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Introduction. The WDVV equations, in general, have the following form [1, 2, 3]: 
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where F  is a prepotential,   is a metric, n is the dimension of a manifold. This is an 

overdetermined system of partial differential equations for a single scalar function F known as the 

prepotential. It appeared in the work of Witten and Dijkgraaf, E.Verlinde, H.Verlinde [1, 2, 3, 4] in 

context of Topological Quantum Field Theory (TQFT). A geometric interpretation of these 

equations was given by Dubrovin in [1], which led to the formal definition of a Frobenius manifold. 

This work of Dubrovin further strengthened the link between the WDVV equations and TQFT, and 

therefore of integrable systems. The WDVV equations themselves are also integrable since they can 

be written as a zero curvature equation for a so-called deformed, or Dubrovin, connection. 

The solution F must meet the following two conditions: 

1) (the normalization condition): 
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2) the homogeneity equation: 
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where E is Euler vector field. 

Let us consider a function of n  independent variables ),...,( 1 nttF  satisfying the following 

two conditions [5, 6]: 
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1. The matrix 
ttt
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:  is constant and nondegenerate. Note that the matrix Șαȕ 

completely determines dependence of the function F on the fixed variable t
1
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 are structural constants of an 

associative algebra A(t) in n-dimensional space with a basis e1, ..., en. 

The conditions 1 and 2 impose a complicated overdetermined system of nonlinear partial 

differential equations of the third order on the function F. This system is known in two-dimensional 

topological field theory as the equations of associativity or the Witten-Dijkgraaf-H.Verlinde-

E.Verlinde (WDVV) system. 

Determination the connection between the metric and potential in the equations of 

associativity. We consider various cases [7] of the metric of the associativity equation. In this case 

we have that 0=11 . The metric for n = 2 cases is as follows 
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Since the metric is antidiagonal we have the condition 
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from this condition we obtain the following form of F : 
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Now we need to find )(1 yk  and )(2 yk . Since the metric is antidiagonal we have the 

conditions 
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from which it follows that yyk =)(1  and 0=)(2 yk . Hence we have the following form of 

solutions 
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Now we consider case when 011  . The metric for n = 2 cases is as follows 
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Since the above metric we have the condition  

Powered by TCPDF (www.tcpdf.org)

2

http://www.tcpdf.org


221 
 

1=
3

xxx

F




 

from this condition, we obtain the following form of F : 
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Now we need to find )(1 yk  and )(2 yk . Since the above metric we have the conditions 
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from which it follows that 0=)(1 yk  and 
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yk . Hence we have the following form of 

solutions 
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Now we consider case when 011  . The metric for n = 3 cases is as follows  
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Since the above metric we have the condition  
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from this condition, we obtain the following form of F : 
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Now we need to find ),(1 zyk  and ),(2 zyk . Since the above metric we have the conditions  

 

1=0,=
33

zyx

F

yxx

F







 

 

from which it follows that 0=),(1 zyk  and yzzyk =),(2 . Hence we have the following form of 

solutions 
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In this case we have that 0=11 . The metric for n = 3 cases is as follows 
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Since the metric is antidiagonal we have the condition 
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from this condition, we obtain the following form of F :  
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Now we need to find ),(1 zyk  and ),(2 zyk . Since the metric is antidiagonal we have the 

conditions  

 

1=1,=
33

yyx

F

zxx

F







 

 

from which it follows that zzyk =),(1  and 
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zyk . Hence we have the following form of 

solutions  
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Now we consider case when 0=11 . The metric for n = 4 cases is as follows  
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Since the metric is antidiagonal we have the condition  
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from this condition, we obtain the following form of F : 
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Now we need to find ),,(1 tzyk  and ),,(2 tzyk . Since the metric is antidiagonal we have the 

conditions  
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from which it follows that ttzyk =),,(1  and yztzyk =),,(2 . Hence we have the following 

form of solutions  
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Now we consider case when the metric for n = 4 is as follows  
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Since the above metric we have the condition  

 

