 Red
N 6 0.25 + 0.25 + 0.25 + 0.25 Yellow

Figure 4. Small perturbations of a monodisperse crystal with a constant concentration of components
of the form 0.5 + 0.5 + 0 + 0: N1 crystal of the kind 0.4 + 0.4 + 0.1 + 0.1, color = black; N2 crystal of the
form 0.4 + 0.25 + 0.1 + 0.25, color = green; N3 component of the form 0.5 + 0.5 + 0 + 0, color = blue.

Figure 5. Small perturbations of a monodisperse crystal with a constant concentration of components of
the form 0.25 + 0.25 + 0.25 + 0.25. N4: 0.25 + 0.24 + 0.25 + 0.26, color = brown; N5: 0.3 + 0.2 + 0.2 + 0.3,
color = red; N6: 0.25 + 0.25 + 0.25 + 0.25, color = yellow.

Figure 6. General view for comparison.

When describing the properties of the dispersion relations shown in Figure 4, it is
necessary to note that perturbation of a monodisperse crystal by crushing its components
in the unit cell expands the first bandwidth. The dispersion relations on the interval
(0, 2π) are shown. Waves in the interval (0, π) propagate in the positive direction along the
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coordinate axis (x). At the interval (π, 2π), the waves propagate in the negative direction
of the coordinate axis (x). For long waves ( |ξ| → 0), the polydispersity or fragmentation
of the components does not affect the dispersion relations for acoustic waves in phononic
crystals. This fully confirms and coincides with the analytical, explicit form of dispersion
relations for long waves (24).

It should be noted that the graphs of dispersion relations for phononic crystals N4 and
N6 coincide well.

We performed comparative analysis of dispersion relations for acoustic waves in
polydisperse phononic crystals obtained by crushing components in the unit cell of a
monodisperse phononic crystal.

Figure 7 shows graphs of dispersion relations for four phononic crystals, N3–N6, in
the wavenumber interval (0, 4π). The appearance of phononic crystals with a smaller unit
cell size as a result of crushing significantly changes the dispersion relations for acoustic
waves. It should be noted that splitting the phononic crystal components into 2, 3, . . . N
equal parts in the unit cell always leads to a catastrophic rearrangement of the dispersion
relations for acoustic waves in these crystals.

Figure 7. The appearance of a smaller spatial period during the crushing of the components
of a monodisperse crystal with a constant concentration of the form 0.25 + 0.25 + 0.25 + 0.25.
Here: N3: 0.5 + 0.5 + 0 + 0, color = blue; N4: 0.25 + 0.24 + 0.25 + 0.26, color = red;
N5: 0.3 + 0.2 + 0.2 + 0.3, color = green; N6: 0.25 + 0.25 + 0.25 + 0.25, color = violet. Splitting
the components in half, each component is divided into 2 equal parts (two halves).

6. The Effect of the Fragmentation of Components in the Unit Cell of a Phononic
Crystal on the Phase Velocities of Acoustic Waves

Hereafter, the following terminology is used unless otherwise stated:

1. N5 is a basic monodisperse phononic crystal with an equal volume (linear) con-
centration of components, and all the others are obtained from it by crushing the
components.

2. N6 is a phononic crystal with a smaller spatial period obtained by crushing the com-
ponents of crystal N5. This crystal catastrophically changes the dispersion relations
for acoustic waves of phononic crystal N5.

Figure 8 shows graphs of the phase velocities of acoustic waves in phononic crystal
as functions of the wavenumber for six phononic crystals in the wavenumber interval
(0, π). The appearance of phononic crystals with a smaller unit cell size as a result of
crushing causes an increase in the velocity of acoustic waves in the phononic crystal.
Properties of acoustic velocities in phononic crystals N4 (0.25 + 0.3 + 0.25 + 0.2, coral) and
N6 (0.25 + 0.25 + 0.25 + 0.25, violet) (Table 3) are signs of a catastrophic restructuring of the
dispersion properties of these crystals.
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Figure 8. Change in the phase acoustic velocity during crushing of the components of a monodisperse
crystal N5 with a constant concentration of the form 0.5 + 0.5 + 0 + 0. Here: N1: 0.45 + 0.45 + 0.05 + 0.05,
red; N2: 0.49 + 0.49 + 0.01 + 0.01, blue; N3: 0.05 + 0.25 + 0.45 + 0.25, green; N4: 0.25 + 0.3 + 0.25 + 0.2,
coral; N5: 0.25 + 0.3 + 0.25 + 0.2, black; N6: 0.25 + 0.25 + 0.25 + 0.25, violet.

Table 3. Crushing of a phononic crystal.

