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/e emergence of the COVID-19 pandemic declared the huge need of humanity for new and effective antiviral drugs./e reported
antimicrobial activities of Artemisia sublessingiana encouraged us to investigate the ethanol extract of its aerial parts which led to
the isolation of six flavonoids and a sesquiterpenoid./e structures of the isolated compounds were elucidated by EI-MS, 1D, and
2D NMR spectroscopic methods to be (1) eupatilin, (2) 3′,4′-dimethoxyluteolin, (3) 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone,
(4) hispidulin, (5) apigenin, (6) velutin, and (7) sesquiterpene lactone 8α,14-dihydroxy-11,13-dihydromelampolide. /e isolated
compounds were in silico examined against the COVID-19 main protease (Mpro) enzyme. Compounds 1–6 exhibited promising
binding modes showing free energies ranging from −6.39 to −6.81 (kcal/mol). /e best binding energy was for compound 2. /e
obtained results give hope of finding a treatment for the COVID-19 pandemic.

1. Introduction

COVID-19 is the pandemic caused by the new coronavirus
strain SARS-CoV-2 (severe acute respiratory syndrome co-
rona virus-2). /e pandemic started in Wuhan, China, at the
end of 2019 and spread all over the world [1]. By December
2020, COVID-19 infected more than 35 million patients and
causedmore than amillion deaths according to theWHO [2].
Unfortunately, there is no accessible treatment for COVID-19
till now. /e available treatment for infected patients is just

symptomatic treatment by using anticoagulants, oxygen
therapy, analgesics, and some research drugs [3]. Corona-
viruses have caused serious diseases to humans before, such as
Middle East respiratory syndrome (MERS-CoV) which
appeared in 2012 and severe acute respiratory syndrome
(SARS-CoV) in 2003 [4, 5].

/e proteases, especially main protease (Mpro), play a
vital role in the life cycle of coronaviruses [6]. Mpro is a
cysteine protease that is enrolled in the maturation cleavage
events within the polyprotein’s precursors [7, 8]. /is
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enzyme is crucial for the processing and translation of
polyproteins from the viral RNA [9]. Accordingly, Mpro is a
very essential element for the replication and transcription
of coronaviruses, and the inhibiting of its activity would
block viral replication [10]. Consequently, Mpro could be an
interesting target to explore the efficacy of new drugs against
the coronavirus.

Now, there is an urgent need to find an effective drug
against COVID-19. Since computational chemistry is a rapid
and reliable screening method for bioactive compounds,
there were many efforts to explore the effect of different
ligands against COVID-19 [11–13].

Natural secondary metabolites are a significant source
for anti-infective agents since dawn of history. /ese me-
tabolites are found in many sources in nature such as plants
[14, 15], marines [16, 17], and microbes [18–20], and they
could be assorted following their chemical structure into
countless classes such as saponins [21, 22], diterpenes [23],
pyrones [24], isochromenes [25], flavonoids [26, 27], and
alkaloids [28].

Artemisia L. (Asteraceae) species have been used in
traditional medicine to treat various diseases and have
shown several interesting pharmacological activities such as
antimalarial, hepatoprotective, antioxidant, antibacterial,
and cytotoxic activities [29–31]. Some flavonoids such as
isorhamnetin-3-O-rutinoside and 5, 7, 4′-trihydroxy-6, 3′-
dimethoxyflavone [32] have been isolated from Artemisia
sublessingiana before. Furthermore, some sesquiterpene
lactones like the eudesmanolide arsubin were also found in
this species [33]. Secondary metabolites, such as flavonoids
and sesquiterpenoids were reported to have diverse vital
biological activities, such as antitumor [34], cytotoxic [35],
antitrypanosomal [36], antibacterial, and anti-inflammatory
activities [37].

In this study, the main bioactive contents of the aerial
parts of A. sublessingiana (Krasch. ex Poljak.) Poljak.
(Synonium Seriphidium sublessingianum (Krasch ex Polja-
kov)) have been investigated. /is paper reports the isola-
tion, structural determination, and in silico anti-COVID-19
main protease (Mpro) activities of six flavonoids and one
sesquiterpene lactone from A. sublessingiana. /eir struc-
tures were determined by spectrum analysis of 1D, 2DNMR,
and ESI-MS data.