0=
3

xxx

F




 

from this condition, we obtain the following form of F : 
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Now we need to find ),,(1 tzyk  and ),,(2 tzyk . Since the above metric we have the 

conditions  
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from which it follows that ttzyk =),,(1  and 
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=),,(
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tzyk  . Hence we have the 

following form of solutions 
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Conclusion. In this paper, we consider determination the connection between the metric and 

potential in the equations of associativity. We consider various cases of the metric of the 
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associativity equations. We obtain the conditions arising from the metric. We consider the different 

cases of the metric for n=2, 3, 4. We obtain the different form of solution for potential F in the 

equations (2, 4, 6, 8, 10, 12). 
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ԤɈɄ 524.834 

ɇȿɌȿɊ ɋɂɆɆȿɌɊɂəɋɕ ȺɊԔɕɅɕ F(R, T,   ) ȽɊȺȼɂɌȺɐɂəɋɕ 

 

Ⱥɛɞɟɲɨɜɚ Ʌɹɣɥɚ1, Ɇɟɣɟɪɛɟɤɨɜ Ȼɟɤɞɚɭɥɟɬ2, Ȼɚɭɵɪɠɚɧ Ƚɭɥɶɧɭɪ2, ɀɚɫɵɛɚɟɜɚ  Ɇɟɪɭɟɪɬ2 

abdeshova10@bk.ru  
1Ʌ.ɇ.Ƚɭɦɢɥɟɜ ɚɬɵɧɞɚԑɵ ȿԜɍ, Ɏɢɡɢɤɚ-ɬɟɯɧɢɤɚɥɵԕ ɮɚɤɭɥɶɬɟɬɿɧɿң ɫɬɭɞɟɧɬɿ,  

ɇԝɪ-ɋԝɥɬɚɧ, Ԕɚɡɚԕɫɬɚɧ 
2Ʌ.ɇ.Ƚɭɦɢɥɟɜ ɚɬɵɧɞɚԑɵ ȿԜɍ, Ɏɢɡɢɤɚ-ɬɟɯɧɢɤɚɥɵԕ ɮɚɤɭɥɶɬɟɬɿɧɿң ɞɨɤɬɨɪɚɧɬɵ,  

ɇԝɪ-ɋԝɥɬɚɧ, Ԕɚɡɚԕɫɬɚɧ 

Ԑɵɥɵɦɢ ɠɟɬɟɤɲɿɥɟɪɿ- Ʉ.ȿɪɠɚɧɨɜ, ɇɭɪɤɚɫɵɦɨɜɚ ɋ.ɇ. 
 

Ʉɨɫɦɨɥɨɝɢɹɞɚ ɬɚɧɵɦɚɥ ɛɨɥɵɩ ɤɟɥɟ ɠɚɬԕɚɧ ɝɪɚɜɢɬɚɰɢɹ ɬɟɨɪɢɹɫɵɧɚ ɞɟɝɟɧ 
ԕɵɡɵԑɭɲɵɥɵԕ ɠɵɥɞɚɧ ɠɵɥԑɚ ɚɪɬɵɩ ɤɟɥɟɞɿ. ɋɨɧɵɦɟɧ ԕɨɫɚ ɤԧɩɬɟɝɟɧ ɬԝɠɵɪɵɦɞɚɪ ɠԥɧɟ 
ɢɞɟɹɥɚɪ ɞɚɦɭ ԛɫɬɿɧɞɟ. ɇԥɬɢɠɟɫɿɧɞɟ ɪɚɞɢɚɰɢɹɧɵ ɛɚɣԕɚɭ ɚɪԕɵɥɵ ɤԛңɝɿɪɬ ɷɧɟɪɝɢɹ ɚɧɵԕɬɚɥɵɩ, 
ɨɥ ɤԧɩɬɟɝɟɧ  ɫԝɪɚɧɵɫɬɚɪԑɚ ɢɟ ɛɨɥɞɵ [1],[2]. Ԕɚɡɿɪɝɿ ɭɚԕɵɬɬɚ ԕɨɥ ɠɟɬɿɦɞɿ ɞɟɪɟɤɬɟɪ ɚɪԕɵɥɵ 
ԑɚɥɚɦɧɵң ɠɟɞɟɥ ԕɚɪԕɵɧɦɟɧ ԝɥԑɚɸɵɧ ɬԛɫɿɧɞɿɪɭ ԛɲɿɧ ɛɿɪ ɦɨɞɟɥɞɿ ɚɧɵԕɬɚɭ ɠɟɬɤɿɥɿɤɫɿɡ. ȿң 
ԕɚɪɚɩɚɣɵɦɵ, ɛɚɫɬɚɩԕɵ ɭɚԕɵɬɬɚ ɗɣɧɲɬɟɣɧɧɿң ɤɨɫɦɨɥɨɝɢɹɥɵԕ ɬԝɪɚԕɬɵɫɵ Λ ɚɪԕɵɥɵ 
ԝɫɵɧɵɥɵɩ, ԥɪɿ ԕɚɪɚɣ ɞɚɦɭɵɧ ɠɚɥԑɚɫɬɵɪԑɚɧ . Ԕɚɡɿɪɝɿ ɭɚԕɵɬɬɚ  ɛԝɥ ɦɨɞɟɥɶ ɫɬɚɧɞɚɪɬɬɵ 
ɤɨɫɦɨɥɨɝɢɹɥɵԕ ΛCDM ɦɨɞɟɥɿɧɟ ɠɟɬɬɿ.  

