
Citation: Zharkenova, G.; Arkan, E.;

Arkan, M.Z.; Feder-Kubis, J.;

Koperski, J.; Mussabayev, T.;
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Abstract: This study explores task-specific ionic liquids (TSILs) in smart floor systems, highlighting
their strong electrical rectification abilities and previously established wood preservative properties.
Two types of TSILs, featuring a “sweet” anion and a terpene-based cation, were used to treat selected
wood samples, allowing for a comparison of their physical and electrical performance with untreated
and commercially treated counterparts. Drop shape analysis and scanning electron microscopy were
employed to evaluate the surface treatment before and after coating. Near-IR was used to confirm
the presence of a surface modifier, and thermogravimetric analysis (TGA) was utilized to assess the
thermal features of the treated samples. The different surface treatments resulted in varied triboelectric
nanogenerator (TENG) parameters, with the molecular structure and size of the side chains being the
key determining factors. The best results were achieved with TSILs, with the instantaneous voltage
increasing by approximately five times and the highest voltage reaching 300 V under enhanced loading.
This work provides fresh insights into the potential application spectrum of TSILs and opens up new
avenues for directly utilizing tested ionic compounds in construction systems.

Keywords: renewable natural resource; (−)-menthol; saccharinate-based ionic liquid; wood-based
TENG; smart floor

1. Introduction

In the new global economy, biodegradable and eco-friendly materials play a crucial
role in the development of renewable industrial processes and are regarded as powerful
platforms for sustainable futures [1]. A good example is wood-based materials, which
are lightweight, inexpensive, and easy to process, with the added benefit of being recy-
clable [2–4]. Wood is also structurally flexible, has a porous texture, and possesses the
benefits of high mechanical impact resistance, low density, a high surface area, and a high
aspect ratio [2,5]. Fortunately, the surface treatment of wood enhances its durability against
environmental factors, such as fire and climate, and improves its functionality, making it
suitable for use in smart home systems [6–9]. Therefore, exploiting this potential for energy
harvesting devices, such as triboelectric nanogenerators (TENGs), is of interest [2,10–13].
Hao et al. developed TENGs for energy harvesting and motion sensing [10]. Likewise,
He et al. fabricated TENGs to harvest energy and sense specific motions, such as walking,
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running, and jumping [14]. Bang et al. used typical silane-based structures to create tri-
bopositive and tribonegative wood layers [2]. Furthermore, the use of new biocompatible
materials as surface modifiers could be an essential next step in improving the effectiveness
of smart floor systems.

Most of the literature on TENGs has focused on design, circuit modeling, and improv-
ing potential applications [15–18]. For example, contact area enhancement of triboelectric
layers through physical treatment has been explored using various approaches [19–21].
However, the molecular characteristics of the applied materials greatly influence surface
charge accumulation and, therefore, the triboelectric effect. Using novel and biodegradable
materials to enhance the triboelectric effect is relatively uncommon [22–24]. It is, therefore,
evident that the integration of biobased molecules into wood-based TENG systems could
be an effective step in enhancing the device’s performance.

Recent evidence in the literature highlights the benefits of small organic molecules, includ-
ing their ease of production, well-defined molecular weight, simple purification, exceptional
reproducibility, and adjustable molecular structure [25,26]. In this sense, task-specific ionic
liquids (TSILs) [27] are promising compounds with desirable properties and reactivities in
many fields. TSILs are ionic liquids (ILs) in which the functional group is covalently tethered to
the cation or/and anion of the molecule. The characteristics of these salts can be influenced by
the cation–anion combination, the nature of the introduced functional group, and its position
in the molecule’s structure. TSILs possess favorable ionic conductivity and high thermal and
electrochemical stability [28–33]. They are suitable for chemical processes under conventional
conditions due to their nonflammable and less volatile features, which prevent atmospheric
contamination [34–37]. The functional groups incorporated into the structure of TSILs also
provide biological specificity, making them highly recognized in biotechnology [33,38,39] and
pharmacology [40,41]. These benefits position them as environmentally friendly chemicals, of-
fering advantages over commercial chemicals in surface-coating applications. Furthermore, the
molecular structure of TSILs is particularly well suited for applications in energetic materials,
with their structures forming ideal ionic pairs, making them attractive components in electronic
devices, such as redox couples in dye-sensitized solar cells and high-energy density providers
in lithium battery technology [42,43]. Their unique configurations when paired with certain
metals and lanthanides, such as Fe3+ and Dy3+, give them paramagnetic characteristics and
luminescence behavior, rendering them valuable for future advanced computer and display
technology [44–46]. Moreover, the high nitrogen content in the imidazolium cation of their
chemical structure allows the formation of carbamate upon interaction with CO2, facilitating
their usage in CO2 gas sensor studies [47,48]. This nitrogen content is particularly considered
for applications in explosives and their safe handling [49]. While TSILs have demonstrated po-
tential in various applications, from pharmaceuticals to organic electronics and surface-coating
agents, further comparative studies are needed to investigate their multifunctional abilities
as surface-coating agents for wood-based materials, especially in enhancing the thermal and
electrical properties of smart floor systems [50–53]. Therefore, any investigation focusing on
this research gap is expected to significantly contribute to the literature.