Crystal Number Type of Crushing The Color of the Graph

N1 0.45 + 0.45 + 0.05 + 0.05 Red
N2 0.49 + 0.49 + 0.01 + 0.01 Blue
N3 0.05 + 0.25 + 0.45 + 0.25 Green
N4 0.25 + 0.3 + 0.25 + 0.2 Coral
N5 0.5 + 0.5 + 0 + 0 Black
N6 0.25 + 0.25 + 0.25 + 0.25 Violet

7. The Effect of the Fragmentation of Components in the Unit Cell of a Phononic
Crystal on the Width of the First Bandwidth

In this section, with the help of precise dispersion relations, studies of the effect of
component fragmentation (Table 4) on the width of the first bandwidth are carried out.

Table 4. Parametric fragmentation of the elements of the unit cell.

Crystal Number Area Length Ω1 Area Length Ω2 Area Length Ω3 Area Length Ω4 The Color of the Graph

N 1 0.1 C2 0.4 0.5- C2 Red
N 2 0.2 C2 0.3 0.5- C2 Blue
N 3 0.05 C2 0.45 0.5- C2 Green

The graphs show the dependence of the upper boundary of the first (lower) band of
dimensionless frequencies on the size of one part of the crushing of the second component
of a two-component phononic crystal, which is shown in Figure 1.

The graph of the dependence of the width of the first bandwidth for phononic crystals
of type N2 is in good agreement with the appearance of a unit cell with a smaller size as a
result of crushing phononic crystals, which significantly changes the dispersion relations for
acoustic waves. This means that splitting the corresponding components in half primarily
causes (or causes) the greatest expansion of the first bandwidth in comparison with a
monodisperse phononic crystal with the same concentration of components.

8. The Effect of the Crushing of Components in the Unit Cell of a Phononic Crystal on
the Width of the First Forbidden Band

Graphs of the dependence of the width of the first forbidden frequency band for
phononic crystals (Figure 9) agree well with the graph of the dependence of the width of the
first bandwidth for phononic crystals (Figure 10). Splitting the corresponding components
in half primarily causes (or causes) the greatest expansion of the first forbidden frequency
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band. From the conducted studies, an important conclusion can be drawn that when
splitting components, the most significant effect on the bandwidth and locking frequencies
is provided by splitting the type “in half”—into equal or almost equal parts. Such splitting
of the phononic crystal components significantly expands the first bandwidth and narrows
the first forbidden band.

Figure 9. The change in the width of the first bandwidth when crushing the components of a monodis-
perse crystal with a constant concentration of 50%. The values of the main parameters are described in
the table of parametric crushing of the elements of the unit cell. Here: N1—the constant sizes of the two
connected parts of the crushing 0.1 and 0.4, red; N2 is 0.2–0.3, blue; N3 is 0.05–0.45, green.

Figure 10. The change in the width of the first forbidden frequency band when crushing the compo-
nents of a monodisperse crystal with a constant concentration of 50%. Here: N1—constant sizes of
two connected parts of crushing 0.1 and 0.4, red; N2 is 0.2–0.3, blue; N3 is 0.05–0.45, green.

The graphs show the dependence of the upper boundary of the first (lower) band
of dimensionless transmission frequencies and the lower boundary of the first blocking
frequency band on the size of one part of the crushing of the second component of a
two-component phononic crystal, which is shown in Figure 1.

9. Some Examples

Thus, Figure 11 shows the dependence of the phase velocity cph on the phase shift x
for different values of the concentration k1. This figure shows the effect of polydispersity
(at different concentrations) of phononic crystals on the bandwidth and locking.
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Figure 11. The change in phase velocity at different concentrations.

Next, we give some numerical examples of these results in the case of wave propaga-
tion in phononic crystals consisting of other materials.

Figure 12a–c shows comparative graphs of the transmission frequency dependence on the
wavenumber for gas water, brick and concrete, respectively, for mono and polydisperse media.

Figure 12. Cont.
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Figure 12. Comparative characteristics (a) for gas water, (b) for brick, (c) for concrete. The total
concentration for mono and polydisperse media is 0.5.

10. Conclusions, Results and Discussions

Monodisperse and polydisperse two-component phononic crystals are models of the
corresponding inhomogeneous media. These approximate models of phononic crystals
make it possible to develop software applications for visualizing scientific calculations
of wave propagation in inhomogeneous media. Using numerical and analytical research
methods, it is shown that in two-component phononic crystals, the polydispersity of
the components can significantly affect the averaged propagation characteristics of long
acoustic waves in phononic crystal, in the case when the polydisperse crystal is close
to a monodisperse crystal with a smaller unit cell size. For polydisperse crystals close
to monodisperse with the same unit cell size, the averaged characteristics are close and
asymptotically coincide in wavelength.

It is shown that splitting the components of phononic crystals into 2, 3, . . . N equal
parts in the unit cell always leads to a catastrophic rearrangement of the dispersion relations
for acoustic waves in these crystals.

When splitting components in the unit cell of phononic crystals, the most significant
effect on the bandwidth and locking frequencies is provided by splitting the type “in half”—
into equal or almost equal parts. Such fragmentation of the phononic crystal component
significantly expands the first bandwidth and narrows the first forbidden band.
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