ɀɚɥɩɵ ɚɣɬԕɚɧɞɚԥɥɟɦɿɧɿң ԝɥԑɚɸɵɧ ɫɢɩɚɬɬɚɣɬɵɧ ԧɪɿɫ - ɫɤɚɥɹɪ ԧɪɿɫɿ. ȿң ɬɚɧɵɦɚɥɵ - 

ɤɜɢɧɬɷɫɫɟɧɰɢɹ. Ɉɫɵ ɦɨɞɟɥɶ ԛɲɿɧ Ʌɚɝɪɚɧɠ ɬɵԑɵɡɞɵԑɵ  )(VL  , ɦԝɧɞɚԑɵ )(V ɫɤɚɥɹɪ 
ԧɪɿɫɿɧɟ ɧɟɝɿɡɞɟɥɝɟɧ ɮɭɧɤɰɢɹɫɵ   [3]. ɋɤɚɥɹɪɥɵԕ ԧɪɿɫɬɿң ԛɥɝɿɥɟɪɿɧ ɠɚɥɩɵɥɚɭ ԛɲɿɧ,   -

ɬԛɪɞɟɝɿ Ʌɚɝɪɚɧɠɢɚɧ ɬɵԑɵɡɞɵԑɵɧ )(FL    -ɢɧɮɥɹɰɢɹ ɦɨɞɟɥɿ ԛɥɝɿɫɿɧɟ ɧɟɝɿɡɞɟɣɦɿɡ [4], [5]. 
Ʉɟɣɛɿɪ ɫɤɚɥɹɪɥɵԕ ԧɪɿɫɬɟɪɞɿң ɛɚɫԕɚ ɦɵɫɚɥɞɚɪɵ ɪɟɬɿɧɞɟ - ɬɚɯɚɧɚɥɵԕ ԧɪɿɫɬɿ, ɮɚɧɬɨɦ ԧɪɿɫɿɧ, 
ɞɢɥɚɬɨɧɢɹɥɵԕ ɤԛңɝɿɪɬ ɷɧɟɪɝɢɹɧɵ ɠԥɧɟ ɑɚɩɥɵɝɢɧ ɝɚɡɵɧ ԕɚɪɚɫɬɵɪɭԑɚ ɛɨɥɚɞɵ. Ԛɥɝɿɧɿ ɲɵɧɚɣɵ 
ɦɨɞɟɥɶɞɟɪɝɟ ɠɟɬɤɿɡɭ ԛɲɿɧ ɤԧɩ ɮɚɤɬɨɪɥɚɪ ɚɪԕɵɥɵ ɠɢɧɚԕɬɚɣɦɵɡ ɠԥɧɟ  g - ɦԥɧɿ 
ɩɚɣɞɚɥɚɧɵɥɚɞɵ, ɨɥ ɫɨɧɞɚɣ-ɚԕ   ɮɟɪɦɢɨɧɞɵԕ ԧɪɿɫɿɧɟ ɠɚɬɚɞɵ [6], [7]. Ƚɪɚɜɢɬɚɰɢɹ 
ɬɟɨɪɢɹɫɵɧɵң ɬɚԑɵ ɛɿɪ ɦɵɫɚɥɵ - ɝɟɨɦɟɬɪɢɹɥɵԕ ɬԥɫɿɥ ɛɨɣɵɧɲɚ )(RF -ɝɪɚɜɢɬɚɰɢɹɫɵɧ ɠɚɥɩɵ 
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