This work aims to use TSILs as unique surface modifiers to evaluate the physical and
electrical properties of different wood samples, specifically spruce, larch, and pine, which
are commonly used in the construction sector. Studies on the potential application of TSILs
in the wood industry are scarce but promising and have primarily focused on their wood
preservative properties [34,54].

Our previous work [33] demonstrated that quaternary imidazolium salts with multiple
functional groups could be successfully applied in the wood industry. Apart from promis-
ing results for wood preservation, tested salts were found to have low aggressiveness
against carbon steel, even lower than commercially used patterns. Thus, we decided to fur-
ther investigate these surfactants belonging to TSILs. We hypothesized that utilizing them
in smart floor systems could serve as a model approach to influence further relevant re-
search and expand their potential usage in the future market. For this purpose, two types of
TSILs and a commercial coating were employed to treat wood samples, and their pros and
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cons were compared. The electrical measurements were based on fabricating wood-based
TENG devices using properly sliced wood and coating materials. Surface-coated woods
were used as tribopositive layers in all device measurements, and the device’s performance
was measured under different loads. The experimental work presented here provides
important insights by illustrating the application of TSIL-based coatings as a performance
booster in smart floor systems and their effectiveness as wood surface protection agents.

2. Results and Discussion

In the present work, two TSILs possessing two functional groups, including (–)-
menthol as the cation and saccharinate as the counterion, which varied in alkyl chain length
(hexyl and decyl substituent), were used to modify the selected wood surfaces (Figure 1).
Since the effectiveness of tested quaternary imidazolium salts as anti-fungal agents in
wood preservation has been proven in a previous study [33], further evaluation to test the
thermal performance and electrical behaviors of TSILs is needed to support the application
of this powerful platform in a wide range of technologies, such as smart floors. To this end,
three types of wood—spruce, larch, and pine—have been selected due to their extensive
exploitation for tough uses in industry and civil engineering construction. To evaluate
the synergism of the obtained parameters and to create a correlation between them, a
comparative screening experiment was performed using commercial coatings. Moreover,
wood is mainly used outside and subjected to atmospheric conditions in real life; therefore,
its thermophysical properties before and after the coating are specifically important for
long-term performance. PTFE tape and each prepared wood sample, both coated and
uncoated, were chosen as opposite layers to enhance the triboelectric power of the device.
PTFE tape is known for its tribonegative nature, while wood is tribopositive. Additionally,
these materials are cost-effective and lightweight, and have a large specific surface area.
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Figure 1. Molecular structure of TSILs used in this study.