2. Materials and Methods

2.1. General Experimental Procedures. Column chromatog-
raphy separations (CC) were performed on glass columns
packed with silica gel (ASTM, 230–400 mesh, Merck, LTD,
Japan). /in-layer chromatography (analytical and pre-
parative thin-layer chromatography (TLC) was performed
on silica gel 60 F 254 glass plates (Merck, LTD, Japan). Spots
were visualized under UV light (254 and 366 nm) and by
spraying with alcoholic 10% H2SO4 reagent followed by
heating. Isolated compounds were identified by 1D and 2D
NMR analysis (1H 500MHz, 13C 125MHz), acquired on a
Jeol Delta 2 NMR spectrometer at 297K. Internal standards:
TMS. Solvents: chloroform-d, acetone-d6, and DMSO-d6.
Coupling constants are given in Hertz. /e chemical shifts

were expressed in δ ppm. Mass spectra (EIMS) were
recorded on an IT-TOF-MS spectrometer.

2.2.PlantMaterial. /e aerial parts ofA. sublessingianawere
collected 90 km from Kyzylorda city, Kazakhstan (Kyzylkum
sand desert). /e material was authenticated by Professor
M. Ishmuratova, Department of Botany, E.A. Buketov
Karaganda University, Republic of Kazakhstan. A sample
was deposited in the herbarium of the Faculty of Biology and
Geography.

2.3. Extraction and Isolation. Air-dried powered above-
ground parts ofA. sublessingiana (1.0 kg) were grounded and
extracted with EtOH for 1 day. /e extract was filtered, and
the extraction process was repeated twice. /e combined
extracts were evaporated under reduced pressure to yield a
crude extract of 93 g./e total crude extract was subjected to
column chromatography over silica gel eluting with hexane
and gradually increasing the polarity with acetone (up to
100%) and then MeOH. /e fractions were studied on TLC
and combined into twenty-three fractions (1F–23F). Com-
pound (1) (216mg) was separated from fraction 17F. Further
chromatography of fraction 18F (2.5 g) on a column of silica
gel with chloroform-acetone (in a manner of increasing
polarity) and further chromatography of the obtained
fractions 18F2 (0.1 g) with chloroform-methanol (in a
manner of increasing polarity) gave compound (2) (5mg).
Fraction 18F4 (0.04 g) was dissolved in a solvent and re-
peatedly washed to give (3) (28mg). Fraction 19F (2.91 g)
was further fractionated on a silica gel column (60 g) eluting
with chloroform-methanol (in a manner of increasing po-
larity) to obtain compounds (4) (19mg) and (5) (15mg).
Fraction 14 F (0.65 g) was fractionated on a silica gel column
eluting with chloroform-acetone (in a manner of increasing
polarity) to give fraction (14F10). Fraction 14F10 (0.041 g)
was further subjected to PTLC in system chloroform-
methanol to obtain compound (6) (4mg). Fraction 17F
(2.93 g) was further purified by column chromatography on
silica gel with chloroform-methanol (in a manner of in-
creasing polarity) to give (7) (68.8mg).

2.4. Compound Identification. 5,7-Dihydroxy-6,3′,4′-trime-
thoxyflavone (eupatilin) (1): yellow crystals, C18H16O7. 1H
NMR (DMSO, 500MHz) δ (ppm): 13.05 (s, 5-OH), 10.73
(s, 7-OH), 6.98 (s, H-3), 6.65 (s, H-8), 7.57 (d, J� 2.5Hz,
H-2′), 7.12 (d, J� 8.5Hz, H-5′), 7.68 (dd, J� 2.0, 8.5Hz, H-6′),
3.76 (s, 6-OCH3), 3.88 (s, 3′-OCH3), 3.86 (s, 4′-OCH3); 1H
NMR (CDCl3, 500MHz) δ (ppm): 13.08 (s, 5-OH), 6.52 (s, 7-
OH), 6.61 (s, H-3), 6.59 (s, H-8), 7.34 (brs, H-2′), 6.98
(d, J� 8.5Hz, H-5′), 7.52 (brd, J� 8.5Hz, H-6′), 4.05
(s, 6-OCH3), 3.99 (s, 3′-OCH3), 3.97 (s, 4′-OCH3). 13C NMR
(DMSO, 500MHz) δ (ppm): 163.38 (C-2), 103.37 (C-3),
182.21 (C-4), 152.74 (C-5), 131.35 (C-6), 157.32 (C-7), 94.38
(C-8), 152.43 (C-9), 104.13 (C-10), 122.92 (C-1′), 109.40
(C-2′), 149.00 (C-3′), 152.11 (C-4′), 111.67 (C-5′), 120.02
(C-6′), 59.97 (6-OCH3), 55.73 (3′-OCH3), 55.85 (4′-OCH3).
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HRESIMS: m/z 367.0780 [M +Na]+, C18H16O7Na, calc.
367.0788.

