Effect of Co_{0.5}Zn_{0.5}Fe₂O₄ Nanoparticle on AC Susceptibility and Electrical Properties of YBa₂Cu₃O_{7-δ} Superconductor

Kairatbek Zhetpisbaev^{1,*}, Serik Kumekov², Nurul Raihan Mohd Suib^{3,4}, Ilhamsyah Putra Abu Bakar⁴, R. Abd-Shukor⁴

¹ Eurasian National University by L.N.Gumilyov, 010008, 2, Satpaev Street, Astana, Kazakhstan
² Institute of Hi-Tech Engineering, Kazak National Research Technical University 050022, 22, Satpaev Street, Almaty, Kazakhstan

³ Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia
⁴ School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*E-mail: <u>kairatbek@mail.tu</u>

doi: 10.20964/2019.01.35

Received: 6 September 2018 / Accepted: 20 October 2018 / Published: 30 November 2018

Magnetism and superconductivity are mutually exclusive phenomena and their interaction is an interesting topic to study. In this work the effect of $Co_{0.5}Zn_{0.5}Fe_2O_4$ (CZFO) nanoparticle with size 20-50 nm on YBa₂Cu₃O_{7- δ}(YBCO) is reported. The samples were prepared using solid state reaction with starting composition YBa₂Cu₃O_{7- δ}(Co_{0.5}Zn_{0.5}Fe₂O₄)_x with x = 0 to 0.4 weight percent (wt. %). All samples exhibited single YBCO phase as shown from the XRD patterns. The grain size was reduced with CZFO addition. The transition temperature (T_c) from resistance measurements showed a slight increase from 90 K (x = 0) to 91 K (x = 0.1) followed by a suppression for $x \ge 0.2$. The peak temperature, T_p of the imaginary part of the susceptibility χ ", was around 79 to 76 K in the x = 0 to 0.3 samples. However, a drastic decrease to 60 K was observed in the x = 0.4 sample indicating weakening of intergrain coupling which resulted in coupling losses as CZFO was added. The x = 0.1 sample showed the highest T_c and the critical current density, J_c among all the samples studied. These results were compared with other materials addition to YBa₂Cu₃O_{7- δ}.

Keywords: coherence length; penetration depth; nanoparticles; intergrain current density

FULL TEXT

© 2019 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).