Analyses were performed to examine the wetting behavior of the wood surface before
and after coating to evaluate the coating effect of molecules on the surfaces. To achieve this,
sessile water droplet measurements were conducted on the surfaces at room temperature,
and data were collected after the water droplet completed its spread. Contact angle
measurements were collected for all wood coupons, and a similar trend was found for
contact angles before and after IL coatings. However, GT-9 had the highest contact angle
among the group of bare woods, whereas GT-4 showed the highest contact angle for
IL-coated samples. It is well known that the polar nature of water, having a partially
negative and partially positive structure, plays a decisive role in the interaction of bulk
water with any substance or surface. Therefore, grafting the wood surface with polar
organic moieties or charged molecules will yield ideal wettability [55]. This is why IL
coatings on all woods show wettable features, making them a suitable surface modification
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platform. These findings are consistent with previous studies that indicate TSILs penetrate
the wood to some extent rather than merely staying on the surface [34]. Moreover, this
wettability feature of TSILs can be regarded as superior to their hydrophobic counterparts
in terms of triboelectrification. Thanks to the hydrophilic surface formed by these ILs, water
molecules are expected to participate in triboelectrification, thereby enhancing triboelectric
surface charge generation and increasing the output performance [56,57]. Conversely,
non-polar entities, such as homogeneous hydrocarbon chains, exhibit more hydrophobic
properties due to the free energy transfer from the aqueous phase to the hydrocarbon
structure [55,58–60]. As shown in Table 1 and Figure 2, double-layered commercial coatings
have increased the hydrophobicity of the surface due to their mixture of hydrocarbon and
aromatic structures. Additionally, it was observed that, unlike TSILs, the bottom coat of
commercial materials did not penetrate as deeply and instead created a solid layer after
applying top coatings. The relationship between surface coatings and contact angle values
confirms that the type of grafting material significantly impacts surface behaviors and is
also expected to affect related physical, thermal, and electrical properties.

Table 1. Acronyms and some surface features of treated wood samples.

Sample Wood Coating Contact Angle Weight Loss

GT-1 Spruce Bare 18.9◦ 97.6%
GT-2 Spruce Commercial Coating 86.3◦ 99.7%
GT-3 Spruce [C10-Im-CH2OMen][Sacc] 20.9◦ 84.1%
GT-4 Spruce [C6-Im-CH2OMen][Sacc] 27.3◦ 83.1%

GT-5 Larch Bare 32.05◦ 80.6%
GT-6 Larch Commercial Coating 83.7◦ 84.5%
GT-7 Larch [C10-Im-CH2OMen][Sacc] 22.2◦ 79.7%
GT-8 Larch [C6-Im-CH2OMen][Sacc] 23.65◦ 80.6%

GT-9 Pine Bare 34.45◦ 99.5%
GT-10 Pine Commercial Coating 79.35◦ 85.0%
GT-11 Pine [C10-Im-CH2OMen][Sacc] 22.2◦ 78.9%
GT-12 Pine [C6-Im-CH2OMen][Sacc] 22.8◦ 85.2%Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
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The SEM technique was employed to image the samples before and after coating
to determine how the coating type regulates the material surface, which has a crucial
impact on crafting the material for engineering applications. The images in Figure 3 clearly
show that wood structures naturally have a crater-type surface arrangement. However,
commercial coatings have filled these spaces to a significant extent and even resulted in
sedimentation on some parts of the surface due to polymerization after top-layer coating.
This sedimentation could be another reason for the high contact angle of commercial
coatings. In contrast, TSILs did not form any external layer on the wood surfaces, and there
was no significant change in surface morphology before and after ionic compound coating.
This further supports the finding that TSILs penetrated the wood matrix by replacing
moisture in the gaps.
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In a previous study by Kubis et al., the presence of quaternary imidazolium salts
on the wood surface was evaluated using ATR-IR [34]. In the current study, we gained
further insight into the surface coverage of wood samples through near-IR spectroscopy,
and the resulting spectra are shown in Figures S1–S3. Since these TSILs penetrated the
wood structure, peaks in the spectra of bare and coated woods only differed in small shifts,
indicating the presence of some specific groups related to ILs. Conversely, commercial
coatings created specific layers on the top of wood surfaces rather than penetrating the
wood. Consequently, the absorption intensity of the peaks increased in the spectrum.
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In particular, peaks in all spectra at ~6800 are related to the water adsorbed on the surfaces.
This peak at ~6800 is less distinct in commercial coatings due to their hydrophobic nature,
whereas it is more prominent in TSIL coatings because the modification has provided a
wettable surface. In addition, quaternary imidazolium salt coatings have shown greater
CH and CH2 peaks in the first overtone within the range of 5600–6000, and these peaks are
also more explicit in the second overtone at around 8300 due to the alkyl chain moieties
on the molecular structure. In contrast, the alkyl constituent of commercial coatings is
apparent in the first overtone region at ~5650–5800.