5,7-Dihydroxy-3′,4′-dimethoxyflavone(3′,4′-dimethox-
yluteolin) (2): yellow amorphous powder, C17H14O6. 1H
NMR (DMSO, 500MHz) δ (ppm): 12.93 (s, 5-OH), 10.85 (s,
7-OH), 6.98 (s, H-3), 6.21 (d, J� 2.5Hz, H-6), 6.54 (d,
J� 1.8Hz, H-8), 7.57 (d, J� 1.8Hz, H-2′), 7.13 (d, J� 8.6Hz,
H-5′), 7.69 (dd, J� 1.8, 8.7Hz, H-6′), 3.88 (s, 3′-OCH3), 3.91
(s, 4′-OCH3). HRESIMS: m/z 337.0686 [M + Na]+,
C17H14O6Na, calc. 337.0683.

5,7,3′-Trihydroxy-6,4′,5′-trimethoxyflavone (3): yellow
powder, C18H16O8. 1H NMR (DMSO, 500MHz) δ (ppm):
12.99 (s, 5-OH), 10.70 (s, 7-OH), 9.60 (s, 3′-OH), 6.92 (s,
H-3), 6.60 (s, H-8), 7.17 (dd, J� 1.5, 4.5Hz, H-2′), 7.17 (dd,
J� 1.5, 4.5Hz, H-6′), 3.70 (s, 6-OCH3), 3.70 (s, 4′-OCH3),
3.80 (s, 5′-OCH3). 13C NMR (DMSO, 500MHz) δ (ppm):
163.25 (C-2), 104.22 (C-3), 182.23 (C-4), 152.46 (C-5),
131.41 (C-6), 153.57 (C-7), 94.28 (C-8), 152.78 (C-9), 104.22
(C-10), 125.88 (C-1′), 102.12 (C-2′), 157.46 (C-3′), 139.63
(C-4′), 150.91 (C-5′), 107.68 (C-6′), 59.98 (6-OCH3), 60.08
(4′-OCH3), 56.15 (5′-OCH3). HRESIMS:m/z 383.0740 [M +
Na]+, C18H16O8Na, calc. 383.0737.

5,7,4′-Trihydroxy-6-methoxyflavone (hispidulin) (4):
yellow powder, C16H12O6. 1H NMR (DMSO, 500MHz) δ
(ppm): 13.09 (s, 5-OH), 10.70 (brs, 7-OH), 10.40 (brs, 4′-
OH), 6.79 (s, H-3), 6.60 (s, H-8), 7.93 (d, J� 8.3Hz, H-2′),
6.93 (d, J� 8.3Hz, H-3′), 6.93 (d, J� 8.3Hz, H-5′), 7.93 (d,
J� 8.3Hz, H-6′), 3.74 (s, 6-OCH3). 13C NMR (DMSO,
500MHz) δ (ppm): 163.80 (C-2), 152.40 (C-3), 182.14 (C-4),
152.78 (C-5), 131.34 (C-6), 157.26 (C-7), 94.23 (C-8), 152.40
(C-9), 104.07 (C-10), 121.21 (C-1′), 128.47 (C-2′), 115.96 (C-
3′), 161.17 (C-4′), 115.96 (C-5′), 128.47 (C-6′), 59.95 (6-
OCH3).

5,7,4′-Trihydroxyflavone (apigenin) (5): yellow powder,
C15H10O5. 1H NMR (DMSO, 500MHz) δ (ppm): 12.98 (s, 5-
OH), 6.79 (s, H-3), 6.20 (d, J� 2.0Hz, H-6), 6.49 (d,
J� 2.5Hz, H-8), 7.94 (d, J� 8.5Hz, H-2′), 6.93 (d, J� 9.5Hz,
H-3′), 6.93 (d, J� 9.5Hz, H-5′),7.94 (d, J� 8.5Hz, H-6′). 13C
NMR (DMSO, 500MHz) δ (ppm): 163.23 (C-2), 103.34 (C-
3), 182.28 (C-4), 161.96 (C-5), 99.35 (C-6), 164.65 (C-7),
94.48 (C-8), 157.82 (C-9), 104.20 (C-10), 121.68 (C-1′),
129.02 (C-2′), 116.46 (C-3′), 161.69 (C-4′), 116.46 (C-5′),
129.02 (C-6′).