Further insight into the key features of surface coating concerning various kinds of
wood was gained through thermogravimetric analysis (TGA), and the results are shown in
Figure 4 and summarized in Table 1. In general, all materials have different responses to
heat treatment due to their varied nature; therefore, this behavior regulates their suitability
for practical applications. Surface treatment is expected to alter the thermal properties
depending on the compatibility between the material and the coated layer. In this study,
all materials except commercially coated ones exhibited one-step decomposition. All bare
woods showed stable behavior until the temperature reached 200 ◦C with their first de-
composition starting at ~240 ◦C. However, the first decomposition temperature decreased
to ~150 ◦C after applying commercial coatings, as they formed an external layer made up
of aromatic and hydrocarbon chains on the top of the wood, and it is typical for organic
structures to decompose at this temperature. Moreover, Figure S4 shows the remaining
final weight of each sample after the thermal process to evaluate its thermal durability. Con-
cerning TSIL coatings, they exhibited the same trend as each piece of bare wood regarding
the first decomposition temperature. Nonetheless, they demonstrated extended stability
and slow weight loss during the increased temperature in spruce and pine, while there was
a slight increase in the stability of larch after TSIL coatings were applied. This behavior
can be attributed to the long hydrocarbon chains and sulfur–carbon (C-S) bond content of
TSILs, which have intrinsic retardancy against flammability.
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Electrical Measurements

The use of wood floors in homes and activity centers, such as sports courts, is a
popular choice due to the ease of installation, stiffness, and easy maintenance of wood-
based components. Therefore, a wood-based TENG system is considered a sustainable and
renewable way to harvest electrical energy from the mechanical motion of human activity.
As with all renewable energy devices, it can be postulated that the surface coverage of
wood is expected to influence charge formation and separation at the interface and improve
the corresponding TENG device parameters.

The devices’ output performance was analyzed using vertical direction movement
measurements obtained by manually striking them with a roughly constant 20 N force and
2 Hz frequency. Figure 5 depicts the instantaneous output voltages of the produced TENGs
under the internal resistance of the used instrument. The maximum output voltages of the
TENGs fabricated with bare woods were 1.24, 2.88, and 2.72 V for GT-1, GT-5, and GT-9,
respectively. Among the bare woods, GT-5 exhibited the highest performance compared to
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the others. Furthermore, the surface coatings increased the instantaneous output voltages,
with maximum measured values detected from the TSILs coating of 14.2 and 15.0 V for
GT-7 and GT-8, respectively. It can be inferred that the imidazolium salt coating resulted
in the rectification of voltage parameters due to their enhanced electron-donating ability,
which also enhanced the tribopositive character of the wood samples.
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Additional evaluation of the electrical performance was achieved by measuring the
current–voltage changes of TENGs when altering loads, and the obtained results are
illustrated in Figure 6. It is apparent from the graphs that the greater the load applied
to the system, the lower the output current produced over time. Moreover, the increase
in voltage continues until the highest stress point, owing to the minor influence of load
increases up to this point. However, exceeding this point due to the rise in the applied load
causes contrary effects on the current, and, consequently, the voltage starts to decrease.
This distinctive variation is based on the nonlinear correlation between the applied load and
measured power. Additionally, a comparison of the current–voltage results reveals that the
surface coverage of wood samples exhibits improved electrical performance. The maximum
measured voltage–current values are 300 V and 15.0 µA for GT-8 under maximum and
minimum load conditions, respectively. The high performance of TSILs can be mainly
attributed to ion pairing and ion aggregation, along with decreased ion mobility arising
from their large ion sizes, which might enhance the tribopositive feature of the wood
samples [28,61]. In the case of the commercial coating system, the slight improvement
observed with respect to TSILs can be attributed to its aromatic ring and long hydrocarbon
chain combination, which increases the electron density thanks to the formation of a more
positive inductive effect [19,62].

The assessment of maximum power points (MPPs) depending on the various loads
before and after surface modifications was carried out using the P = V2/R equation, and
the results are shown in Figure 6. Since each sample has a different electrical response due
to its diverse electrical behavior, each of them has shown its highest value at different loads.
However, power curves follow similar variations with changing loads and approach 0 after
exceeding MPP. In particular, TSIL-coated samples showed the best MPP values compared
to the other samples, and GT-8 produced the highest MPP value of 2.88 mW at 20 MΩ.
These results suggest that the surface grafting of wood samples is not only essential for
the rectification of the electrical performance of the wood-based materials but also serves
as an ideal modifier, similar to TSILs, and contributes to enhancing the charge generation,
leading to an improvement in the output electric power through increased charge density
at the contact surface of the TENGs. Moreover, the hydrophilic nature of TSILs allows for
water–PTFE polarization when moisture in the air adheres to the surface that comes into
contact with hydrophobic PTFE, further contributing to charge generation [57].
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better than salt with a longer alkyl chain [C10-Im-CH2OMen][Sacc] in all voltage and power
trials. Consistent with the current result, our previous reports have described the role of
the molecular size-dependent effectiveness of molecular packaging in the coverage of the
surface and interface [63]. In general, the greater the molecular size, the greater the steric
effect and, thereby, the less close packaging of bulky molecules [64]. Within this framework,
it is also expected that treatment with salt that possesses a C6-carbon chain can bring about
the highest settlement of the molecules throughout the cellular matrix of the wood structure.
Hence, this could be a possible explanation for why [C6-Im-CH2OMen][Sacc] rectifies the
electrical output better than [C10-Im-CH2OMen][Sacc].
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3. Materials and Methods
3.1. Materials