5,4′-Dihydroxy-7,3′-dimethoxyflavone, luteolin 7,3′-di-
methyl etherluteolin (velutin) (6): yellow powder, C17H14O6.
1H NMR (CDCl3, 500MHz) δ (ppm): 12.81 (s, 5-OH), 6.04
(brs, 4′-OH), 6.58 (s, H-3), 6.38 (d, J� 2.0Hz, H-6), 6.50 (d,
J� 2.0Hz, H-8), 7.34 (d, J� 2.0Hz, H-2′), 7.04 (d, J� 8.3Hz,
H-5′), 7.50 (dd, J� 8.3, 2.0Hz, H-6′), 3.89 (s, 7-OCH3), 4.01
(s, 3′-OCH3).

8α,14-Dihydroxygermacra-1(10)E,4E-dien-6β,7α,11βH-
12,6-olide (8α,14-dihydroxy-11,13-dihydromelampolide)
(7): colorless crystals, C15H23O4. 1H NMR (CDCl, 500MHz)
δ (ppm): 5.49 (m, 2H, J� 7.0, 9.0, 16.0Hz, H-1), 2.14 (m,
H-2a), 1.89 (m, H-2b), 2.16 (m, H-3a), 1.91 (m, H-3b), 5.01
(brd, J� 10.0Hz, H-5), 4.53 (t, J� 10.0Hz, H-6), 2.12 (m,
H-7), 3.90 (brs, H-8), 2.32 (brd, J� 15.0Hz, H-9a), 2.25 (dd,
J� 3.0, 15.0Hz, H-9b), 2.57 (m, H-11), 1,43 (d, J� 6.0Hz,
H-13), 4.33 (brd, J� 12.0Hz, H-14a), 4.13 (brd, J� 12.0Hz,

H-14b), 1.83 (brs, H-15), 2.84, 3.90 (brs, each, OH-3, 4). 13C
NMR (CDCl, 500MHz) δ (ppm): 128.73 (C-1), 25.22 (C-2),
38.05 (C-3), 138.58 (C-4), 124.60 (C-5), 77.26 (C-6), 55.17
(C-7), 73.75 (C-8), 35.15 (C-9), 139.02 (C-10), 41.73 (C-11),
179.45 (C-12), 16.41 (C-13), 69.22 (C-14), 17.24 (C-15).

2.5. Docking Studies Experiment. /e crystal structure of the
target enzymes COVID-19 main protease (Mpro) (PDB ID:
6lu7, resolution: 2.16 Å) was downloaded from Protein Data
Bank (http://www.pdb.org). Molecular operating environ-
ment (MOE) was used for the docking analysis [38]. In these
studies, the free energies and binding modes of the examined
molecules against Mpro were determined. At first, the water
molecules were removed from the crystal structure of Mpro,
retaining only one chain which is essential for binding. /e
cocrystallized ligand (PRD-002214) was used as a reference
ligand. /en, the protein structure was protonated, and the
hydrogen atoms were hidden. Next, the energy was mini-
mized, and the binding pocket of the protein was defined [39].

/e structures of the examined compounds and the
cocrystallized ligand were drawn using ChemBioDraw Ultra
14.0 and saved in SDF format. /en, the saved file was
opened using MOE software, and 3D structures were pro-
tonated. Next, the energy of the molecules was minimized.
/e validation process was performed for the target receptor
by running the docking process for only the cocrystallized
ligand. Low RMSD values between docked and crystal
conformations indicate valid performance [40, 41]. /e
docking procedures were carried out utilizing a default
protocol. In each case, 30 docked structures were generated
using genetic algorithm searches. /e output from MOE
software was further analyzed and visualized using Dis-
covery Studio 4.0 software [42, 43].