The synthesis, purification, and detailed characterization of two selected TSILs, (i) 3-hexyl-1-
[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium saccharinate ([C6-Im-CH2Omen][Sacc]) and (ii) 3-
decyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium saccharinate ([C10-Im-CH2Omen][Sacc]),
were previously introduced to the literature by Kubis et al. [34]. Wood materials, namely larch,
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spruce, and pine, as well as a double-layered commercial coating system (Remmers HK Stain
and Remmers Lasur UV as the bottom and top coats, respectively), were kindly provided by
STAMADREW (https://www.stamadrew.pl/en, accessed on 20 September 2023, Czechowice-
Dziedzice, Poland), the official distributor of certified SECA wood materials in Poland (Serafin
Campestrini s.r.o. SECA Borohrádek, Czech Republic). Ethyl alcohol was purchased from
Merck (Darmstadt, Germany).

3.2. Preparation of Wood Samples

Each “as received” wood sample was used without subjecting it to further processing
before being cut into sample coupons. Each coupon was sliced to the following dimensions
(h, l, w): 1 × 40 × 40 mm. Samples were prepared by slicing the wood into 1 × 40 × 40 mm3

pieces. The first coat of the commercial coating was applied to the surface with a brush,
as described in the application manual, and cured for 48 h. The topcoat was applied
by following the same procedure. As for the coating with TSILs, their excellent wood
penetration abilities and their penetration depth have already been explicitly detailed in
our previous report. In this follow-up study, each TSIL was dissolved in ethyl alcohol to
prepare 0.5 mg/mL solutions. To control the consistency, an automatic pipet with 3 mL of
solution was used to slowly dispense the same amount of solution on the distinct wood
surface, and each sample was left to dry at room temperature overnight to be used in
further stages. Following this procedure, 3 different TSIL-coated specimens were prepared
from each used wood sample. All samples with acronyms, their surface treatments, and
some physical properties are summarized in Table 1.

3.3. Device Fabrication

Figure 9 illustrates the structures of doped TSIL molecules (a), the TENG model used in
this experiment (b), and the working principle of the device (c). The supporting layer of the
designed devices is formed of acetate paper with dimensions of 1 (h) × 100 (l) × 100 (w) mm.
Bare and surface-coated woods and Teflon tape samples were sized as 1 (h) × 40 (l) × 40 (w)
mm and used, in turn, as positive and negative dielectrics. Opposite dielectric layers were
glued to both sides of the acetate paper to avoid slippage from the supporting layer.
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3.4. Instrumentation and Device Characterization

A Kruss DSA100E drop-shape analyzer (Germany) was used to determine the contact
angle of the samples. The Tesla Bs 340 model SEM (Czech Republic) was used to obtain
surface images of prepared wood sheets using the following parameters: EHT = 5.00kV,
WD = 4.7–7.2 mm, and resolution = 100 µm. A Gw instek GDS-1152-U oscilloscope with
a short-circuit resistance (Rin) of 1 MΩ was used to measure the voltage of the TENGs.
Thermo Scientific Nicolet iS50 model NIR-IR spectroscopy (U.S.A.) device was used to ana-

https://www.stamadrew.pl/en


Molecules 2023, 28, 6758 11 of 14

lyze chemical bonds on the wood surfaces, and thermal characterizations of samples were
carried out using Thermogravimetric TGA 550 TA Instruments (U.S.A.). In addition, power
values were obtained by calculating equivalent resistance using the internal resistance of
the oscilloscope. The electrical output was measured by converting the AC waveform of
devices to a DC waveform through a bridge diode. Peak values of the electrical output of
fabricated devices were regarded as references for voltage, current, and power curves.

4. Conclusions

Here, we evaluated the thermal and electrical performance of TSILs as surface-coating
agents for wood samples to enhance their applicability in processes ranging from wood
preservatives to smart floor systems. To assess the advantages and limitations of TSILs, a
commercial coating system was used as a comparative material. We found that TSILs pene-
trated throughout the wood matrix, while commercial coatings formed an external layer on
the surface. This is a favorable feature for materials engineering if further treatment is de-
sired. Near-IR spectroscopy confirmed the presence of both TSILs and commercial coatings
on wood surfaces with different spectral peaks. TGA analysis showed that all samples were
thermally stable, but TSILs demonstrated extended thermal durability. Regarding electrical
performance, TSILs outperformed bare and commercial coatings, with the highest result
of 300 V and a ~5-fold increase in the maximum instant voltage value. The TSIL with a
C6-carbon chain, [C6-Im-CH2OMen][Sacc], showed the highest rectification in electrical
outputs among the TSILs, due to its smaller size. These findings provide insight into the
potential use of TSILs as renewable and cost-efficient sources for smart floors to harvest
energy from various vibrations in green construction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28196758/s1, Figure S1: FT-IR spectra of modified
and unmodified Spruce woods; Figure S2: FT-IR spectra of modified and unmodified Larch woods;
Figure S3: FT-IR spectra of modified and unmodified Pine woods; Figure S4: Percentage of weight
remaining of woods after TGA analysis.
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Molecular Engineering Regulated Triboelectrification on Silica Surface to Enhance TENG Efficiency. Molecules 2023, 28, 5662.
[CrossRef]

https://doi.org/10.1088/0964-1726/19/10/105014
https://doi.org/10.1021/acssuschemeng.9b03645
https://doi.org/10.1002/1521-3773(20001103)39:21%3C3772::AID-ANIE3772%3E3.0.CO;2-5
https://doi.org/10.1039/c2cs15362a
https://doi.org/10.1126/science.1090313
https://doi.org/10.1016/j.cej.2022.136062
https://doi.org/10.3390/ijms24021360
https://doi.org/10.1039/c1cc14314j
https://doi.org/10.1039/D0GC02387F
https://doi.org/10.1021/cm0213568
https://doi.org/10.1038/nmat2448
https://www.ncbi.nlm.nih.gov/pubmed/19629083
https://doi.org/10.1039/B711189D
https://doi.org/10.1002/anie.200802390
https://doi.org/10.1002/anie.200905981
https://doi.org/10.1021/ef900649c
https://doi.org/10.1021/ja017593d
https://doi.org/10.1021/ar7001304
https://doi.org/10.3390/ijms21218298
https://doi.org/10.1246/bcsj.80.2262
https://doi.org/10.1002/9781119288152.ch20
https://doi.org/10.1016/j.molliq.2019.112038
https://doi.org/10.1515/hf-2016-0216
https://doi.org/10.1016/j.nanoen.2021.106303
https://doi.org/10.1002/smll.202201402
https://doi.org/10.1021/ja062943n
https://doi.org/10.1007/BF00790780
https://doi.org/10.1038/srep25572
https://doi.org/10.1021/jp984145s
https://doi.org/10.3390/molecules28155662


Molecules 2023, 28, 6758 14 of 14

63. Alptekin, H.; Arkan, E.; Özbek, C.; Can, M.; Farzaneh, A.; Sütçü, M.; Okur, S.; Cobley, A.J. Water affinity guided tunable
superhydrophobicity and optimized wettability of selected natural minerals. J. Coat. Technol. Res. 2019, 16, 199–211. [CrossRef]

64. Arkan, E.; Arkan, M.Z.Y.; Unal, M.; Yalcin, E.; Aydin, H.; Çelebi, C.; Can, M.; Tozlu, C.; Demic, S. Performance enhancement of
inverted perovskite solar cells through interface engineering by TPD based bidentate self-assembled monolayers. Opt. Mater.
2020, 105, 109910. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11998-018-0115-y
https://doi.org/10.1016/j.optmat.2020.109910

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Materials 
	Preparation of Wood Samples 
	Device Fabrication 
	Instrumentation and Device Characterization 

	Conclusions 
	References