3. Results and Discussion

3.1. Compounds Isolation. Using different chromatographic
techniques, seven compounds have been isolated from the
ethanol extracts of the aerial parts of A. sublessingiana. /e
obtained compounds were identified using different 1D and
2D NMR spectroscopic methods to be (1) eupatilin [44, 45],
(2) 3′,4′-dimethoxyluteolin [46–48], (3) 5, 7, 3′-trihydroxy-
6,4′,5′-trimethoxyflavone [49], (4) hispidulin [50, 51], (5)
apigenin [52, 53], (6) velutin [54], and (7) sesquiterpene
lactone 8α,14-dihydroxy-11,13- dihydromelampolide [55–57].
/e chemical structures of compounds (1–7) were confirmed
by comparison of the reported spectral data in the literature
(Figure 1).

3.2. Docking Studies. Docking studies were carried out for
compounds (1–7) against the COVID-19 main protease
(Mpro) (PDB ID: 6lu7, resolution: 2.16 Å) to examine the
mode of binding with the proposed target./e cocrystallized
ligand (PRD-002214) was used as a reference molecule. /e
results of docking studies revealed that the docked com-
pounds have good binding affinities against COVID-19
main protease with binding free energies ranging from −4.94
to −6.81 kcal/mol (Table 1).
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/e crystallized ligand (PRD-002214) showed binding
energy of −7.83 kcal/mol. /e detailed binding mode of the
crystallized ligand was as follows: making three hydrogen
bonds with Phe140, His163, and Glu166, the 2-oxopyrro-
lidin-3-yl moiety occupied the first pocket of the enzyme.
Additionally, tert-butyl carbamate moiety occupied the
second pocket of Mpro. Furthermore, the phenyl ring of
phenylalanine moiety occupied the third pocket of the re-
ceptor, forming hydrophobic interaction with His41. Finally,
ethyl propionate moiety was incorporated in the fourth
pocket (Figures 2–4).

Compound (2) showed the best binding mode and
highest binding energy of −6.81 kcal/mol. /e 7-hydroxy-6-
methoxy-4H-chromen-4-one moiety occupied the first
pocket of Mpro, forming three hydrogen bonds with Phe140
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Figure 1: Chemical structures of the isolated compounds.

Table 1: /e docking binding free energies of seven compounds,
simeprevir, and the cocrystallized ligand (PRD-002214) against
COVID-19 main protease.

Compound Binding free energy (kcal/
mol)

1 −6.53
2 −6.81
3 −6.51
4 −6.44
5 −6.39
6 −6.55
7 −4,94
Cocrystallized ligand (PRD-
002214) −7.83

Figure 2: Cocrystallized ligand (PRD-002214) docked into the
active site of the COVID-19 main protease. /e hydrogen bonds
are represented in green dashed lines, and the hydrophobic in-
teractions are represented in orange dashed lines.
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Figure 3: Mapping surface showing the cocrystallized ligand (PRD-002214) occupying the active pocket of the COVID-19 main protease.

Figure 4: 2D interaction of the cocrystallized ligand (PRD-002214)
in the active site of the COVID-19 main protease.

Figure 5: Compound (2) docked into the active site of the COVID-
19 main protease. /e hydrogen bonds are represented in green
dashed lines, and the hydrophobic interactions are represented in
orange dashed lines.

Figure 6: Mapping surface showing compound (2) occupying the
active pocket of the COVID-19 main protease.

Figure 7: 2D interaction of compound (2) in the active site of the
COVID-19 main protease.
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and His163. Also, it formed one hydrophobic interaction
with His163. Additionally, 1,2-dimethoxybenzene moiety
occupied the second pocket of Mpro forming two hydro-
phobic interactions with Met165 and His41 (Figures 5–7).

4. Conclusions

/is study focused on the phytochemical and the in silico
biological investigation against the COVID-19 main pro-
tease (Mpro) of six flavonoids and one sesquiterpene lactone
obtained from A. sublessingiana. Eupatilin, 3′, 4′-dime-
thoxyluteolin, 5, 7, 3′-trihydroxy-6, 4′,5′-trimethoxyflavone,
velutin, and 8α,14-dihydroxy-11,13-dihydromelampolide
were isolated from Artemisia species for the first time.
Compound (2) exhibited the best binding mode with a
binding energy of −6.81 kcal/mol against COVID-19 main
protease (Mpro)./e obtained results open a window of hope
to find an effective cure to the pandemic of COVID-19.
Further in vitro and clinical studies should be conducted on
compound 2 to confirm its potential against the contagious
virus SARS-CoV-2.
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